On the h-Additive Functions and Their Symmetry Properties
Abstract
:1. Introduction
2. h-Additive Functions
3. A New Class of h-Additive Functions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cauchy, A. Cours d’analyse de l’École Royale Polytechnique. Impr. R. 1821, 1. [Google Scholar] [CrossRef]
- Darboux, M.G. Sur le théorème fondamental de la géométrie projective. Math. Ann. 1880, 1, 55–61. [Google Scholar] [CrossRef]
- Fréchet, M. Pri la funkcia equacio f(x + y) = f(x) + f(y). Enseign. Math. 1913, 15, 390–393. [Google Scholar]
- Sierpiński, W. Sur l’équation fonctionnelle f(x + y) = f(x) + f(y). Fundam. Math. 1920, 1, 116–122. [Google Scholar] [CrossRef]
- Figiel, T. O równaniu funkcyjnym f(x + y) = f(x) + f(y). Wiadom. Mat. 1969, 11, 15–18. [Google Scholar] [CrossRef]
- Mehdi, M.R. On convex functions. J. Lond. Math. Soc. 1964, 1, 321–326. [Google Scholar] [CrossRef]
- Kormes, M. On the functional equation f(x + y) = f(x) + f(y). Bull. Am. Math. Soc. 1926, 32, 689–693. [Google Scholar] [CrossRef]
- Hamel, G. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x + y) = f(x) + f(y). Math. Ann. 1905, 60, 459–462. [Google Scholar] [CrossRef]
- Maksa, G.; Volkmann, P. Characterization of group homomorphisms having values in an inner product space. Publ. Math.-Debr. 2000, 56, 197–200. [Google Scholar] [CrossRef]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989; Volume 31. [Google Scholar]
- Gilányi, A. Eine zur parallelogrammgleichung äquivalente ungleichung. Aequationes Math. 2001, 62, 303–309. [Google Scholar] [CrossRef]
- Daróczy, Z.; Kátai, I. On differentiable additive funcitons. Ann. Univ. Eötvös L. Sect. Comput. 1985, 6, 53–63. [Google Scholar]
- Daróczy, Z.; Kátai, I. Additive functions. Anal. Math. 1986, 12, 85–96. [Google Scholar] [CrossRef]
- Daróczy, Z.; Kátai, I. Characterization of Additive functions with Values in the Circle Group-II. Publ. Math.-Debr. 1994, 44, 391–394. [Google Scholar] [CrossRef]
- Páles, Z.; Shihab, M.K. Cauchy–Schwarz-type inequalities for solutions of functional equations. Period. Math. Hung. 2024; to appear. [Google Scholar]
- de Bruijn, N.G. Functions whose differences belong to a given class. Nieuw Arch. Voor Wiskd. 1951, 23, 194–218. [Google Scholar]
- Bernardi, C. Discontinuous additive functions: Regular behavior vs. pathological features. Expo. Math. 2015, 33, 295–307. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on Functional Equations and Their Applications; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Ng, C.T. Functions Generating Schur-Convex Sums; General Inequalities 5; Springer: Berlin/Heidelberg, Germany, 1987; pp. 433–438. [Google Scholar]
- Maksa, G.; Páles, Z. Decomposition of higher-order Wright-convex functions. J. Math. Anal. Appl. 2009, 359, 439–443. [Google Scholar] [CrossRef]
- Páles, Z.; Shihab, M.K. Decomposition of higher-order Wright convex functions revisited. Results Math. 2022, 77, 1–11. [Google Scholar] [CrossRef]
- Páles, Z.; Shihab, M.K. On convexity properties with respect to a Chebyshev system. J. Math. Anal. Appl. 2024, 530, 127728. [Google Scholar] [CrossRef]
- Darboux, G. Sur la composition des forces en statique. Bull. Des Sci. Math. Astron. 1875, 9, 281–288. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shihab, M.K.; Kluza, P.A. On the h-Additive Functions and Their Symmetry Properties. Symmetry 2025, 17, 158. https://doi.org/10.3390/sym17020158
Shihab MK, Kluza PA. On the h-Additive Functions and Their Symmetry Properties. Symmetry. 2025; 17(2):158. https://doi.org/10.3390/sym17020158
Chicago/Turabian StyleShihab, Mahmood Kamil, and Paweł Artur Kluza. 2025. "On the h-Additive Functions and Their Symmetry Properties" Symmetry 17, no. 2: 158. https://doi.org/10.3390/sym17020158
APA StyleShihab, M. K., & Kluza, P. A. (2025). On the h-Additive Functions and Their Symmetry Properties. Symmetry, 17(2), 158. https://doi.org/10.3390/sym17020158