Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables
Abstract
:1. Introduction
2. Main Results
2.1. Solving Equation (17)
2.2. Partial Difference Equations with an Interchanged Coefficient
2.3. An Extension to Equation (17)
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krechmar, V.A. A Problem Book in Algebra; Mir Publishers: Moscow, Russia, 1974. [Google Scholar]
- Mitrinović, D.S. Mathematical Induction, Binomial Formula, Combinatorics; Gradjevinska Knjiga: Beograd, Serbia, 1980. (In Serbian) [Google Scholar]
- Mitrinović, D.S.; Kečkić, J.D. Methods for Calculating Finite Sums; Naučna Knjiga: Beograd, Serbia, 1984. (In Serbian) [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Nauka: Moscow, Russian, 1981. (In Russian) [Google Scholar]
- Riordan, J. Combinatorial Identities; John Wiley & Sons Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1968. [Google Scholar]
- Yablonskiy, S.V. Introduction to Discrete Mathematics; Mir Publishers: Moscow, Russia, 1989. [Google Scholar]
- Stević, S. Note on the binomial partial difference equation. Electron. J. Qual. Theory Differ. Equ. 2015, 2015. Article 96. [Google Scholar]
- Brand, L. Differential and Difference Equations; John Wiley & Sons, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Jordan, C. Calculus of Finite Differences; Chelsea Publishing Company: New York, NY, USA, 1956. [Google Scholar]
- Levy, H.; Lessman, F. Finite Difference Equations; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Stević, S. On the difference equation xn=xn−k/(b+cxn−1⋯xn−k). Appl. Math. Comput. 2012, 218, 6291–6296. [Google Scholar]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On the difference equation xn=anxn−k/(bn+cnxn−1⋯xn−k). Abstr. Appl. Anal. 2012, 2012. Article 409237. [Google Scholar]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a third-order system of difference equations with variable coefficients. Abstr. Appl. Anal. 2012, 2012. Article 508523. [Google Scholar]
- Papaschinopoulos, G.; Stefanidou, G. Asymptotic behavior of the solutions of a class of rational difference equations. Int. J. Differ. Equ. 2010, 5, 233–249. [Google Scholar]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On some solvable difference equations and systems of difference equations. Abstr. Appl. Anal. 2012, 2012. Article 541761. [Google Scholar]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. Solvability of nonlinear difference equations of fourth order. Electron. J. Differ. Equ. 2014, 2014. Article 264. [Google Scholar]
- Berg, L.; Stević, S. On some systems of difference equations. Appl. Math. Comput. 2011, 218, 1713–1718. [Google Scholar] [CrossRef]
- Stević, S.; Iričanin, B.; Šmarda, Z. On a close to symmetric system of difference equations of second order. Adv. Differ. Equ. 2015, 2015. Article 264. [Google Scholar]
- Fotiades, N.; Papaschinopoulos, G. On a system of difference equations with maximum. Appl. Math. Comput. 2013, 221, 684–690. [Google Scholar]
- Papaschinopoulos, G.; Schinas, C.J. On a system of two nonlinear difference equations. J. Math. Anal. Appl. 1998, 219, 415–426. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. On the behavior of the solutions of a system of two nonlinear difference equations. Commun. Appl. Nonlinear Anal. 1998, 5, 47–59. [Google Scholar]
- Papaschinopoulos, G.; Schinas, C.J. Invariants for systems of two nonlinear difference equations. Differ. Equ. Dyn. Syst. 1999, 7, 181–196. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. Invariants and oscillation for systems of two nonlinear difference equations. Nonlinear Anal. Theory Methods Appl. 2001, 46, 967–978. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. On the dynamics of two exponential type systems of difference equations. Comput. Math. Appl. 2012, 64, 2326–2334. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J.; Stefanidou, G. On a k-order system of Lyness-type difference equations. Adv. Differ. Equ. 2007, 2007. Article 31272. [Google Scholar] [CrossRef]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a solvable system of rational difference equations. J. Differ. Equ. Appl. 2014, 20, 811–825. [Google Scholar] [CrossRef]
- Berezansky, L.; Braverman, E. On impulsive Beverton-Holt difference equations and their applications. J. Differ. Equ. Appl. 2004, 10, 851–868. [Google Scholar] [CrossRef]
- Diblik, J.; Halfarová, H. Explicit general solution of planar linear discrete systems with constant coefficients and weak delays. Adv. Differ. Equ. 2013, 2013. Article 50. [Google Scholar] [CrossRef]
- Iričanin, B.; Stević, S. Eventually constant solutions of a rational difference equation. Appl. Math. Comput. 2009, 215, 854–856. [Google Scholar] [CrossRef]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On the difference equation xn+1=xnxn−k/(xn−k+1(a+bxnxn−k)). Abstr. Appl. Anal. 2012, 2012. Article 108047. [Google Scholar]
- Stević, S. First-order product-type systems of difference equations solvable in closed form. Electron. J. Differ. Equ. 2015, 2015. Article 308. [Google Scholar]
- Stević, S.; Iričanin, B.; Šmarda, Z. On a product-type system of difference equations of second order solvable in closed form. J. Inequal. Appl. 2015, 2015. Article 327. [Google Scholar]
- Stević, S.; Iričanin, B.; Šmarda, Z. Solvability of a close to symmetric system of difference equations. Electron. J. Differ. Equ. 2016, 2016. Article 159. [Google Scholar]
- Stević, S.; Iričanin, B.; Šmarda, Z. Two-dimensional product-type system of difference equations solvable in closed form. Adv. Differ. Equ. 2016, 2016. Article 253. [Google Scholar]
- Stević, S. Solvability of boundary value problems for a class of partial difference equations on the combinatorial domain. Adv. Differ. Equ. 2016, 2016. Article 262. [Google Scholar]
- Stević, S. Solvability of boundary-value problems for a linear partial difference equation. Electron. J. Differ. Equ. 2017, 2017. Article 17. [Google Scholar]
- Mitrinović, D.S.; Adamović, D.D. Sequences and Series; Naučna Knjiga: Beograd, Serbia, 1980. (In Serbian) [Google Scholar]
- Polya, G.; Szegö, G. Aufgaben Und Lehrsätze Aus Der Analysis; Verlag von Julius Springer: Berlin, Germany, 1925. [Google Scholar]
- Ašić, M.D.; Adamović, D.D. Limit points of sequences in metric spaces. Am. Math. Mon. 1970, 77, 613–616. [Google Scholar] [CrossRef]
- Cheng, S.S. Partial Difference Equations; Taylor & Francis: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Musielak, A.; Popenda, J. On the hyperbolic partial difference equations and their oscillatory properties. Glas. Mat. 1998, 33, 209–221. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stević, S.; Iričanin, B.; Šmarda, Z. Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables. Symmetry 2017, 9, 323. https://doi.org/10.3390/sym9120323
Stević S, Iričanin B, Šmarda Z. Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables. Symmetry. 2017; 9(12):323. https://doi.org/10.3390/sym9120323
Chicago/Turabian StyleStević, Stevo, Bratislav Iričanin, and Zdeněk Šmarda. 2017. "Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables" Symmetry 9, no. 12: 323. https://doi.org/10.3390/sym9120323
APA StyleStević, S., Iričanin, B., & Šmarda, Z. (2017). Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables. Symmetry, 9(12), 323. https://doi.org/10.3390/sym9120323