New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
3.1. Sampling
3.2. Analytical Procedures
4. Results
4.1. Coal Characterization
4.2. Mineralogy
4.2.1. #6 Coal
4.2.2. Coalified Trunks
4.2.3. #6 Coal Roof Samples
4.3. Geochemistry
4.3.1. Major Elements
4.3.2. Trace Elements
5. Discussion
5.1. Elevated Ge Contents
5.2. Elevated B Contents
5.3. Environmental Impacts of Coalified Trunk
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; Xie, P.; Jiang, Y.; Hood, M.M.; O’Keefe, J.M.K.; Song, H. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Dai, S.; Wang, P.; Ward, C.R.; Tang, Y.; Song, X.; Jiang, J.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Du, G.; Zhuang, X.; Querol, X.; Izquierdo, M.; Alastuey, A.; Moreno, T.; Font, O. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. Int. J. Coal Geol. 2009, 78, 16–26. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Williams, D.A. Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. Int. J. Coal Geol. 2002, 53, 27–42. [Google Scholar] [CrossRef]
- Hu, R.-Z.; Qi, H.-W.; Zhou, M.-F.; Su, W.-C.; Bi, X.-W.; Peng, J.-T.; Zhong, H. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit, Yunnan, SW China: A review. Ore Geol. Rev. 2009, 36, 221–234. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Izquierdo, M.; Wang, Z. New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2014, 125, 10–21. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A. Gallium and germanium in selected Indiana coals. Int. J. Coal Geol. 2012, 94, 302–313. [Google Scholar] [CrossRef]
- Qi, H.; Hu, R.; Zhang, Q. Concentration and distribution of trace elements in lignite from the Shengli Coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit. Int. J. Coal Geol. 2007, 71, 129–152. [Google Scholar] [CrossRef]
- Seredin, V.V. Anomalous trace elements contents in the spetsugli germanium deposit (pavlovka brown coal deposit) southern Primorye: Communication 1. Antimony. Lithol. Miner. Resour. 2003, 38, 154–161. [Google Scholar] [CrossRef]
- Seredin, V.V. Metalliferous coals: Formation conditions and outlooks for development. Coal Resour. Russ. 2004, 6, 452–519. [Google Scholar]
- Zhuang, X.; Querol, X.; Alastuey, A.; Juan, R.; Plana, F.; Lopez-Soler, A.; Du, G.; Martynov, V.V. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. Int. J. Coal Geol. 2006, 66, 119–136. [Google Scholar] [CrossRef]
- Zilbermints, V.A.; Rusanov, A.K.; Kosrykin, V.M. On the question of Ge-presence in fossil coals. Acad. V.I.Vernadsky—k 1936, 1, 169–190. [Google Scholar]
- Hu, R.; Bi, X.; Ye, Z.; Su, W. The genesis of Lincang germanium deposit—A preliminary investigation. Chin. J. Geochem. 1996, 15, 44–50. [Google Scholar] [CrossRef]
- Wang, L. Introduction of the geological feature and explorating of wulantuga germanium deposit inXilinguole League, Inner Mongolia. Geol. Inn. Mangolia 1999, 3, 15–20, (In Chinese with English abstract). [Google Scholar]
