Geochemical Analysis for Determining Total Organic Carbon Content Based on ∆LogR Technique in the South Pars Field
Abstract
:1. Introduction
2. Geological Setting
2.1. Tectonic Setting
2.2. Stratigraphy
3. Method and Data
3.1. Geochemical Analysis
3.2. ΔLogR Technique
3.3. Multiple Linear Regression Model
3.4. Samples Preparation to Well-Log Data
4. Results and Discussion
4.1. Geochemistry
4.2. Well Log Response
4.3. Results from ∆LogR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kamali, M.R.; Mirshady, A.A. Total organic carbon content determined from well logs using ∆LogR and Neuro Fuzzy techniques. J. Pet. Sci. Eng. 2004, 45, 141–148. [Google Scholar] [CrossRef]
- Kadkhodaie-ilkhchi, A.; Rezaee, M.R.; Rahimpour-Bonab, H. A committee neural network for prediction of normalized oil content from well log data: An example from South Pars Gas Field, Persian Gulf. J. Pet. Sci. Eng. 2009, 65, 23–32. [Google Scholar] [CrossRef]
- Opera, A.; Alizadeh, B.; Sarafdokht, H.; Janbaz, M.; Fouladvand, R.; Heidarifard, M.H. Burial history reconstruction and thermal maturity modeling for the Middle Cretaceous–Early Miocene Petroleum System, southern Dezful Embayment, SW Iran. Int. J. Coal Geol. 2013, 120, 1–14. [Google Scholar] [CrossRef]
- Rahmani, O.; Aali, J.; Junin, R.; Mohseni, H.; Padmanabhan, E.; Azdarpour, A.; Zarza, S.; Moayyed, M.; Ghazanfari, P. The Origin of Oil in the Cretaceous Succession from the South Pars Oil Layer of the Persian Gulf. Int. J. Earth Sci. 2013, 102, 1337–1355. [Google Scholar] [CrossRef]
- Mahmoud, A.A.A.; Elkatatny, S.; Mahmoud, M.; Abouelresh, M.; Abdulraheem, A.; Ali, A. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int. J. Coal Geol. 2017, 179, 72–80. [Google Scholar] [CrossRef]
- Mashhadi, Z.S.; Rabbani, A.R. Organic geochemistry of crude oils and Cretaceous source rocks in the Iranian sector of the Persian Gulf: An oil–oil and oil–source rock correlation study. Int. J. Coal Geol. 2015, 146, 118–144. [Google Scholar] [CrossRef]
- Bolandi, V.; Kadkhodaie, A.; Farzi, R. Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran. J. Pet. Sci. Eng. 2017, 151, 224–234. [Google Scholar] [CrossRef]
- Anemangely, M.; Ramezanzadeh, A.; Tokhmechi, B. Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. J. Nat. Gas Sci. Eng. 2017, 38, 373–387. [Google Scholar] [CrossRef]
- Lüning, S.; Kolonic, S. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: Applicability and limitations. J. Pet. Geol. 2003, 26, 153–174. [Google Scholar] [CrossRef]
- Ehrenberg, S.; Svånå, T. Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: An example from the Finnmark carbonate platform (Carboniferous-Permian), Barents Sea. AAPG Bull. 2001, 85, 295–308. [Google Scholar]
- Gambacorta, G.; Caronni, V.; Antonielli, E.; Previde Massara, E.; Riva, A.; Scotti, P.; Trincianti, E.; Erba, E. Hot shale in an ice world: Paleoceanographic evolution of the northern Gondwana margin during the early Paleozoic (Tanezzuft Formation, Tunisia). Mar. Pet. Geol. 2016, 72, 393–411. [Google Scholar] [CrossRef]
- Ramasamy, V.; Paramasivam, K.; Suresh, G.; Jose, M.T. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India – Spectroscopical approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 117, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Romaniello, S.J.; Herrmann, A.D.; Hardisty, D.; Gill, B.C.; Anbar, A.D. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochim. Cosmochim. Acta 2018, 237, 294–311. [Google Scholar] [CrossRef]
