Deformation Features of Super-Deep Diamonds
Abstract
:1. Introduction
2. Samples and Methods
3. Results and Discussion
3.1. Morphology
3.2. IR Characteristics
3.3. Birefringence
3.4. Cathodoluminescence
3.5. EBSD
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sobolev, N.V. Deep Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle; AGU: Washington, DC, USA, 1977; p. 279. [Google Scholar]
- Meyer, H.O.A. Genesis of diamond—A mantle saga. Am. Miner. 1985, 70, 344–355. [Google Scholar]
- Meyer, H.O.A. Inclusions in diamond. In Mantle Xenoliths; Nixon, P.H., Ed.; Wiley: Chichester, NJ, USA, 1987; pp. 501–522. [Google Scholar]
- Bulanova, G.P. The formation of diamond. J. Geochem. Explor. 1995, 53, 1–23. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Stachel, T.; Luth, R.W. Diamond formation—Where, when and how? Lithos 2015, 220, 200–220. [Google Scholar] [CrossRef]
- Stachel, T. Diamonds from the asthenosphere and the transition zone. Eur. J. Mineral. 2001, 13, 883–892. [Google Scholar] [CrossRef]
- Harte, B. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 2010, 74, 189–215. [Google Scholar] [CrossRef] [Green Version]
- Harte, B. Diamond Window into the Lower Mantle. Science 2011, 333, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Bulanova, G.P.; Walter, M.J.; Smith, C.B.; Kohn, S.C.; Armstrong, L.S.; Blundy, J.; Gobbo, L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petrol. 2010, 160, 489–510. [Google Scholar] [CrossRef]
- Kaminsky, F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Kaminsky, F.V.; Zakharchenko, O.D.; Davies, R.; Griffin, W.L.; Khachatryan-Blinova, G.K.; Shiryaev, A.A. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petrol. 2001, 140, 734–753. [Google Scholar] [CrossRef]
- Hutchison, M.T.; Hursthouse, M.B.; Light, M.E. Mineral inclusions in diamonds: Associations and chemical distinctions around the 670-km discontinuity. Contrib. Mineral. Petrol. 2001, 142, 119–126. [Google Scholar] [CrossRef]
- Harte, B.; Harris, J.; Hutchison, M.; Watt, G.; Wilding, M. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd; The Geochemical Society: Houston, TX, USA, 1999; Volume 6, pp. 125–153. [Google Scholar]
- Hutchison, M.; Cartigny, P.; Harris, J. Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil. In Proceedings of the VII International Kimberlite Conference, University of Cape Town, South Africa, 11–17 April 1998; Red Roof Design: Cape Town, South Africa, 1999; Volume 2, pp. 372–382. [Google Scholar]
- Joswig, W.; Stachel, T.; Harris, J.W.; Baur, W.H.; Brey, G.P. New Ca-silicate inclusions in diamonds—Tracers from the lower mantle. Earth Planet. Sci. Lett. 1999, 173, 1–6. [Google Scholar] [CrossRef]
- McCammon, C.; Hutchison, M.; Harris, J. Ferric iron content of mineral inclusions in diamonds from Sao Luiz: A view into the lower mantle. Science 1997, 278, 434–436. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Seryotkin, Y.V.; Yefimova, E.; Floss, C.; Taylor, L. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study. Lithos 2004, 77, 225–242. [Google Scholar] [CrossRef]
- Shatskii, V.S.; Zedgenizov, D.A.; Ragozin, A.L. Majoritic garnets in diamonds from placers of the Northeastern Siberian Platform. Dokl. Earth Sci. 2010, 432, 835–838. [Google Scholar] [CrossRef]
