Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Morphology and Internal Structure of Diamonds
3.2. Impurity Defects
3.3. Mineral Inclusions
3.4. Carbon Isotope Composition
3.5. Microinclusions
4. Discussion
4.1. Thermal History of Coated Diamonds
4.2. Carbon Sources
4.3. Origin and Evolution of HDFs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Sample | Ud-4 | Ud-6 | Ud-12 | Ud-14 | Ud-17 | Ud-18 | Ud-21 | Ud-22 |
---|---|---|---|---|---|---|---|---|
Rb | 500 | 277 | <DL | 609 | 993 | 486 | 1392 | <DL |
Ba | 16,082 | 9443 | 20,623 | 10,856 | 16,422 | 10,745 | 20,561 | 11,607 |
Th | 94.5 | 80.5 | 115 | 43.3 | 186 | 110 | 148 | 79.1 |
U | 16.8 | 16.0 | 29.6 | 12.8 | 22.5 | 23.2 | 25.5 | 20.3 |
K | 195,414 | 117,276 | 209,423 | 114,082 | 193,507 | 151,191 | 301,637 | 130,591 |
Ta | 30.6 | 4.96 | 0.745 | 22.0 | 62.4 | 3.78 | 8.03 | 14.4 |
Nb | 604 | 109 | 83.4 | 133 | 1607 | 206 | 165 | 366 |
La | 741 | 420 | 4487 | 425 | 1383 | 789 | 1144 | 505 |
Ce | 980 | 436 | 1737 | 549 | 2275 | 1274 | 1588 | 487 |
Pr | 91.2 | 34.0 | 163 | 77.1 | 158 | 110 | 108 | 38.7 |
Sr | 3000 | 737 | 5000 | 6141 | 6074 | 3722 | 3399 | 1198 |
Nd | 314 | 98.3 | 294 | 196 | 527 | 347 | 648 | 140 |
Sm | 88.8 | 28.1 | 38.4 | 84.5 | <DL | 127 | 180 | 31.3 |
Hf | 81.0 | 58.3 | 27.1 | 95.7 | <DL | 26.2 | 319 | 10.6 |
Zr | 1851 | 1842 | 569 | 5920 | 472 | 790 | 4176 | 275 |
Eu | 24.8 | 8.79 | 17.0 | 25.4 | 3.39 | 23.4 | 179 | 13.9 |
Ti | 34,112 | 27,998 | 33,563 | 11,605 | <DL | 31,409 | 30,448 | 24,112 |
Gd | 88.8 | 34.9 | 19.3 | 24.6 | 12.2 | 46.0 | 201 | 27.4 |
Tb | 12.6 | 4.24 | 2.22 | 7.93 | 1.55 | 7.04 | 23.3 | 3.45 |
Dy | 77.0 | 18.3 | 12.8 | 14.4 | <DL | 29.2 | 92.3 | <DL |
Y | 302 | 82.1 | 36.8 | 40.7 | 12.2 | 88.7 | 616 | 47.3 |
Ho | 15.6 | 3.29 | 1.52 | 16.4 | 1.48 | 5.19 | 21.9 | 2.46 |
Er | 38.8 | 8.78 | 15.8 | 23.8 | 18.8 | 10.9 | 48.4 | 7.10 |
Yb | 20.4 | 4.15 | <DL | 22.2 | 6.94 | 14.7 | 11.6 | <DL |
Lu | 2.29 | 0.832 | 0.419 | 9.81 | <DL | <DL | 5.33 | 1.40 |
References
- Sobolev, N.V. Deep-Seated Inclusions in Kimberlites and the Upper-Mantle Composition; Nauka: Novosibirsk, Russia, 1974. (In Russian) [Google Scholar]
- Meyer, H.O.A. Inclusions in Diamond. In Mantle Xenoliths; Nixon, P.H., Ed.; Wiley: Chichester, UK, 1987; pp. 501–522. [Google Scholar]
- Harris, J.W. Diamond Geology. In The Properties of Natural and Synthetic Diamond; Field, J.E., Ed.; Academic Press: London, UK, 1992; pp. 345–349. [Google Scholar]
- Chrenko, R.; McDonald, R.; Darrow, K. Infra-red spectra of diamond coat. Nature 1967, 213, 474–476. [Google Scholar] [CrossRef]
- Guthrie, G.D.; Veblen, D.R.; Navon, O.; Rossman, G.R. Submicrometer fluid inclusions in turbid-diamond coats. Earth Planet. Sci. Lett. 1991, 105, 1–12. [Google Scholar] [CrossRef]
- Navon, O.; Hutcheon, I.D.; Rossman, G.R.; Wasserburg, G.J. Mantle-derived fluids in diamond micro-inclusions. Nature 1988, 335, 784–789. [Google Scholar] [CrossRef]
- Wyllie, P.J.; Ryabchikov, I.D. Volatile components, magmas, and critical fluids in upwelling mantle. J. Petrol. 2000, 41, 1195–1206. [Google Scholar] [CrossRef]
- Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geoch. Cosmochim. Acta 1994, 58, 761–771. [Google Scholar] [CrossRef]
- Izraeli, E.S.; Harris, J.W.; Navon, O. Brine inclusions in diamonds: A new upper mantle fluid. Earth Planet. Sci. Lett. 2001, 187, 323–332. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Kagi, H.K.; Shatsky, V.S.; Sobolev, N.V. Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): Evidence from vibrational spectroscopy. Mineral. Mag. 2004, 68, 61–73. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S. Compositional features of diamond growth medium: From the study of microinclusions in natural diamonds. Proc. Russ. Miner. Soc. 2007, 7, 159–172. [Google Scholar]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Araujo, D.; Griffin, W.L.; Kagi, H. Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 2009, 112, 638–647. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Griffin, W.L. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Miner. Petrol. 2018, 173, 84. [Google Scholar] [CrossRef]
- Shiryaev, A.A.; Izraeli, E.S.; Hauri, E.H.; Zakharchenko, O.D.; Navon, O. Chemical, optical and isotopic investigation of fibrous diamonds from Brazil. Russ. Geol. Geophys. 2005, 46, 1185–1201. [Google Scholar]
- Tomlinson, E.L.; Jones, A.P.; Harris, J.W. Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet. Sci. Lett. 2006, 250, 581–595. [Google Scholar] [CrossRef]
- Logvinova, A.M.; Wirth, R.; Fedorova, E.; Sobolev, N. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: New insights on diamond formation. Eur. J. Miner. 2008, 20, 317–331. [Google Scholar] [CrossRef]
- Logvinova, A.M.; Wirth, R.; Tomilenko, A.A.; Afanas’ev, V.P.; Sobolev, N.V. The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russ. Geol. Geophys. 2011, 52, 1286–1297. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Izraeli, E.S.; Hauri, E.; Navon, O. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Cosmochim. Acta 2007, 71, 723–744. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Logvinova, A.M.; Schrauder, M.; Spetius, Z.V.; Weiss, Y.; Hauri, E.H.; Kaminsky, F.V.; Sobolev, N.V.; Navon, O. High-Mg carbonatitic microinclusions in some Yakutian diamonds—A new type of diamond-forming fluid. Lithos 2009, 112, 648–659. [Google Scholar] [CrossRef]
- Weiss, Y.; Kessel, R.; Griffin, W.L.; Kiflawi, I.; Klein-BenDavid, O.; Bell, D.R.; Harris, J.W.; Navon, O. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 2009, 112, 660–674. [Google Scholar] [CrossRef]
- Weiss, Y.; McNeill, J.; Pearson, D.G.; Nowell, G.M.; Ottley, C.J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 2015, 524, 339. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S. Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia). Russ. Geol. Geophys. 2012, 53, 1197–1208. [Google Scholar] [CrossRef]
- Boyd, S.R.; Mattey, D.P.; Pillinger, C.T.; Milledge, H.J.; Mendelssohn, M.; Seal, M. Multiple growth events during diamond genesis: An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet. Sci. Lett. 1987, 86, 341–353. [Google Scholar] [CrossRef]