- Wang, J.; Gu, D.; Guo, W.; Zhang, H.; Yang, D. Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis. J. Energy Resour. Technol. 2019, 141, 012907. [Google Scholar] [CrossRef]
- Passey, O.R.; Moretti, F.U.; Stroud, J.D. A practical modal for organic richness from porosity and resistivity logs. AAPG Bull. 1990, 74, 1777–1794. [Google Scholar]
- Khoshnoodkia, M.; Rahmani, O.; Mohseni, H.; Mohammadi, A. TOC determination of Gadvan Formation in South Pars Gas field, using artificial intelligent systems and geochemical data. J. Pet. Sci. Eng. 2011, 78, 119–130. [Google Scholar] [CrossRef]
- Rahmani, O.; Aali, J.; Mohseni, H.; Rahimpour-Bonab, H.; Zalaghaie, S. Organic geochemistry of Gadvan and Kazhdumi Formations (Cretaceous) in South Pars field. J. Pet. Sci. Eng. 2010, 70, 57–66. [Google Scholar] [CrossRef]
- Aali, J.; Rahimpour-Bonab, H.; Kamali, M.R. Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran. J. Pet. Sci. Eng. 2006, 50, 161–175. [Google Scholar] [CrossRef]
- Aali, J.; Rahmani, O. Evidences for secondary cracking of oil in South Pars field, Persian Gulf, Iran. J. Pet. Sci. Eng. 2011, 76, 85–92. [Google Scholar] [CrossRef]
- Aali, J.; Rahmani, O. H2S–Origin in South Pars gas field from Persian Gulf, Iran. J. Pet. Sci. Eng. 2012, 86–87, 217–224. [Google Scholar] [CrossRef]
- Al-Husseini, M.I. Origin of the Arabian Plate Structures: Amar Collision and Najd Rift. GeoArabia 2000, 5, 527–542. [Google Scholar]
- Tavakoli, V.; Rahimpour-Bonab, H.; Esrafili-Dizaji, B. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. C. R. Geosci. 2011, 343, 55–71. [Google Scholar] [CrossRef]
- Bolandi, V.; Kadkhodaie-Ilkhchi, A.; Alizadeh, B.; Tahmorasi, J.; Farzi, R. Source rock characterization of the Albian Kazhdumi formation by integrating well logs and geochemical data in the Azadegan oilfield, Abadan plain, SW Iran. J. Pet. Sci. Eng. 2015, 133, 167–176. [Google Scholar] [CrossRef]
- SY/T5124-2012. Method of determining microscopically the reflectance of vitrinite in sedimentary; China Oil & Gas Industry Standards: Beijing, China, 2012.
- Passey, Q.R.; Bohacs, K.M.; Esch, W.L.; Klimentidis, R.; Sinha, S. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. In Proceedings of the SPE International Oil and Gas Conference and Exhibition, Beijing, China, 8–10 June 2010. [Google Scholar]
- Wang, H.; Wu, W.; Chen, T.; Dong, X.; Wang, G. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. J. Pet. Sci. Eng. 2019, 176, 664–678. [Google Scholar] [CrossRef]
- Vandenbroucke, M.; Largeau, C. Kerogen origin, evolution and structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
Well | Sample No. | Depth | Pyrolysis Rock-Eval | ||||||||
S1 | S2 | S3 | TOC | HI | OI | Tmax | PI | ||||
B | B–1162 | 1162 | 0.84 | 0.56 | 1.4 | 0.37 | 151 | 249 | 419 | 1.666 | |
B–1174 | 1174 | 0.93 | 1.09 | 2.02 | 0.60 | 182 | 308 | 422 | 2.172 | ||
B–1182 | 1182 | 2.74 | 0.67 | 3.41 | 0.58 | 116 | 214 | 411 | 1.244 | ||
B–1192 | 1192 | 2.36 | 1.88 | 4.24 | 0.72 | 261 | 188 | 425 | 1.796 | ||
B–1212 | 1212 | 1.34 | 0.66 | 2 | 0.51 | 129 | 241 | 416 | 1.492 | ||