- Seredin, V.V.; Danilcheva, J. Coal-hosted Ge deposits of the Russian far east. In Mineral Deposits at the Beginning of the 21st Century; Swets and Zeitlinger Publishers: Lisse, The Netherlands, 2001; pp. 89–92. [Google Scholar]
- Seredin, V.V.; Danilcheva, Y.A.; Magazina, L.O.; Sharova, I.G. Ge-bearing coals of the Luzanovka Graben, Pavlovka brown coal deposit, southern Primorye. Lithol. Miner. Resour. 2006, 41, 280–301. [Google Scholar] [CrossRef]
- Wu, W.; Mo, R.; Wang, Z. Occurrence features and geological work of germanium resource in Yimin coal field, Inner Mongolia. Inn. Mong. Geol. 2002, 1, 27–30. [Google Scholar]
- Kulinenko, O.R. Relationship between germanium content and seam thickness in Paleozoic paralic coal basins of Ukraine. Int. Geol. Rev. 1977, 19, 1178–1182. [Google Scholar] [CrossRef]
- Yudovich, Y.E. Notes on the marginal enrichment of germanium in coal beds. Int. J. Coal Geol. 2003, 56, 223–232. [Google Scholar] [CrossRef]
- Hu, R.; Qi, H.; Bi, X.; Su, W.; Peng, J. Geology and geochemistry of the Lincang superlarge Germanium deposit hosted in coal seams, Yunnan, China. Geochim. Cosmochim. Acta Suppl. 2006, 70, A269. [Google Scholar] [CrossRef]
- Zhuang, H.; Lu, J.; Fu, J.; Liu, J.; Ren, C.; Zou, D. Germanium occurrence in Lincang superlarge deposit in Yunnan, China. Sci. China Ser. D Earth Sci. 1998, 41, 21–27. [Google Scholar] [CrossRef]
- Qi, H.W.; Hu, R.Z. Trace element geochemistry of Lincang germanium deposit. Coal Geol. Explor. 2002, 30, 1–2. [Google Scholar]
- Qi, H.; Hu, R.; Su, W.; Qi, L.; Feng, J. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: A study from the Lincang Ge deposit, Yunnan, China. Sci. China Ser. D Earth Sci. 2004, 47, 973. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X. Trace element affinities in two high-Ge coals from China. Fuel 2011, 90, 240–247. [Google Scholar] [CrossRef]
- Wei, Q.; Rimmer, S.M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. Int. J. Coal Geol. 2017, 178, 39–55. [Google Scholar] [CrossRef]
- Wei, Q.; Dai, S.; Lefticariu, L.; Costin, G. Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China. Fuel 2018, 215, 1–12. [Google Scholar] [CrossRef]
- Du, G.; Tang, D.Z.; Wu, W.; Sun, P.C.; Bai, Y.L.; Yang, W.B.; Xuan, Y.Q.; Zhang, L.C. Research on grade variation regularity of paragenetic germanium deposit along uprightness in Shengli Coalfield, Inner Mongolia. Coal Geol. Explor. 2004, 32, 1–4. [Google Scholar]
- Qi, H.; Hu, R.; Zhang, Q. REE Geochemistry of the Cretaceous lignite from Wulantuga Germanium Deposit, Inner Mongolia, Northeastern China. Int. J. Coal Geol. 2007, 71, 329–344. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2019, 218, 103347. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Cui, X.; Li, J. The late mesozoic stratigraphy and palaeontologyof the Erlian Basin Group in Inner Mongolia, China. Geosci. J. Graduate Sch. China Univ. Geosci. 1991, 5, 397–408, (In Chinese with English Abstract). [Google Scholar]