- Boyd, S.R.; Kiflawi, I.; Woods, G.S. The relationship between infrared absorption and the A defect concentration in diamond. Philos. Mag. B 1994, 69, 1149–1153. [Google Scholar] [CrossRef]
- Cartigny, P.; Harris, J.W.; Javoy, M. Diamond genesis, mantle fractionation and mantle nitrogen content: A study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett. 2001, 185, 85–98. [Google Scholar] [CrossRef]
- Yelisseyev, A.P.; Pokhilenko, N.P.; Steeds, J.W.; Zedgenizov, D.A.; Afanasiev, V.P. Features of coated diamonds from the Snap Lake/King Lake kimberlite dyke, Slave craton, Canada, as revealed by optical topography. Lithos 2004, 77, 83–97. [Google Scholar] [CrossRef]
- Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U–Pb ages of perovskite from Yakutian kimberlites. Russ. Geol. Geophys. 1997, 38, 97–105. [Google Scholar]
- Woods, G.S.; Purser, G.C.; Mtimkulu, A.S.S.; Collins, A.T. The nitrogen content of type Ia natural diamonds. J. Phys. Chem. Solids. 1990, 51, 1191–1197. [Google Scholar] [CrossRef]
- Harte, B.; Fitzsimons, I.C.W.; Harris, J.W.; Otter, M.L. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S-Africa. Mineral. Mag. 1999, 63, 829. [Google Scholar] [CrossRef]
- Rege, S.; Jackson, S.; Griffin, W.L.; Davies, R.M.; Pearson, N.J.; O’Reilly, S.Y. Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2005, 20, 601–611. [Google Scholar] [CrossRef]
- Orlov, Y.L. Mineralogy of Diamond, 2nd ed.; Nauka: Moscow, Russia, 1984; p. 264. (In Russian) [Google Scholar]
- Khokhryakov, A.F.; Palyanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Mineral. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Sunagawa, I. Growth and morphology of diamond crystals under stable and metastable conditions. J. Cryst. Growth 1990, 99, 1156–1161. [Google Scholar] [CrossRef]
- Kaiser, W.; Bond, W. Nitrogen, a major impurity in common type I diamond. Phys. Rev. 1959, 115, 857. [Google Scholar] [CrossRef]
- Sobolev, E.V.; Lisoivan, V.I. Nitrogen Centers and Growth of Natural Diamond. In Problems of Crustal and Upper-Mantle Petrology; Sobolev, V.S., Ed.; Nauka: Novosibirsk, Russia, 1978; pp. 245–255. (In Russian) [Google Scholar]
- Jones, R.; Briddon, P.R.; Öberg, S. First-principles theory of nitrogen aggregates in diamond. Philos. Mag. Lett. 1992, 66, 67–74. [Google Scholar] [CrossRef]
- Smith, W.; Sorokin, P.; Gelles, I.; Lasher, G. Electron-spin resonance of nitrogen donors in diamond. Phys. Rev. 1959, 115, 1546. [Google Scholar] [CrossRef]
- Goss, J.P.; Coomer, B.J.; Jones, R.; Fall, C.J.; Briddon, P.R.; Öberg, S. Extended defects in diamond: The interstitial platelet. Phys. Rev. 2003, 67, 165208. [Google Scholar] [CrossRef]
- Woods, G.S. Platelets and the infrared absorption of type Ia diamonds. Proc. R. Soc. Lond. Ser. A 1986, 407, 219–238. [Google Scholar] [CrossRef]