B–1220 | 1220 | 15.83 | 13.86 | 29.69 | 2.95 | 470 | 31 | 419 | 1.875 | ||
B–1230 | 1230 | 6.42 | 8.00 | 14.42 | 1.89 | 423 | 101 | 424 | 2.246 | ||
C | C–1162 | 1162 | 1.42 | 1.54 | 2.96 | 0.59 | 261 | 302 | 425 | 2.084 | |
C–1174 | 1174 | 1.10 | 1.36 | 2.46 | 0.51 | 267 | 278 | 425 | 2.236 | ||
C–1182 | 1182 | 1.63 | 1.31 | 2.94 | 0.53 | 247 | 200 | 422 | 1.803 | ||
C–1192 | 1192 | 0.86 | 0.79 | 1.65 | 0.47 | 166 | 372 | 411 | 1.918 | ||
C–1212 | 1212 | 0.80 | 0.93 | 1.73 | 0.32 | 291 | 262 | 419 | 2.162 | ||
C–1220 | 1220 | 0.81 | 0.81 | 1.62 | 0.51 | 159 | 314 | 416 | 2.000 | ||
C–1230 | 1230 | 1.73 | 1.64 | 3.37 | 0.52 | 315 | 219 | 430 | 1.948 | ||
Mean | - | - | 2.77 | 2.5 | 5.28 | 0.79 | 245.57 | 234.21 | 420.28 | 1.9 | |
Well | Sample No. | Depth | Elemental Composition (wt. %) | Atomic Ratios | Sum (%) (CHNO) | ||||||
C | H | N | O | O + S | H/C | O/C | N/C | ||||
B | B–1162 | 1162 | 64.54 | 21.50 | 0.65 | 8.15 | 8.31 | 1.41 | 0.12 | 3.45 | 94.84 |
B–1174 | 1174 | 66.46 | 22.55 | 0.65 | 7.95 | 7.98 | 0.99 | 0.24 | 2.47 | 97.61 | |
B–1182 | 1182 | 47.87 | 44.40 | 0.45 | 4.40 | 4.41 | 1.12 | 0.06 | 2.54 | 97.12 | |
B–1192 | 1192 | 48.77 | 42.25 | 0.47 | 4.95 | 4.96 | 0.93 | 0.20 | 3.15 | 96.44 | |
B–1212 | 1212 | 54.09 | 37.33 | 0.51 | 5.65 | 5.67 | 1.09 | 0.13 | 2.46 | 97.58 | |
B–1220 | 1220 | 77.42 | 19.12 | 0.12 | 0.29 | 0.49 | 0.89 | 0.11 | 3.02 | 96.95 | |
B–1230 | 1230 | 62.19 | 32.16 | 0.15 | 0.46 | 0.47 | 0.91 | 0.19 | 1.98 | 94.96 | |
C | C–1162 | 1162 | 55.08 | 34.98 | 0.50 | 5.45 | 5.51 | 1.02 | 0.21 | 1.94 | 96.01 |
C–1174 | 1174 | 64.11 | 25.45 | 0.61 | 6.78 | 6.86 | 0.84 | 0.11 | 2.12 | 96.95 | |
C–1182 | 1182 | 52.45 | 37.73 | 0.48 | 5.33 | 5.35 | 1.21 | 0.15 | 2.29 | 95.99 | |
C–1192 | 1192 | 65.32 | 20.51 | 0.65 | 7.28 | 7.29 | 1.16 | 0.14 | 2.05 | 93.76 | |
C–1212 | 1212 | 64.29 | 18.65 | 0.65 | 8.52 | 8.53 | 1.15 | 0.24 | 2.13 | 92.11 | |
C–1220 | 1220 | 63.56 | 20.13 | 0.65 | 8.35 | 8.36 | 1.05 | 0.31 | 1.86 | 92.69 | |
C–1230 | 1230 | 50.09 | 35.12 | 0.47 | 5.05 | 5.11 | 0.79 | 0.17 | 1.68 | 90.73 | |
Mean | - | - | 59.73 | 29.42 | 0.5 | 5.61 | 5.66 | 1.04 | 0.17 | 2.36 | 95.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, O.; Khoshnoodkia, M.; Kadkhodaie, A.; Beiranvand Pour, A.; Tsegab, H. Geochemical Analysis for Determining Total Organic Carbon Content Based on ∆LogR Technique in the South Pars Field. Minerals 2019, 9, 735. https://doi.org/10.3390/min9120735
Rahmani O, Khoshnoodkia M, Kadkhodaie A, Beiranvand Pour A, Tsegab H. Geochemical Analysis for Determining Total Organic Carbon Content Based on ∆LogR Technique in the South Pars Field. Minerals. 2019; 9(12):735. https://doi.org/10.3390/min9120735
Chicago/Turabian StyleRahmani, Omeid, Mehdi Khoshnoodkia, Ali Kadkhodaie, Amin Beiranvand Pour, and Haylay Tsegab. 2019. "Geochemical Analysis for Determining Total Organic Carbon Content Based on ∆LogR Technique in the South Pars Field" Minerals 9, no. 12: 735. https://doi.org/10.3390/min9120735
APA StyleRahmani, O., Khoshnoodkia, M., Kadkhodaie, A., Beiranvand Pour, A., & Tsegab, H. (2019). Geochemical Analysis for Determining Total Organic Carbon Content Based on ∆LogR Technique in the South Pars Field. Minerals, 9(12), 735. https://doi.org/10.3390/min9120735