The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Field Study and Sampling
3.2. Analytical Methods
4. Results
4.1. Grain Composition of Sediments
4.2. The Bulk Mineral Composition
4.3. Major Element Composition in Sediments
4.4. Authigenic Carbonates
4.5. Stable Carbon and Oxygen Isotope Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buckman, J.; Donnelly, T.; Jiang, Z.; Lewis, H.; Ru, A. Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ 13 C and δ 18 O Isotopes, Environment, Porosity and Permeability. Geosciences 2020, 10, 255. [Google Scholar] [CrossRef]
- Gabitov, R.; Borrelli, C.; Buettner, J.; Kirkland, B.; Skarke, A.; Trail, D.; Garner, B.; Testa, M.; Wahidi, M.; Hoff, C.; et al. Characterization of carbonate crust from a recently discovered methane seep on the north Atlantic continental margin of the USA. Minerals 2019, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Sun, Z.; Mao, S.; Xu, L.; Cao, H.; Geng, W.; Xu, C.; Zhang, X.; Wu, N. Authigenic carbonate formation revealed by lipid biomarker inventory at hydrocarbon seeps: A case study from the Okinawa Trough. Mar. Pet. Geol. 2019, 101, 502–511. [Google Scholar] [CrossRef]
- Liang, Q.; Hu, Y.; Feng, D.; Peckmann, J.; Chen, L.; Yang, S.; Liang, J.; Tao, J.; Chen, D. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep. Res. Part I Oceanogr. Res. Pap. 2017, 124, 31–41. [Google Scholar] [CrossRef]
- Núñez-Useche, F.; Canet, C.; Liebetrau, V.; Puig, T.P.; Ponciano, A.C.; Alfonso, P.; Berndt, C.; Hensen, C.; Mortera-Gutierrez, C.; Rodríguez-Díaz, A.A. Redox conditions and authigenic mineralization related to cold seeps in central Guaymas Basin, Gulf of California. Mar. Pet. Geol. 2018, 95, 1–15. [Google Scholar] [CrossRef]
- Peckmann, J.; Reimer, A.; Luth, U.; Luth, C.; Hansen, B.T.; Heinicke, C.; Hoefs, J.; Reitner, J. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar. Geol. 2001, 177, 129–150. [Google Scholar] [CrossRef]
- Smith, J.P.; Coffin, R.B. Methane flux and authigenic carbonate in shallow sediments overlying methane hydrate bearing strata in Alaminos Canyon, Gulf of Mexico. Energies 2014, 7, 6118–6141. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science (80-.) 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Lobkovskiy, L.I.; Nikiforov, S.L.; Dmitrevskiy, N.N.; Libina, N.V.; Semiletov, I.P.; Ananiev, R.A.; Meluzov, A.A.; Roslyakov, A.G. Mechanisms Responsible for Gas Emission and Underwater Permafrost Degradation on Laptev Sea Shelf. Oceanology 2015, 55, 312–320. [Google Scholar] [CrossRef]
- Gresov, A.I.; Obzhirov, A.I.; Yatsuk, A.V.; Mazurov, A.K.; Ruban, A.S. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea. Russ. J. Pacific Geol. 2017, 11. [Google Scholar] [CrossRef]
- Barnes, R.O.; Goldberg, E.D. Methane production and consumption in anoxic marine sediments. Geology 1976, 4, 297–300. [Google Scholar] [CrossRef]
- Hoehler, T.M.; Alperin, M.J.; Albert, D.B.; Martens, C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 1994, 8, 451–463. [Google Scholar] [CrossRef]
- Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W.; Lorenson, T.D.; Greene, H.G. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep. Res. Part II Top. Stud. Oceanogr. 2007, 54, 1268–1291. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Eisenhauer, A.; Bohrmann, G.; Haase-Schramm, A.; Bock, B.; Linke, P. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations. Geochim. Cosmochim. Acta 2003, 67, 3845–3857. [Google Scholar] [CrossRef]
- Birgel, D.; Feng, D.; Roberts, H.H.; Peckmann, J. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chem. Geol. 2011, 285, 82–96. [Google Scholar] [CrossRef]
- Bottrell, S.H.; Newton, R.J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Rev. 2006, 75, 59–83. [Google Scholar] [CrossRef]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gleseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Sun, X.; Lin, Z.; Xu, L.; Lu, H.; Hao, X.; Peckmann, J. Intensity of methane seepage reflected by relative enrichment of heavy magnesium isotopes in authigenic carbonates: A case study from the South China Sea. Deep. Res. Part I Oceanogr. Res. Pap. 2017, 129, 10–21. [Google Scholar] [CrossRef]
