Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials
Abstract
:1. Introduction and Preliminaries
2. The Family
3. Bounds of the Family of Bi-Univalent Functions
4. Particular Cases
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legendre, A.M. Recherches sur Laattraction des Sphéroides Homogénes. In Mémoires de l’Académie Royale de Sciences; Universitätsbibliothek Johann Christian Senckenberg: Frankfurt am Main, Germany, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Amourah, A.; Al-Hawary, T.; Yousef, F.; Salah, J. Collection of bi-univalent functions using bell distribution associated with Jacobi polynomials. Int. J. Neutrosophic Sci. 2025, 25, 228–238. [Google Scholar]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Salah, J.; Al-Hawary, T. Fibonacci Numbers Related to Some Subclasses of Bi-Univalent Functions. Int. J. Math. Math. Sci. 2024, 2024, 8169496. [Google Scholar] [CrossRef]
- Hussen, A.; Zeyani, A. Coefficients and Fekete-Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics 2023, 11, 2852. [Google Scholar] [CrossRef]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Marcoková, M.; Guldan, V. Jacobi polynomials and some related functions. In Mathematical Methods in Engineering; Springer: Dordrecht, The Netherlands, 2014; pp. 219–227. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Al-Hawary, T.; Amourah, A.; Salah, J.; Yousef, F. Two Inclusive Subfamilies of bi-univalent Functions. Int. J. Neutro. Sci. 2024, 24, 315–323. [Google Scholar]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboaca, T. An avant-garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Sivasubramanian, S.; Sivakumar, R.; Kanas, S.; Kim, S.A. Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent functions. Ann. Polon. Math. 2015, 113, 295–304. [Google Scholar] [CrossRef]
- Hussen, A.; Madi, M.S.; Abominjil, A.M. Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Math. 2024, 9, 18034–18047. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Sundari, K.S.; Keerthi, B.S. Enhancing low-light images using Sakaguchi type function and Gegenbauer polynomial. Sci. Rep. 2024, 14, 29679. [Google Scholar] [CrossRef]
- Nithiyanandham, E.K.; Keerthi, B.S. Image edge detection enhancement using coefficients of Sakaguchi type functions mapped onto petal shaped domain. Heliyon 2024, 10, e31430. [Google Scholar] [CrossRef] [PubMed]
- Al-Ameedee, S.A.; Al-Hakeem, M.B.H.; Alghafil, A.K.H. Fekete-Szegö inequalities for higher-order derivatives of multivalent analytic function with application to stealth combat aircraft. J. Int. Math. 2024, 27, 721–727. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Zubair, S.M. Generalized error functions with applications to probability and heat conduction. Int. J. Appl. Math. 2002, 9, 259–278. [Google Scholar]
- Elbert, Á.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Fettis, H.E.; Caslin, J.C.; Cramer, K.R. Complex zeros of the error function and of the complementary error function. Math. Comp. 1973, 27, 401–407. [Google Scholar] [CrossRef]
- Mohammed, N.H.; Cho, N.E.; Adegani, E.A.; Bulboaca, T. Geometric properties of normalized imaginary error function. Stud. Univ. Babes Bolyai Mat. 2022, 67, 455–462. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1964.
- Wikipedia. Error Function. In Wikipedia. Available online: https://en.wikipedia.org/wiki/Error_function (accessed on 17 January 2025).
- Alzer, H. Error function inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Coman, D. The radius of starlikeness for the error function. Stud. Univ. Babes-Bolyai Math. 1991, 36, 13–16. [Google Scholar]
- Ramachandran, C.; Vanitha, L.; Kanas, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca 2018, 68, 361–368. [Google Scholar] [CrossRef]
- Hussen, A. An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions. Heliyon 2024, 10, e31469. [Google Scholar] [CrossRef] [PubMed]
- Analouei Adegani, E.; Jafari, M.; Bulboaca, T.; Zaprawa, P. Coefficient Bounds for Some Families of Bi-Univalent Functions with Missing Coefficients. Axioms 2023, 12, 1071. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abst. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Illafe, M.; Mohd, M.H.; Yousef, F.; Supramaniam, S. Investigating inclusion, neighborhood, and partial sums properties for a general subclass of analytic functions. Int. J. Neutrosophic Sci. 2025, 25, 501–510. [Google Scholar]
- Hussen, A.; Illafe, M. Coefficient bounds for a certain subclass of bi-univalent functions associated with Lucas-balancing polynomials. Mathematics 2023, 11, 4941. [Google Scholar] [CrossRef]
- Hussen, A.; Illafe, M.; Zeyani, A. Fekete-Szegö and Second Hankel Determinant for a Certain Subclass of Bi-Univalent Functions associated with Lucas-Balancing Polynomials. Int. J. Neutrosophic Sci. 2025, 25, 417–434. [Google Scholar]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomial. Abst. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Massa’deh, M.O.; Fallatah, A.O. Some Inclusion Properties for Hohlov Operator to be in Comprehensive Subfamilies of Analytic Functions. Eur. J. Pure Appl. Math. 2024, 17, 3386–3398. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for analytic bi-univalent functions associated with Gregory coefficients. Korean J. Math. 2024, 32, 285–295. [Google Scholar]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Math. Prob. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Cho, N.E.; Murugusundaramoorthy, G.; Vijaya, K. Bi-univalent functions of complex order based on quasi-subordinate conditions involving Wright hypergeometric functions. J. Comput. Anal. Appl. 2018, 24, 58–70. [Google Scholar]
- Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry 2023, 15, 785. [Google Scholar] [CrossRef]
- Lagad, A.; Ingle, R.N.; Reddy, P.T. On a subclass of analytic functions defined by Bell distribution series. J. Nonlinear Sci. Appl. 2025, 18, 33–42. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Khan, N.; Mashwani, W.K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag-Leffer Type Poisson Distribution to a Subclass of Analytic Functions Involving Conic-Type Regions. J. Funct. Spaces 2021, 2021, 4343163. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amourah, A.; Frasin, B.; Salah, J.; Yousef, F. Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials. Symmetry 2025, 17, 157. https://doi.org/10.3390/sym17020157
Amourah A, Frasin B, Salah J, Yousef F. Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials. Symmetry. 2025; 17(2):157. https://doi.org/10.3390/sym17020157
Chicago/Turabian StyleAmourah, Ala, Basem Frasin, Jamal Salah, and Feras Yousef. 2025. "Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials" Symmetry 17, no. 2: 157. https://doi.org/10.3390/sym17020157
APA StyleAmourah, A., Frasin, B., Salah, J., & Yousef, F. (2025). Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials. Symmetry, 17(2), 157. https://doi.org/10.3390/sym17020157