- Woods, G.S.; Collins, A.T. Infrared absorption spectra of hydrogen complex in type I diamonds. J. Phys. Chem. Solids 1983, 44, 471–475. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Malygina, E.V.; Kuzmin, D.V.; Sobolev, A.V. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 2009, 112, 701–713. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W.; Muehlenbachs, K. Sources of carbon in inclusion bearing diamonds. Lithos 2009, 112, 625–637. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Golovin, A.V.; Sharygin, V.V.; Maas, R. Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos 2012, 152, 173–186. [Google Scholar] [CrossRef]
- Evans, T.; Qi, Z. The kinetics of the aggregation of nitrogen atoms in diamond. Proc. R. Soc. Lond. Ser. A 1982, 381, 159–178. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Litasov, K.D.; Shatskiy, A.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 2015, 28, 1391–1414. [Google Scholar] [CrossRef]
- Ragozin, A.L.; Palyanov, Y.N.; Zedgenizov, D.A.; Kalinin, A.A.; Shatsky, V.S. The Homogenization of Carbonate-Containing Microinclusions in Diamonds at Upper Mantle P-T Parameters. In Proceedings of the 26th Goldschmidt Conference, Yokohama, Japan, 1–26 July 2016. [Google Scholar]
- Taylor, W.R.; Canil, D.; Millendge, H.J. Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim. Cosmochim. Acta 1996, 60, 4725–4733. [Google Scholar] [CrossRef]
- Galimov, E.M. Isotope fractionation related to kimberlite magmatism and diamond formation. Geoch. Cosmochim. Acta 1991, 55, 1697–1708. [Google Scholar] [CrossRef]
- Deines, P. The carbon isotope composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition. Geoch. Cosmochim. Acta 1980, 44, 943–961. [Google Scholar] [CrossRef]
- Reutsky, V.N.; Palyanov, Y.N.; Borzdov, Y.M.; Sokol, A.G. Isotope fractionation of carbon during diamond crystallization in model systems. Russ. Geol. Geophys. 2015, 56, 239–244. [Google Scholar] [CrossRef]
- Javoy, M.; Pineau, F.; Delorme, H. Carbon and nitrogen isotopes in the mantle. Chem. Geol. 1986, 57, 41–62. [Google Scholar] [CrossRef]
- McCandless, T.E.; Gurney, J.J. Diamond eclogites: Comparison with carbonaceous chondrites, carbonaceous shales, and microbial carbon-enriched MORB. Russ. Geol. Geophys. 1997, 38, 394–404. [Google Scholar]
- Sobolev, N.V.; Galimov, E.M.; Ivanovskaia, I.N.; Yefimova, E.S. Isotopic composition of carbon from diamonds containing crystalline inclusions. Dokl. Akad. Nauk SSSR 1979, 249, 1217–1220. (In Russian) [Google Scholar]
- Perchuk, L.L.; Safonov, O.G.; Yapaskurt, V.O.; Barton, J.M., Jr. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: An analytical review. Lithos 2002, 60, 89–111. [Google Scholar] [CrossRef]
- Navon, O.; Izraeli, E.S.; Klein-BenDavid, O. Fluid Inclusions in Diamonds—the Carbonatitic Connection. In Proceedings of the 8th international Kimberlite Conference, Victoria, BC, Canada, 22–27 June 2003. [Google Scholar]
- Safonov, O.G.; Perchuk, L.L.; Litvin, Y.A. Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet. Sci. Lett. 2007, 253, 112–128. [Google Scholar] [CrossRef]