- Thiagarajan, N.; Crémière, A.; Blättler, C.; Lepland, A.; Kirsimäe, K.; Higgins, J.; Brunstad, H.; Eiler, J. Stable and clumped isotope characterization of authigenic carbonates in methane cold seep environments. Geochim. Cosmochim. Acta 2020, 279, 204–219. [Google Scholar] [CrossRef]
- Feng, D.; Roberts, H.H.; Joye, S.B.; Heydari, E. Formation of low-magnesium calcite at cold seeps in an aragonite sea. Terra Nov. 2014, 26, 150–156. [Google Scholar] [CrossRef]
- Xu, F.; You, X.; Li, Q.; Liu, Y. Can Primary Ferroan Dolomite and Ankerite Be Precipitated? Its Implications for Formation of Submarine Methane-Derived Authigenic Carbonate (MDAC) Chimney. Minerals 2019, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- Greinert, J.; Derkachev, A. Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: Implications of a venting-related ikaite/glendonite formation. Mar. Geol. 2004, 204, 129–144. [Google Scholar] [CrossRef]
- Bayon, G.; Dupré, S.; Ponzevera, E.; Etoubleau, J.; Chéron, S.; Pierre, C.; Mascle, J.; Boetius, A.; De Lange, G.J. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat. Geosci. 2013, 6, 755–760. [Google Scholar] [CrossRef]
- Cui, H.; Kaufman, A.J.; Xiao, S.; Zhou, C.; Liu, X.M. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem. Geol. 2017, 450, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Feng, D.; Cheng, H.; Yang, S.; Wang, H.; Min, A.G.; Edwards, R.L.; Chen, Z.; Chen, D. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar. Pet. Geol. 2013, 43, 260–271. [Google Scholar] [CrossRef]
- Mansour, A.S.; Sassen, R. Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, Gulf of Mexico slope: Possible relation to crude oil degradation. Mar. Geol. 2011, 281, 59–69. [Google Scholar] [CrossRef]
- Wang, M.; Li, Q.; Cai, F.; Liang, J.; Yan, G.; Wang, Z.; Sun, Y.; Luo, D.; Dong, G.; Cao, Y. Formation of authigenic carbonates at a methane seep site in the middle Okinawa Trough, East China Sea. J. Asian Earth Sci. 2019, 185, 104028. [Google Scholar] [CrossRef]
- Pierre, C.; Blanc-Valleron, M.M.; Demange, J.; Boudouma, O.; Foucher, J.P.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Lett. 2012, 32, 501–513. [Google Scholar] [CrossRef]
- Botz, R.; Wehner, H.; Schmitt, M.; Worthington, T.J.; Schmidt, M.; Stoffers, P. Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, New Zealand. Chem. Geol. 2002, 186, 235–248. [Google Scholar] [CrossRef]
- Whiticar, M.J.; Faber, E.; Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochim. Cosmochim. Acta 1986, 50, 693–709. [Google Scholar] [CrossRef]
- Xi, S.; Zhang, X.; Du, Z.; Li, L.; Wang, B.; Luan, Z.; Lian, C.; Yan, J. Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. J. Asian Earth Sci. 2018, 168, 207–224. [Google Scholar] [CrossRef]
- Peckmann, J.; Thiel, V. Carbon cycling at ancient methane-seeps. Chem. Geol. 2004, 205, 443–467. [Google Scholar] [CrossRef]
- Sassen, R.; Sweet, S.T.; Milkov, A.V.; DeFreitas, D.A.; Kennicutt, M.C. Thermogenic vent gas and gas hydrate in the gulf of Mexico slope: Is gas hydrate decomposition significant? Geology 2001, 29, 107–110. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Baranov, B.; Galkin, S.; Vedenin, A.; Dozorova, K.; Gebruk, A.; Flint, M. Methane seeps on the outer shelf of the Laptev Sea: Characteristic features, structural control, and benthic fauna. Geo-Marine Lett. 2020, 1–17. [Google Scholar] [CrossRef]
- Drachev, S.S. On the basement tectonics of the Laptev Sea shelf. Geotectonics 2002, 36, 483–497. [Google Scholar]
- Sekretov, S.B. Structure and tectonic evolution of the Southern Eurasia Basin, Arctic Ocean. Tectonophysics 2002, 351, 193–243. [Google Scholar] [CrossRef]
- Sergienko, V.I.; Lobkovskii, L.I.; Semiletov, I.P.; Dudarev, O.V.; Dmitrievskii, N.N.; Shakhova, N.E.; Romanovskii, N.N.; Kosmach, D.A.; Nikol’Skii, D.N.; Nikiforov, S.L.; et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the Methane Catastrophe: Some results of integrated studies in 2011. Dokl. Earth Sci. 2012, 446, 1132–1137. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.W.; Gavrilov, A.V.; Tumskoy, V.E.; Tipenko, G.S.; Grigoriev, M.N.; Siegert, C. Thermokarst and land-ocean interactions, Laptev Sea region, Russia. Permafr. Periglac. Process. 2000, 11, 137–152. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 2007, 66, 227–243. [Google Scholar] [CrossRef]