- Cui, X.; Li, J. Late Mesozoic basin types and their coal accumulation characteristics of Erlian basins in Inner Mongolia. Geosci. J. Graduate Sch. China Univ. Geosci. 1993, 7, 479–484, (In Chinese with English Abstract). [Google Scholar]
- Sha, J. Cretaceous stratigraphy of northeast China: Non-marine and marine correlation. Cretac. Res. 2007, 28, 146–170. [Google Scholar] [CrossRef]
- ISO. ISO 589: Hard Coal—Determination of Total Moisture; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- ISO. Solid Mineral Fuels—Determination of Ash; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. Hard Coal and Coke—Determination of Volatile Matter; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ICCP. The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- ICCP. The new inertinite classification (ICCP System 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M. Classification of liptinite–ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Querol, X.; Whateley, M.; Fernandez-Turiel, J.L.; Tuncali, E. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33, 255–271. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N.; Zhou, J.; Lei, G. High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. Int. J. Coal Geol. 2012, 99, 1–15. [Google Scholar] [CrossRef]
- National Standard of P.R. China. Classification for Quality of Coal. Moisture Content; Standards Press of China: Beijing, China, 2000. (In Chinese) [Google Scholar]
- National Standard of P.R. China. Classification for Quality of Coal. Volatile Yield; Standards Press of China: Beijing, China, 2000. (In Chinese) [Google Scholar]
- National Standard of P.R. China. Classification for Quality of Coal. Part 1: Ash Yield; Standards Press of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Stach, E. Stach’s Textbook of Coal Petrology; Gebrüder Borntraeger: Berlin, Germany, 1982. [Google Scholar]
- Ward, C.R.; Christie, P.J. Clays and other minerals in coal seams of the Moura-Baralaba area, Bowen Basin, Australia. Int. J. Coal Geol. 1994, 25, 287–309. [Google Scholar] [CrossRef]
- Permana, A.K. Mineralogical Variation and Changes in the South Walker Creek Coals, Bowen Basin, Queensland, Australia. Master’s Thesis, University of New South Wales, Kensington, Australia, 2011. [Google Scholar]
- Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116, 185–207. [Google Scholar] [CrossRef]
- Susilawati, R.; Ward, C.R. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia. Int. J. Coal Geol. 2006, 68, 171–195. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Kitano, K.; Vassileva, C.G. Some relationships between coal rank and chemical and mineral composition. Fuel 1996, 75, 1537–1542. [Google Scholar] [CrossRef]
