The Physics Section in Symmetry
Conflicts of Interest
References
- Odintsov, S.D.; Oikonomou, V.K.; Giannakoudi, I.; Fronimos, F.P.; Lymperiadou, E.C. Recent Advances in Inflation. Symmetry 2023, 15, 1701. [Google Scholar] [CrossRef]
- Banik, I.; Zhao, H. From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity. Symmetry 2022, 14, 1331. [Google Scholar] [CrossRef]
- Visinelli, L.; Vagnozzi, S.; Danielsson, U. Revisiting a Negative Cosmological Constant from Low-Redshift Data. Symmetry 2019, 11, 1035. [Google Scholar] [CrossRef]
- Khlopov, M. Cosmoparticle Physics of Dark Universe. Symmetry 2022, 14, 112. [Google Scholar] [CrossRef]
- Horwitz, L.P.; Namboothiri, V.S.; Varma, K.G.; Yahalom, A.; Strauss, Y.; Levitan, J. Entropy Bounds: New Insights. Symmetry 2022, 14, 126. [Google Scholar] [CrossRef]
- Dieselhorst, T.; Cook, W.; Bernuzzi, S.; Radice, D. Machine Learning for Conservative-to-Primitive in Relativistic Hydrodynamics. Symmetry 2021, 13, 2157. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K.; Baleanu, D.; Osman, M.S.; Wazwaz, A.-M. Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations. Symmetry 2022, 14, 597. [Google Scholar] [CrossRef]
- Abbas, N.; Shatanawi, W.; Abodayeh, K. Computational Analysis of MHD Nonlinear Radiation Casson Hybrid Nanofluid Flow at Vertical Stretching Sheet. Symmetry 2022, 14, 1494. [Google Scholar] [CrossRef]
- Hardhienata, H.; Faci, S.; Alejo-Molina, A.; Priatama, M.R.; Alatas, H.; Birowosuto, M.D. Quo Vadis Nonlinear Optics? An Alternative and Simple Approach to Third Rank Tensors in Semiconductors. Symmetry 2022, 14, 127. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, L.; Ferroli, R.B.; Huang, G. Experimental Review of ΛΛ− Production. Symmetry 2022, 14, 144. [Google Scholar] [CrossRef]
- Hess, K. A Critical Review of Works Pertinent to the Einstein-Bohr Debate and Bell’s Theorem. Symmetry 2022, 14, 163. [Google Scholar] [CrossRef]
- Chai, Q.; Chen, H.; Zha, M.; Pei, J.; Xu, F. Studies of Deformed Halo Structures of 39Na and 42Mg. Symmetry 2022, 14, 215. [Google Scholar] [CrossRef]
- Marples, C.R.; Williams, P.M. The Golden Ratio in Nature: A Tour across Length Scales. Symmetry 2022, 14, 2059. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results—X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Baker, T.; Barreira, A.; Desmond, H.; Ferreira, P.; Jain, B.; Koyama, K.; Li, B.; Lombriser, L.; Nicola, A.; Sakstein, J.; et al. Novel Probes Project: Tests of gravity on astrophysical scales. Rev. Mod. Phys. 2021, 93, 015003. [Google Scholar] [CrossRef]
- Vafa, C. The String landscape and the swampland. arXiv 2005, arXiv:0509212. [Google Scholar] [CrossRef]
- Danielsson, U.; Van Riet, T. What if string theory has no de Sitter vacua? Int. J. Mod. Phys. 2018, 27, 1830007. [Google Scholar] [CrossRef]
- Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C. De Sitter Space and the Swampland. arXiv 2018, arXiv:1806.08362. [Google Scholar] [CrossRef]
- Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B 2019, 788, 180–184. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortschr. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef]
- Riess, A.; Casertano, S.; Yuan, W.; Macri, L.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Khlopov, M. Cosmoparticle Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Khlopov, M. Fundamental cross-disciplinary studies of microworld and Universe. Vestn. Russ. Acad. Sci. 2001, 71, 1133–1137. [Google Scholar]
- Sakharov, A. Cosmoparticle physics—A multidisciplinary science. Vestn. SSSR 1989, 4, 39–40. [Google Scholar]
- Weinstein, G.; Strauss, Y.; Bondarenko, S.; Yahalom, A.; Lewkowicz, M.; Horwitz, L.; Levitan, J. Entropy measures as geometrical tools in the study of cosmology. Entropy 2018, 20, 6. [Google Scholar] [CrossRef]