- Coplen, T.B.; Kendall, C.; Hopple, J. Comparison of stable isotope reference samples. Nature 1983, 302, 236–238. [Google Scholar] [CrossRef]
- Díaz-del-Río, V.; Somoza, L.; Martinez-Frias, J.; Mata, M.P.; Delgado, A.; Hernandez-Molina, F.J.; Lunar, R.; Martin-Rubi, J.A.; Maestro, A.; Fernandez-Puga, M.C.; et al. Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cádiz. Mar. Geol. 2003, 195, 177–200. [Google Scholar] [CrossRef]
- Magalhães, V.H.; Pinheiro, L.M.; Ivanov, M.K.; Kozlova, E.; Blinova, V.; Kolganova, J.; Vasconcelos, C.; McKenzie, J.A.; Bernasconi, S.M.; Kopf, A.J.; et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sediment. Geol. 2012, 243–244, 155–168. [Google Scholar] [CrossRef]
- Dudarev, O.; Gustafsson, O.; Semiletov, I.; Jakobsson, M.; Shakhova, N.; Tesi, T.; Ruban, A.; Charkin, A. Specific features of sedimentology in the outer part of the East Siberian Arctic Shelf. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015; pp. C43A–0770. [Google Scholar]
- Panova, E.V.; Ruban, A.S.; Dudarev, O.V.; Tesi, T.; Broöder, L.; Gustafsson, O.; Grinko, A.A.; Shakhova, N.E.; Goncharov, I.V.; Mazurov, A.K.; et al. Lithological features of surface sediment and their influence on organic matter distribution across the east-Siberian Arctic shelf. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2017, 328, 94–105. [Google Scholar]
- Kravchishina, M.D.; Lein, A.Y.; Savvichev, A.S.; Reykhard, L.E.; Dara, O.M.; Flint, M.V. Authigenic Mg-calcite at a cold methane seep site in the Laptev Sea. Oceanology 2017, 57, 174–191. [Google Scholar] [CrossRef]
- Kosmach, D.A.; Sergienko, V.I.; Dudarev, O.V.; Kurilenko, A.V.; Gustafsson, O.; Semiletov, I.P.; Shakhova, N.E. Methane in the surface waters of Northern Eurasian marginal seas. Dokl. Chem. 2015, 465, 281–285. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Peng, X.; Bai, S.; Chen, Z.; Van Nostrand, J.D. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochim. Cosmochim. Acta 2018, 222, 363–382. [Google Scholar] [CrossRef]
- Berner, R.A. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 1984, 48, 605–615. [Google Scholar] [CrossRef]
- Luff, R.; Greinert, J.; Wallmann, K.; Klaucke, I.; Suess, E. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem. Geol. 2005, 216, 157–174. [Google Scholar] [CrossRef]
- Treude, T.; Boetius, A.; Knittel, K.; Wallmann, K.; Jørgensen, B.B. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 2003, 264, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ketzer, M.; Praeg, D.; Pivel, M.A.G.; Augustin, A.H.; Rodrigues, L.F.; Viana, A.R.; Cupertino, J.A. Gas seeps at the edge of the gas hydrate stability zone on Brazil’s continental margin. Geoscience 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Luff, R.; Wallmann, K.; Aloisi, G. Numerical modeling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet. Sci. Lett. 2004, 221, 337–353. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Bohrmann, G.; Suess, E. Chemoherms on Hydrate Ridge - Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 227, 67–85. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Y.; Feng, D.; Zhang, X.; Cheng, S.; Cao, J.; Lu, H.; Chen, D. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chem. Geol. 2016, 443, 173–181. [Google Scholar] [CrossRef]
- Nöthen, K.; Kasten, S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan. Mar. Geol. 2011, 287, 1–13. [Google Scholar] [CrossRef]