- Sangüesa, F.J.; Arostegui, J.; Suarez-Ruiz, I. Distribution and origin of clay minerals in the Lower Cretaceous of the Alava Block (Basque-Cantabrian Basin, Spain). Clay Miner. 2000, 35, 393–410. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, W.; Wang, J.; Zhou, Y.; Song, X.; Li, T.; Li, X.; Liu, H.; Zhao, L. Occurrence and origins of minerals in mixed-layer illite/smectite-rich coals of the Late Permian age from the Changxing Mine, eastern Yunnan, China. Int. J. Coal Geol. 2012, 102, 26–34. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Tang, Y.; Shao, L.; Li, S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Rao, C.P.; Gluskoter, H.J. Occurrence and distribution of minerals in Illinois coals. Illinois State Geol. Surv. Circular 1973, 476, 56. [Google Scholar]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Etschmann, B.; Liu, W.; Li, K.; Dai, S.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chem. Geol. 2017, 463, 29–49. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Martin, F.; Hazemann, J.-L.; Schott, J. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem. Geol. 2000, 163, 151–165. [Google Scholar] [CrossRef]
- Kříbek, B.; Sýkorová, I.; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V. Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic. Int. J. Coal Geol. 2017, 173, 158–175. [Google Scholar] [CrossRef]
- Querol, X.; Izquierdo, M.; Monfort, E.; Álvarez, E.; Font, O.; Moreno, T.; Alastuey, A.; Zhuang, X.; Lu, W.; Wang, Y. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal Geol. 2008, 75, 93–104. [Google Scholar] [CrossRef]
- Finkelman, R.B. Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 2004, 59, 19–24. [Google Scholar] [CrossRef]
Sample No. | Moisture (% ad) | Ash (% d) | Volatile Matter (% daf) |
---|---|---|---|
WZ-01 | 15.5 | 11.1 | 52.7 |
WZ-02 | 13.8 | 16.0 | 62.4 |
WZ-03 | 13.9 | 12.4 | 56.0 |
WZ-04 | 12.2 | 7.7 | 51.2 |
WZ-05 | 15.5 | 9.6 | 46.1 |
WZ-06 | 12.4 | 6.8 | 48.2 |
WZ-07 | 15.5 | 7.8 | 40.7 |
WZ-08 | 14.1 | 10.8 | 46.7 |
WZ-09 | 12.9 | 18.4 | 59.0 |
Average | 14.0 | 11.2 | 51.4 |
Sample | Tex | Att | Dens | Gel | Corp | T-Hum | Fu | Semi | Mac | Iner | T-Iner |
---|---|---|---|---|---|---|---|---|---|---|---|
WZ-1 | 0.6 | 1.1 | 0.4 | 17.7 | 1.1 | 20.9 | 34.6 | 33.3 | 0.0 | 9.8 | 77.6 |
WZ-2 | 7.0 | 5.2 | 5.4 | 14.1 | 1.2 | 32.9 | 28.0 | 17.2 | 0.0 | 19.9 | 65.2 |
WZ-3 | 2.2 | 2.3 | 3.8 | 19.5 | 0.0 | 27.8 | 9.6 | 29.8 | 0.2 | 31.6 | 71.1 |
WZ-4 | 15.3 | 1.2 | 6.9 | 12.5 | 1.4 | 37.3 | 27.0 | 22.0 | 0.0 | 11.5 | 60.5 |
WZ-5 | 22.1 | 2.3 | 7.5 | 16.3 | 0.8 | 48.9 | 11.5 | 20.3 | 0.0 | 17.1 | 48.9 |
WZ-6 | 22.7 | 1.1 | 13.1 | 15.4 | 1.1 | 53.4 | 11.8 | 14.8 | 0.0 | 18.2 | 44.8 |
WZ-7 | 20.2 | 3.4 | 6.5 | 17.4 | 1.1 | 48.7 | 18.7 | 17.4 | 0.0 | 14.5 | 50.6 |
WZ-8 | 11.5 | 1.8 | 3.0 | 32.2 | 0.4 | 48.8 | 10.7 | 14.8 | 0.0 | 23.7 | 49.2 |
WZ-9 | 14.1 | 1.3 | 2.0 | 20.3 | 0.0 | 37.7 | 16.3 | 22.3 | 0.4 | 22.1 | 61.1 |
average | 12.8 | 2.2 | 5.4 | 18.4 | 0.8 | 39.6 | 18.7 | 21.3 | 0.0 | 18.7 | 58.8 |