- Bousso, R. A covariant entropy conjecture. J. High Energy Phys. 1999, 7, 4. [Google Scholar] [CrossRef]
- Bousso, R.; Flanagan, E.; Marolf, D. Simple sufficient conditions for the generalized covariant entropy bound. Phys. Rev. D 2003, 68, 064001. [Google Scholar] [CrossRef]
- Martí, J.; Müller, E. Numerical Hydrodynamics in Special Relativity. Living Rev. Relativ. 2003, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Radice, D.; Bernuzzi, S.; Perego, A. The Dynamics of Binary Neutron Star Mergers and GW170817. Ann. Rev. Nucl. Part. Sci. 2020, 70, 95–119. [Google Scholar] [CrossRef]
- Niwas, M.; Kumar, S.; Kharbanda, H. Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the generalized (3+1)-dimensional breaking soliton equation using optimal system of Lie subalgebra. J. Ocean Eng. Sci. 2021, 7, 188–201. [Google Scholar] [CrossRef]
- Kumar, M.; Tanwar, D.; Kumar, R. On Lie symmetries and soliton solutions of (2+1)-dimensional Bogoyavlenskii equations. Nonlinear Dyn. 2018, 94, 2547–2561. [Google Scholar] [CrossRef]
- Tanwar, D. Optimal system, symmetry reductions and group-invariant solutions of (2+1)-dimensional ZK-BBM equation. Phys. Scr. 2021, 96, 065215. [Google Scholar] [CrossRef]
- Laouini, G.; Amin, A.M.; Moustafa, M. Lie Group Method for Solving the Negative-Order Kadomtsev–Petviashvili Equation (nKP). Symmetry 2021, 13, 224. [Google Scholar] [CrossRef]
- Casson, N. A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In Rheology of Disperse Systems; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Powell, G.; Wang, J.-F.; Aspnes, D. Simplified bond-hyperpolarizability model of second harmonic generation. Phys. Rev. B 2022, 65, 205320. [Google Scholar] [CrossRef]
- Frohna, K.; Deshpande, T.; Harter, J.; Peng, W.; Barker, B.A.; Neaton, J.B.; Louie, S.G.; Bakr, O.M.; Hsieh, D.; Bernardi, M. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 2018, 9, 182. [Google Scholar] [CrossRef]
- PANDA Collaboration. Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons. arXiv 2009, arXiv:0903.3905. [CrossRef]
- Belle II Collaboration. The Belle II Physics Book. Prog. Theor. Exp. Phys. 2019, 2019, 123C01. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Adlarson, P.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F.F.; An, Q.; Bai, Y.; et al. Future Physics Programme of BESIII. Chin. Phys. C 2020, 44, 040001. [Google Scholar] [CrossRef]
- Vorob’ev, N.N. Consistent families of measures and their extension. Theory Probab. Appl. 1962, 7, 147–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Pei, J.; Xu, F. Hartree-Fock-Bogoliubov descriptions of deformed weakly bound nuclei in large coordinate spaces. Phys. Rev. C 2013, 88, 054305. [Google Scholar] [CrossRef]
- Skyrme, T. CVII. The nuclear surface. Philos. Mag. 1956, 1, 1043–1054. [Google Scholar] [CrossRef]
- Boeyens, J.; Thackeray, J. Number theory and the unity of science. S. Afr. J. Sci. 2014, 110, 2. [Google Scholar] [CrossRef]
- Irwin, K.; Amaral, M.; Aschleim, R.; Fang, F. Quantum walk on spin network and the golden ratio as the fundamental constant of nature. In Proceedings of the Fourth International Conference on the Nature and Ontology of Spacetime, Varna, Bulgaria, 30 May–2 June 2016; pp. 117–160. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Jimeno, A. The Physics Section in Symmetry. Symmetry 2025, 17, 156. https://doi.org/10.3390/sym17020156
Ruiz-Jimeno A. The Physics Section in Symmetry. Symmetry. 2025; 17(2):156. https://doi.org/10.3390/sym17020156
Chicago/Turabian StyleRuiz-Jimeno, Alberto. 2025. "The Physics Section in Symmetry" Symmetry 17, no. 2: 156. https://doi.org/10.3390/sym17020156
APA StyleRuiz-Jimeno, A. (2025). The Physics Section in Symmetry. Symmetry, 17(2), 156. https://doi.org/10.3390/sym17020156