- Weiss, Y.; Griffin, W.L.; Navon, O. Diamond-forming fluids in fibrous diamonds: The trace-element perspective. Earth. Planet. Sci. Lett. 2013, 376, 110–125. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Pearson, D.G.; Nowell, G.M.; Ottley, C.; McNeill, J.C.R.; Logvinova, A.M.; Sobolev, N.V. The sources and time-integrated evolution of diamond-forming fluids—Trace elements and isotopic evidence. Geochim. Cosmochim. Acta 2014, 125, 146–169. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Kamenetsky, V.S.; Korsakov, A.V.; Yaxley, G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 2018, 483, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V.; Kamenetsky, V.S.; Abersteiner, A. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc. 2019. [Google Scholar] [CrossRef]
- Russell, J.K.; Porritt, L.A.; Lavallee, Y.; Dingwell, D.B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 2012, 481, 352–356. [Google Scholar] [CrossRef]
- Giuliani, A.; Kamenetsky, V.S.; Phillips, D.; Kendrick, M.A.; Wyatt, B.A.; Goemann, K. Nature of alkali-carbonate fluids in the subcontinental lithospheric mantle. Geology 2012, 40, 967–970. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Golovin, A.V.; Korsakov, A.V.; Pokhilenko, N.P. Tychite in mantle xenoliths from kimberlites: The first find and a new genetic type. Dokl. Earth Sci. 2016, 467, 270–274. [Google Scholar] [CrossRef]
- Stone, R.S.; Luth, R.W. Orthopyroxene survival in deep carbonatite melts: Implications for kimberlites. Contrib. Mineral. Petrol. 2016, 171, 63. [Google Scholar] [CrossRef]
- Shatskiy, A.; Litasov, K.D.; Sharygin, I.S.; Ohtani, E. Composition of primary kimberlite melt in a garnet lherzolite mantle source: Constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 2017, 45, 208–227. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V. Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017, 455, 357–375. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Demouchy, S.; Faure, K.; Sharygin, V.V.; Kuzmin, D.V. Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): Types, compositions and origins. J. Petrol. 2007, 49, 823–839. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Maas, R.; Kamenetsky, M.B.; Paton, C.; Phillips, D.; Golovin, A.V.; Gornova, M.A. Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet. Sci. Lett. 2009, 285, 96–104. [Google Scholar] [CrossRef]
- Reiners, P.W. Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. J. Petrol. 1998, 39, 1039–1061. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Shatskiy, A.; Litasov, K.D.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions. Contrib. Mineral. Petrol. 2018, 173, 22. [Google Scholar] [CrossRef]
- Litasov, K.D.; Safonov, O.G.; Ohtani, E. Origin of Cl-bearing silica-rich melt inclusions in diamond: Experimental evidences for eclogite connection. Geology 2010, 38, 1131–1134. [Google Scholar] [CrossRef]
- Sokol, A.G.; Kupriyanov, I.N.; Palyanov, Y.N. Partitioning of H2O between olivine and carbonate–silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation. Earth. Planet. Sci. Lett. 2013, 383, 58–67. [Google Scholar] [CrossRef]