Sample No. | Mnt | Ill | Kln | Qtz | Mc | Ab | Py | Mlt | Gp |
---|---|---|---|---|---|---|---|---|---|
WZ-01 C | 1.9 | nd | nd | 5.1 | nd | nd | 1.5 | nd | 1.3 |
WZ-02 C | 9.2 | nd | 2.2 | 2.2 | nd | nd | 0.2 | nd | 0.4 |
WZ-03 C | 4.8 | nd | 1.1 | 4.1 | nd | nd | 0.4 | nd | 0.7 |
WZ-04 C | nd | nd | nd | 3.2 | nd | nd | 3.2 | nd | 0.6 |
WZ-05 C | 1.3 | nd | 3.0 | 3.7 | nd | nd | 0.3 | nd | 0.4 |
WZ-06 C | nd | nd | nd | 2.6 | nd | nd | 2.4 | nd | 0.9 |
WZ-07 C | nd | nd | 3.1 | 2.6 | nd | nd | 0.1 | nd | 0.9 |
WZ-08 C | nd | nd | 1.8 | 5.4 | nd | nd | 2.0 | nd | 0.4 |
WZ-09 C | nd | nd | 2.8 | 10.1 | nd | nd | 2.8 | nd | 0.5 |
WLTG-01 T | nd | nd | nd | 11.8 | nd | nd | 6.7 | 20.2 | 3.4 |
WLTG-02 R | 8.1 | 0.8 | 3.2 | 57.0 | 11.3 | 14.0 | 0.2 | nd | 0.5 |
WLTG-03 T | nd | nd | nd | nd | nd | nd | 5.0 | 12.6 | 0.6 |
WLTG-04 R | nd | 0.8 | 0.2 | 25.8 | 11.1 | 28.1 | 0.4 | 0.8 | 0.6 |
WLTG-PY | nd | nd | nd | nd | nd | nd | 53.0 | nd | nd |
mg/kg | Wulantuga #6 Coal SAMPLES | Carbonized Trunks | Roof | Mineral | World b | China c | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WZ-01 | WZ-02 | WZ-03 | WZ-04 | WZ-05 | WZ-06 | WZ-07 | WZ-08 | WZ-09 | WA | WLTG-01 | WLTG-03 | WLTG-02 | WLTG-04 | WLTG-PY | |||
Si a | 2.98 | 3.53 | 3.30 | 1.84 | 2.86 | 1.59 | 2.22 | 3.11 | 5.26 | 2.97 | 5.43 | 0.51 | 33.59 | 22.41 | 0.51 | nd | 3.95 |
Al a | 0.47 | 1.28 | 0.79 | 0.36 | 0.68 | 0.37 | 0.50 | 0.51 | 1.62 | 0.7 | 2.37 | 0.81 | 5.22 | 3.65 | 0.17 | nd | 1.58 |
Ca a | 1.11 | 1.26 | 0.95 | 0.67 | 0.65 | 0.79 | 0.98 | 0.88 | 0.83 | 0.9 | 0.73 | 0.28 | 0.23 | 0.39 | 0.11 | nd | 0.88 |
Fe a | 1.15 | 0.82 | 0.93 | 1.56 | 1.11 | 0.91 | 0.70 | 2.12 | 1.85 | 1.2 | 10.1 | 10.1 | 1.19 | 2.74 | 45.7 | nd | 1.70 |
K a | 0.00 | 0.31 | 0.00 | 0.10 | 0.06 | 0.14 | 0.19 | 0.07 | 0.17 | 0.1 | 0.51 | 0.06 | 1.89 | 1.37 | 0.00 | nd | 0.08 |
Mg a | 0.34 | 0.39 | 0.30 | 0.15 | 0.17 | 0.17 | 0.23 | 0.23 | 0.28 | 0.3 | 0.64 | 0.56 | 0.33 | 0.43 | 0.03 | nd | 0.13 |
Na a | 0.10 | 0.05 | 0.02 | 0.03 | 0.03 | 0.04 | 0.09 | 0.10 | 0.07 | 0.1 | 0.31 | 0.11 | 1.04 | 0.60 | 0.01 | nd | 0.06 |
S a | 1.67 | 0.98 | 1.00 | 1.94 | 1.45 | 1.24 | 0.85 | 2.54 | 2.00 | 1.5 | 11.1 | 11.5 | 0.66 | 2.86 | 51.4 | nd | nd |
Li | 6.5 | 19.6 | 13.2 | 3.1 | 4.1 | 1.4 | 1.4 | 1.9 | 7.0 | 6.5 | 10.9 | 3.8 | 19.3 | 15.1 | 0.1 | 12 | 31.8 |
Be | 33.1 | 28.8 | 27.6 | 15.3 | 12.9 | 15.2 | 8.6 | 6.7 | 6.7 | 17.2 | 2.0 | 2.8 | 1.0 | 2.6 | 0.1 | 1.6 | 2.1 |
B | 105 | 57.3 | 51.0 | 74.3 | 97.1 | 81.4 | 105 | 183 | 94.7 | 94.3 | 80.2 | 23.9 | 13.8 | 24.9 | 116 | 52 | 53.0 |
P | 0.0 | 1002 | 93.9 | 295 | 0.0 | 562.3 | 414 | 48.3 | 0.0 | 268 | 73.8 | 88.7 | 69.1 | 138.2 | 0.0 | 231 | 401.7 |
Sc | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1.2 | 0.2 | 1.1 | 0.1 | 2.9 | 3.6 | 0.1 | 3.9 | 4.4 |
Ti | 353 | 840 | 540 | 169 | 402 | 154 | 221.4 | 322.1 | 605 | 401 | 1631 | 1520 | 2248 | 1802 | 54.3 | 798 | 1685 |