- Agrosì, G.; Tempesta, G.; Della Ventura, G.; Cestelli Guidi, M.; Hutchison, M.; Nimis, P.; Nestola, F. Non-Destructive In Situ Study of Plastic Deformations in Diamonds: X-ray Diffraction Topography and µFTIR Mapping of Two Super Deep Diamond Crystals from São Luiz (Juina, Brazil). Crystals 2017, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Hayman, P.C.; Kopylova, M.G.; Kaminsky, F.V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Mineral. Petrol. 2005, 149, 430–445. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Shatsky, V.S.; Panin, A.V.; Evtushenko, O.V.; Ragozin, A.L.; Kagi, H. Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit (Brazil). Rus. Geol. Geophys. 2015, 56, 296–305. [Google Scholar] [CrossRef]
- Cayzer, N.J.; Odake, S.; Harte, B.; Kagi, H. Plastic deformation of lower mantle diamonds by inclusion phase transformations. Eur. J. Mineral. 2008, 20, 333–339. [Google Scholar] [CrossRef]
- Wilding, M.C.; Harte, B.; Harris, J.W. Evidence for a deep origin for the Sao Luiz diamonds. In Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 18 June–4 July 1991; pp. 456–458. [Google Scholar]
- Harris, J.; Hutchison, M.T.; Hursthouse, M.; Light, M.; Harte, B. A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. Nature 1997, 387, 486–488. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V.; Kagi, H. The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochem. Int. 2016, 54, 890–900. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Kagi, H.; Yurimoto, H.; Shatsky, V.S. SiO2 Inclusions in Sublithospheric Diamonds. Geochem. Int. 2019, 57, 964–972. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond. A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2001; 502p. [Google Scholar]
- Boyd, S.R.; Kiflawi, I.; Woods, G.S. The relationship between infrared absorption and the A defect concentration in diamond. Philos. Mag. B 1994, 69, 1149–1153. [Google Scholar] [CrossRef]
- Boyd, S.; Kiflawi, I.; Woods, G. Infrared absorption by the B nitrogen aggregate in diamond. Philos. Mag. B 1995, 72, 351–361. [Google Scholar] [CrossRef]
- Woods, G.S.; Purser, G.C.; Mtimkulu, A.S.S.; Collins, A.T. The nitrogen-content of type Ia natural diamonds. J. Phys. Chem. Solids 1990, 51, 1191–1197. [Google Scholar] [CrossRef]
- Yacoot, A.; Moore, M.; Machado, W.G. Twinning in Natural Diamond. I. Contact Twins. J. Appl. Crystallogr. 1998, 31, 767–776. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Effect of crystal defects on diamond morphology during dissolution in the mantle. Am. Miner. 2015, 100, 1528–1532. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Miner. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Miner. 2010, 95, 1508–1514. [Google Scholar] [CrossRef]
- Yamaoka, S.; Kanda, H.; Setaka, N. Etching of diamond octahedrons at high temperatures and pressure with controlled oxygen partial pressure. J. Mater. Sci. 1980, 15, 332–336. [Google Scholar] [CrossRef]
- Harris, J.; Vance, E. Studies of the reaction between diamond and heated kimberlite. Contrib. Mineral. Petrol. 1974, 47, 237–244. [Google Scholar] [CrossRef]
- Frank, F.C.; Puttick, K.E.; Wilks, E.M. Etch pits and trigons on diamond: I. Philos. Mag. 1958, 3, 1262–1272. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Revealing of dislocations in diamond crystals by the selective etching method. J. Cryst. Growth 2006, 293, 469–474. [Google Scholar] [CrossRef]
- Lang, A.R. Dislocations in diamond and the origin of trigones. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1964, 278, 234–242. [Google Scholar]