Sample | N, ppm | %B | B’, cm−1 | C, ppm | H3107, cm−1 | δ13C, ‰ | |
---|---|---|---|---|---|---|---|
Ud-4 | Core | 540–695 | 51–62 | 9–14 | - | 2.5–3.5 | −1.4⋯−1.3 |
Coat | 725–1094 | 0 | - | 100–188 | 1–2 | −4.4⋯−2.9 | |
Ud-6 | Core | 780–1013 | 33–38 | 10–13.7 | - | 1.2–1.6 | −4.8⋯−4.0 |
Coat | 1001–1112 | 0 | - | 75–308 | 0.14–5 | −3.1⋯−2.9 | |
Ud-10 | Core | 879–995 | 27–31 | 10.2–12.7 | - | 0.1–0.6 | −0.3⋯0.0 |
Coat | 660–1155 | 0 | - | 0 | 1.5–4.1 | −5.2⋯−3.3 | |
Ud-12 | Core | 718–958 | 17–37 | 7.4–16.8 | - | 0–2 | - |
Coat | 942–986 | 0 | - | 56–131 | 0.7–1 | - | |
Ud-13 | Core | 761–1069 | 20–60 | 9.2–13.3 | - | 4–27 | −6.6⋯−2.2 |
Coat | 1247–1419 | 0 | - | 49–113 | 2.9–6.6 | −5.3⋯−4.2 | |
Ud-14 | Core | 488–645 | 14–26 | 2–5.7 | - | 0.1–0.5 | - |
Coat | 709–840 | 0 | - | 45–86 | 0.3–0.8 | - | |
Ud-17 | Core | 62–506 | 17–74 | 0.4–2 | - | 1–7.4 | −6.7⋯−5.3 |
Coat | 964–1011 | 0 | - | 0 | 2.2–2.8 | −3.8 | |
Ud-18 | Core | 840–1105 | 21–36 | 3.6–13.4 | - | 0.4–2.9 | −4.0⋯−2.6 |
Coat | 1069–1175 | 0 | - | 60–71 | 1.8–2.6 | −5.6⋯−3.7 | |
Ud-21 | Core | 825–909 | 15–20 | 1.7–5.1 | - | 0.1–25 | −5.2⋯−4.6 |
Coat | 1180–1315 | 0 | - | 38–71 | 1.8–2.6 | −5.9⋯−5.8 | |
Ud-22 | Core | 776–1241 | 18–24 | 1.6–6.7 | - | 6–29.3 | −6.3⋯−4.4 |
Coat | 1035–1216 | 0 | - | 0 | 2.1–2.7 | −5.7⋯–4.9 |
Sample | Ud-4 | Ud-6 | Ud-10 | Ud-12 | Ud-13 | Ud-14 | Ud-17 | Ud-18 | Ud-21 | Ud-22 |
---|---|---|---|---|---|---|---|---|---|---|
n 1 | 22 | 20 | 15 | 17 | 16 | 31 | 24 | 25 | 15 | 18 |
SiO2 | 50.1 | 60.0 | 6.0 | 31.5 | 58.4 | 9.39 | 9.97 | 45.1 | 49.9 | 63.6 |
TiO2 | 3.63 | 3.94 | - | 2.34 | 2.15 | 1.36 | - | 3.83 | 4.74 | 2.81 |
Al2O3 | 5.28 | 6.75 | 0.30 | 5.52 | 8.70 | 2.49 | 0.65 | 7.52 | 5.27 | 9.80 |
FeO | 14.2 | 9.72 | 9.57 | 11.1 | 8.92 | 13.6 | 7.47 | 10.4 | 17.1 | 7.39 |
MgO | 7.37 | 3.10 | 20.9 | 10.3 | 3.98 | 18.9 | 30.7 | 2.11 | 8.12 | 3.83 |
CaO | 4.24 | 1.40 | 11.8 | 9.11 | 1.49 | 33.7 | 18.7 | 5.71 | 1.97 | 0.79 |
Na2O | 2.19 | 1.25 | 13.3 | 3.89 | 0.35 | 6.23 | 9.99 | 1.03 | 0.62 | 0.51 |
K2O | 11.4 | 11.9 | 20.6 | 18.3 | 12.1 | 9.90 | 16.0 | 14.3 | 9.78 | 10.1 |
BaO | - | 0.17 | 4.41 | 1.11 | 1.73 | 0.10 | 0.44 | 2.48 | 0.21 | 0.23 |
P2O5 | 0.97 | 0.98 | 1.27 | 3.74 | 1.36 | 2.64 | 3.46 | 5.85 | 1.26 | 0.61 |
Cl | 0.74 | 0.72 | 12.0 | 3.18 | 0.85 | 1.59 | 2.16 | 1.60 | 1.06 | 0.35 |
w/c 2 | 0.32 | 0.55 | 0.11 | 0.31 | 0.50 | 0.24 | 0.09 | 0.24 | 0.65 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals 2019, 9, 734. https://doi.org/10.3390/min9120734
Gubanov N, Zedgenizov D, Sharygin I, Ragozin A. Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals. 2019; 9(12):734. https://doi.org/10.3390/min9120734
Chicago/Turabian StyleGubanov, Nikolai, Dmitry Zedgenizov, Igor Sharygin, and Alexey Ragozin. 2019. "Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe" Minerals 9, no. 12: 734. https://doi.org/10.3390/min9120734
APA StyleGubanov, N., Zedgenizov, D., Sharygin, I., & Ragozin, A. (2019). Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals, 9(12), 734. https://doi.org/10.3390/min9120734