V | 4.8 | 6.2 | 6.8 | 4.1 | 6.8 | 4.7 | 3.7 | 5.5 | 16.8 | 6.6 | 58.7 | 96.7 | 28.7 | 67.5 | 2.4 | 25 | 35.1 |
Cr | 3.7 | 6.2 | 5.5 | 2.5 | 4.0 | 4.6 | 2.3 | 3.1 | 10.2 | 4.7 | 17.4 | 16.4 | 20.5 | 39.2 | <dl | 16 | 15.4 |
Mn | 65.2 | 68.3 | 61.7 | 41.9 | 45.4 | 55.3 | 75.9 | 64.2 | 58.9 | 59.6 | 60.8 | 58.0 | 69.4 | 42.6 | 13.5 | 85 | 271.2 |
Co | <dl | <dl | <dl | <dl | 0.9 | 1.6 | 1.5 | 2.3 | 4.5 | 2.1 | 37.8 | 29.8 | 3.7 | 29.5 | 4.4 | 5.1 | 7.1 |
Ni | 1.3 | 1.8 | 2.0 | 2.2 | 1.8 | 2.7 | 2.7 | 2.5 | 2.5 | 2.2 | 64.8 | 65.0 | 7.1 | 22.1 | 3.9 | 13 | 13.7 |
Cu | 4.3 | 7.0 | 6.5 | 3.0 | 7.6 | 2.9 | 12.8 | 4.1 | 11.6 | 6.7 | 14.3 | 10.1 | 7.1 | 16.7 | 6.7 | 16 | 17.5 |
Zn | 20.1 | 37.0 | 18.4 | 18.5 | 14.7 | 17.1 | 22.1 | 21.1 | 26.8 | 21.7 | 45.7 | 38.6 | 21.9 | 32.5 | 37.6 | 23 | 41.4 |
Ga | 0.9 | 5.2 | 1.7 | 1.4 | 1.5 | <dl | 1.0 | 1.2 | 3.4 | 2.0 | 7.9 | 6.9 | 8.8 | 7.7 | 0.1 | 5.8 | 6.6 |
Ge | 79.7 | 43.8 | 127 | 492 | 387 | 362 | 138 | 121 | 23 | 197 | 597 | 1381 | 2.7 | 138 | 14.1 | 2.2 | 2.8 |
As | 259 | 139 | 200 | 476 | 475 | 233 | 118 | 236 | 234 | 263 | 1673 | 2889 | 153 | 601 | 3097 | 8.3 | 3.8 |
Se | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | 3.5 | 5.0 | <dl | 0.9 | 1.8 | 1.3 | 2.5 |
Rb | 2.0 | 3.6 | 2.0 | 1.3 | 3.5 | 1.6 | 2.4 | 3.7 | 15.2 | 3.9 | 26.9 | 5.4 | 78.1 | 55.3 | 3.9 | 14 | 9.3 |
Sr | 81.4 | 142 | 80.8 | 55.3 | 54.9 | 59.5 | 73.7 | 65.5 | 64.6 | 75.2 | 119 | 53.1 | 87.1 | 79.3 | 11.7 | 110 | 140.0 |
Y | 9.3 | 9.6 | 5.1 | 1.7 | 2.4 | 1.7 | 2.1 | 2.6 | 5.9 | 4.5 | 6.1 | 5.1 | 7.5 | 9.0 | 1.6 | 8.4 | 18.2 |
Zr | 11.9 | 126 | 35.0 | 7.2 | 12.1 | 5.5 | 7.2 | 9.7 | 25.4 | 26.7 | 81.7 | 88.6 | 82.1 | 65.5 | 3.3 | 36 | 89.5 |
Nb | 1.3 | 5.3 | 2.5 | 0.1 | 1.4 | 0.1 | 0.1 | 0.9 | 1.5 | 1.5 | 5.1 | 6.9 | 4.5 | 2.8 | 0.1 | 3.7 | 9.4 |
Mo | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | 2.3 | 2.6 | <dl | 1.9 | 2.2 | 2.2 | 3.1 |
Cd | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | 0.22 | 0.3 |
Sn | 0.1 | 1.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 3.2 | 3.7 | 0.8 | 2.1 | 0.1 | 1.1 | 2.1 |
Sb | 0.8 | 0.1 | 0.1 | 24.0 | 19.0 | 9.3 | 0.1 | 0.1 | 0.1 | 6.0 | 1448 | 1231 | 38.9 | 387 | 0.1 | 0.92 | 0.8 |
Cs | 3.6 | 4.6 | 3.8 | 4.1 | 5.1 | 3.8 | 4.3 | 5.2 | 14.8 | 5.5 | 17.7 | 8.6 | 16.2 | 19.1 | 18.7 | 1.0 | 1.1 |
Ba | 48.7 | 143 | 45.3 | 26.1 | 22.3 | 39.9 | 27.8 | 63.0 | 44.5 | 51.2 | 389 | 14.3 | 343 | 236 | 13.9 | 150 | 159.0 |
La | 4.1 | 15.7 | 6.3 | 2.2 | 3.0 | 2.0 | 3.1 | 3.5 | 6.3 | 5.1 | 9.5 | 5.9 | 10.7 | 12.0 | 0.1 | 11 | 22.5 |
Ce | 9.6 | 28.5 | 12.4 | 4.2 | 5.9 | 4.2 | 5.6 | 6.9 | 12.9 | 10.0 | 21.2 | 13.6 | 23.0 | 26.8 | 2.2 | 23 | 46.7 |
Pr | 1.2 | 2.9 | 1.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.8 | 1.4 | 0.9 | 2.3 | 1.5 | 2.5 | 3.0 | 0.1 | 3.5 | 6.4 |
Nd | 4.9 | 9.9 | 4.8 | 1.7 | 2.4 | 1.8 | 2.2 | 3.0 | 5.4 | 4.0 | 8.6 | 5.6 | 9.0 | 11.5 | 1.1 | 12 | 22.3 |