- Moore, M.; Lang, A.R. On the origin of the rounded dodecahedral habit of natural diamond. J. Cryst. Growth 1974, 26, 133–139. [Google Scholar] [CrossRef]
- Machado, W.; Moore, M.; Woods, G. On the dodecahedral growth of coated diamonds. J. Cryst. Growth 1985, 71, 718–727. [Google Scholar] [CrossRef]
- Ragozin, A.L.; Zedgenizov, D.A.; Kuper, K.E.; Shatsky, V.S. Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Mineral. Petrol. 2016, 110, 861–875. [Google Scholar] [CrossRef]
- Evans, T. Aggregation of nitrogen in diamond. In Properties of Natural and Synthetic Diamond; Field, J.E., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 1992; pp. 259–289. [Google Scholar]
- Robertson, R.; Fox, J.J.; Martin, A. Two types of diamond. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1933, 232, 463–535. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.; Fox, J.J.; Martin, A. Further work on two types of diamond. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1936, 157, 579–593. [Google Scholar]
- Kaiser, W.; Bond, W. Nitrogen, a major impurity in common type I diamond. Phys. Rev. 1959, 115, 857. [Google Scholar] [CrossRef]
- Chrenko, R.; Tuft, R.; Strong, H. Transformation of the state of nitrogen in diamond. Nature 1977, 270, 141–144. [Google Scholar] [CrossRef]
- Evans, T.; Qi, Z. The kinetics of the aggregation of nitrogen atoms in diamond. Proc. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 1982, 381, 159–178. [Google Scholar] [CrossRef]
- Taylor, W.R.; Canil, D.; Milledge, H.J. Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim. Cosmochim. Acta 1996, 60, 4725–4733. [Google Scholar] [CrossRef]
- Fallon, P.J.; Brown, L.M.; Barry, J.C.; Bruley, J. Nitrogen determination and characterization in natural diamond platelets. Philos. Mag. A 1995, 72, 21–37. [Google Scholar] [CrossRef]
- Davies, G. The A nitrogen aggregate in diamond-its symmetry and possible structure. J. Phys. C Solid State Phys. 1976, 9, L537. [Google Scholar] [CrossRef]
- Bursill, L.A.; Glaisher, R.W. Aggregation and dissolution of small and extended defect structures in type Ia diamond. Am. Miner. 1985, 70, 608–618. [Google Scholar]
- Speich, L.; Kohn, S.C.; Wirth, R.; Bulanova, G.P.; Smith, C.B. The relationship between platelet size and the B’-infrared peak of natural diamonds revisited. Lithos 2017, 278–281, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Zedgenizov, D.A.; Shatskiy, A.; Ragozin, A.L.; Kagi, H.; Shatsky, V.S. Merwinite in diamond from Sao Luiz, Brazil: A new mineral of the Ca-rich mantle environment. Am. Miner. 2014, 99, 547–550. [Google Scholar] [CrossRef]
- Zedgenizov, D.; Kagi, H.; Shatsky, V.; Ragozin, A. Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol. 2014, 363, 114–124. [Google Scholar] [CrossRef]
- Yuryeva, O.P.; Rakhmanova, M.I.; Nadolinny, V.A.; Zedgenizov, D.A.; Shatsky, V.S.; Kagi, H.; Komarovskikh, A.Y. The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil). Phys. Chem. Miner. 2015, 42, 707–722. [Google Scholar] [CrossRef]
- Woods, G.S.; Collins, A.T. Infrared absorption spectra of hydrogen complexes in type I diamonds. J. Phys. Chem. Solids 1983, 44, 471–475. [Google Scholar] [CrossRef]
- Howell, D. Strain-induced birefringence in natural diamond: A review. Eur. J. Mineral. 2012, 24, 575–585. [Google Scholar] [CrossRef]
- Lang, A.R. Causes of birefringence in diamond. Nature 1967, 213, 248–251. [Google Scholar] [CrossRef]
- Orlov, Y.L. The Mineralogy of Diamond; John Wiley: New York, NY, USA, 1977; 233p. [Google Scholar]
- Lang, A.R. Topographic methods for studying defects in diamonds. Diam. Relat. Mater. 1993, 2, 106–114. [Google Scholar] [CrossRef]
- Götze, J.; Kempe, U. Physical Principles of Cathodoluminescence (CL) and its Applications in Geosciences. In Cathodoluminescence and Its Application in the Planetary Sciences; Gucsik, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–22. [Google Scholar] [CrossRef]
- Burnham, A.; Bulanova, G.; Smith, C.; Whitehead, S.; Kohn, S.; Gobbo, L.; Walter, M. Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos 2016, 265, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Thomson, A.; Kohn, S.; Bulanova, G.; Smith, C.; Araujo, D.; Walter, M. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contrib. Mineral. Petrol. 2014, 168, 1081. [Google Scholar] [CrossRef] [Green Version]
- Araujo, D.; Gaspar, J.; Bulanova, G.; Smith, C.; Kohn, S.; Walter, M.; Hauri, E. Juina diamonds from kimberlites and alluvials: A comparison of morphology, spectral characteristics and carbon isotope composition. In Proceedings of the 10th International Kimberlite Conference; Springer India: New Delhi, India, 2013; Volume 2, pp. 255–269. [Google Scholar]
- Howell, D.; Piazolo, S.; Dobson, D.P.; Wood, I.G.; Jones, A.P.; Walte, N.; Frost, D.J.; Fisher, D.; Griffin, W.L. Quantitative characterization of plastic deformation of single diamond crystals: A high pressure high temperature (HPHT) experimental deformation study combined with electron backscatter diffraction (EBSD). Diam. Relat. Mat. 2012, 30, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.; Wild, R.K. Plastic deformation of diamond at temperatures below 1800 °C. Philos. Mag. 1966, 13. [Google Scholar] [CrossRef]
Sample | Inclusions | [Ntotal], ppm | %B | Locality |
---|---|---|---|---|
C-2 | Maj–Grt | <5 (core)–38 (rim) | 100 | São-Luiz (Juina, Brazil) |
SL-74 | Maj–Grt | 10 (core)–37 (rim) | 100–65 | - |
SL-52a | Maj–Grt | 7 (core)–51 (rim) | 100 | - |
SL-34 | Maj–Grt + Ca–Si-Prv | <5 (core)–9 (rim) | 100 | - |
SL-16 | Coe + Maj–Grt | 25 (core)–38 (rim) | 100 | - |
SL-40 | Coe | <5 (core)–8 (rim) | 100 | - |
SL-2 | Coe | <5 (core) | - | - |
SL-55 | Coe + Cpx | <5 (core)–7 (rim) | 100 | - |
SL-82 | fPer | <5 (core) | - | - |
SL-52 | Mgs | <5 (core) | - | - |
SL-23 | fPer + CaSiO3 | <5 (core)–10 (rim) | 100 | - |
SL-24 | fPer | 14 (core) | 100 | - |
HH-11 | Maj–Grt | <5 (core)–115 (rim) | 60 | Kholomolokh alluvial (Yakutia) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragozin, A.; Zedgenizov, D.; Shatsky, V.; Kuper, K.; Kagi, H. Deformation Features of Super-Deep Diamonds. Minerals 2020, 10, 18. https://doi.org/10.3390/min10010018
Ragozin A, Zedgenizov D, Shatsky V, Kuper K, Kagi H. Deformation Features of Super-Deep Diamonds. Minerals. 2020; 10(1):18. https://doi.org/10.3390/min10010018
Chicago/Turabian StyleRagozin, Alexey, Dmitry Zedgenizov, Vladislav Shatsky, Konstantin Kuper, and Hiroyuki Kagi. 2020. "Deformation Features of Super-Deep Diamonds" Minerals 10, no. 1: 18. https://doi.org/10.3390/min10010018
APA StyleRagozin, A., Zedgenizov, D., Shatsky, V., Kuper, K., & Kagi, H. (2020). Deformation Features of Super-Deep Diamonds. Minerals, 10(1), 18. https://doi.org/10.3390/min10010018