Sm | 1.0 | 1.9 | 0.9 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1.1 | 0.6 | 1.8 | 1.3 | 1.8 | 2.5 | 0.1 | 2.0 | 4.1 |
Eu | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.47 | 0.8 |
Gd | 1.1 | 2.0 | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1.2 | 0.6 | 1.7 | 1.3 | 1.8 | 2.5 | 0.1 | 2.7 | 4.7 |
Tb | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.32 | 0.6 |
Dy | 1.0 | 1.9 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1.0 | 0.5 | 1.3 | 1.2 | 1.5 | 2.1 | 0.1 | 2.1 | 3.7 |
Ho | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.54 | 1.0 |
Er | 0.1 | 1.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.9 | 1.1 | 0.1 | 0.93 | 1.8 |
Tm | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.31 | 0.6 |
Yb | 0.1 | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.9 | 1.0 | 0.1 | 1.0 | 2.1 |
Lu | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.4 |
Hf | 0.1 | 3.4 | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.6 | 1.7 | 0.1 | 3.0 | 1.8 | 0.1 | 1.2 | 3.7 |
Ta | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.28 | 0.6 |
W | 91.9 | 76.8 | 162 | 485 | 486 | 526 | 355 | 349 | 217 | 305 | 189 | 188 | 52.0 | 67.8 | 80.9 | 1.1 | 1.1 |
Tl | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 2.9 | 0.63 | 0.5 |
Pb | 1.5 | 6.2 | 2.2 | 1.2 | 1.9 | 0.8 | 1.8 | 1.2 | 4.3 | 2.3 | 8.0 | 2.2 | 9.7 | 12.7 | 3.9 | 7.8 | 15.1 |
Bi | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.97 | 0.8 |
Th | 1.2 | 4.3 | 1.5 | 0.1 | 1.2 | 0.1 | 0.1 | 1.1 | 3.3 | 1.4 | 6.1 | 7.7 | 5.5 | 8.1 | 0.1 | 3.3 | 5.8 |
U | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | <dl | 1.0 | 1.3 | 1.0 | 1.8 | 0.1 | 2.4 | 2.4 |
Hg | 1.1 | 0.1 | 0.0 | 2.5 | 1.8 | 0.6 | 0.1 | 0.1 | 0.1 | 0.7 | 32.3 | 15.3 | 2.7 | 3.8 | 0.4 | 0.1 | 0.2 |
Correlation Coefficients between Selected Elements or Ash Yield |
---|
rash= Al (0.94), Ge (−0.72), W (−0.73), Hg (−0.46), Sb (−0.51), As (−0.31), B (−0.15), Cs (0.69), Be (0.16) |
rGe= Sb (0.94), W (0.85), Hg (0.82), As (0.78), B (−0.14) |
rFe= S (0.97), As (0.31), Sb (0.06), Hg (0.09), B (0.64) |
Ca-Be = 0.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Zhuang, X.; Querol, X.; Li, J.; Li, B.; Moreno, N.; Zhang, F. New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. Minerals 2020, 10, 17. https://doi.org/10.3390/min10010017
Yao C, Zhuang X, Querol X, Li J, Li B, Moreno N, Zhang F. New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. Minerals. 2020; 10(1):17. https://doi.org/10.3390/min10010017
Chicago/Turabian StyleYao, Chen, Xinguo Zhuang, Xavier Querol, Jing Li, Baoqing Li, Natalia Moreno, and Feng Zhang. 2020. "New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China" Minerals 10, no. 1: 17. https://doi.org/10.3390/min10010017
APA StyleYao, C., Zhuang, X., Querol, X., Li, J., Li, B., Moreno, N., & Zhang, F. (2020). New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. Minerals, 10(1), 17. https://doi.org/10.3390/min10010017