- Himmler, T.; Birgel, D.; Bayon, G.; Pape, T.; Ge, L.; Bohrmann, G.; Peckmann, J. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem. Geol. 2015, 415, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Merinero, R.; Lunar, R.; Martínez-Frías, J.; Somoza, L.; Díaz-del-Río, V. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Mar. Pet. Geol. 2008, 25, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Merinero, R.; Lunar, R.; Somoza, L.; Díaz-Del-Río, V.; Martínez-Frías, J. Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: Lessons learned from the Gulf of Cadiz. Eur. J. Mineral. 2009, 21, 947–961. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; Lunar, R.; Martínez-Frías, J.; Rubí, J.A.M.; Torres, T.; Ortíz, J.E.; Díaz-del-Río, V. Fe-Mn nodules associated with hydrocarbon seeps: A new discovery in the Gulf of Cadiz (eastern central Atlantic). Episodes 2007, 30, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Franchi, F.; Rovere, M.; Gamberi, F.; Rashed, H.; Vaselli, O.; Tassi, F. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage. Mar. Pet. Geol. 2017, 86, 228–247. [Google Scholar] [CrossRef]
- Feng, D.; Chen, D.; Peckmann, J.; Bohrmann, G. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Mar. Pet. Geol. 2010, 27, 748–756. [Google Scholar] [CrossRef]
- Ye, S.; Soo, H.; Sik, M.; Xian, C. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet. Sci. Lett. 2002, 201, 407–419. [Google Scholar]
- Hu, Y.; Chen, L.; Feng, D.; Liang, Q.; Xia, Z.; Chen, D. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea. J. Asian Earth Sci. 2017, 138, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Miyajima, Y.; Watanabe, Y.; Goto, A.S.; Jenkins, R.G.; Sakai, S.; Matsumoto, R.; Hasegawa, T. Archael lipid biomarker as a tool to constrain the origin of methane at ancient methane seeps: Insight into subsurface fluid flow in the geological past. J. Asian Earth Sci. 2020, 189, 104134. [Google Scholar] [CrossRef]
- Sackett, W.M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta 1978, 42, 571–580. [Google Scholar] [CrossRef]
- Greinert, J.; Bohrmann, G.; Suess, E. Gas Hydrate-Associated Carbonates and Methane-Venting at Hydrate Ridge: Classification, Distribution, and Origin of Authigenic Lithologies. In Geophysical Monograph Series; Blackwell Publishing Ltd.: New Jersey, NJ, USA, 2001; Vol. 124, pp. 99–113. [Google Scholar]
- Naehr, T.H.; Rodriguez, N.M.; Bohrmann, G.; Paull, C.K.; Botz, R. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. In Proceedings of the Ocean Drilling Program: Scientific Results; Texas A and M University: College Station, TX, USA, 2000; Vol. 164, pp. 285–300. [Google Scholar]
- Grinko, A.; Goncharov, I.V.; Shakhova, N.E.; Gustafsson, Ö.; Oblasov, N.V.; Romankevich, E.A.; Zarubin, A.G.; Kashapov, R.S.; Chernykh, D.V.; Gershelis, E.V.; et al. Sediment organic matter in areas of intense methane release in the laptev sea: Characteristics of molecular composition. Russ. Geol. Geophys. 2020, 61, 456–477. [Google Scholar] [CrossRef]
- Aharon, P.; Schwarcz, H.P.; Roberts, H.H. Radiometric dating of submarine hydrocarbon seeps in the Gulf of Mexico. Geol. Soc. Am. Bull. 1997, 109, 568–579. [Google Scholar] [CrossRef]
- Smrzka, D.; Zwicker, J.; Misch, D.; Walkner, C.; Gier, S.; Monien, P.; Bohrmann, G.; Peckmann, J. Oil seepage and carbonate formation: A case study from the southern Gulf of Mexico. Sedimentology 2019, 66, 2318–2353. [Google Scholar] [CrossRef]
- Roberts, H.H.; Feng, D.; Joye, S.B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 2010, 57, 2040–2054. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, S.; Li, N.; Peckmann, J.; Jin, M.; Roberts, H.H.; Chen, D.; Feng, D. A new approach to discern the hydrocarbon sources (oil vs. methane) of authigenic carbonates forming at marine seeps. Mar. Pet. Geol. 2020, 114, 104230. [Google Scholar] [CrossRef]
- Anderson, T.F.; Arthur, M.A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Unkn. J. 1983, 10, 1.1–1.151. [Google Scholar] [CrossRef]
- Dubinina, E.O.; Miroshnikov, A.Y.; Kossova, S.A.; Shchuka, S.A. Modification of the Laptev Sea Freshened Shelf Waters based on Isotope and Salinity Relations. Geochemistry Int. 2019, 57, 1–19. [Google Scholar] [CrossRef]
Samples | Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | MnO | Fe2O3 |
---|---|---|---|---|---|---|---|---|---|---|
AMK-6016 | 2.9 | 2.0 | 14.2 | 59.0 | 0.2 | 2.8 | 1.9 | 0.8 | 0.1 | 7.5 |
AMK-6027 | 2.6 | 1.6 | 12.6 | 61.6 | 0.1 | 2.7 | 1.8 | 0.7 | 0.1 | 5.4 |
AMK-6045 | 2.5 | 2.0 | 13.4 | 61.3 | 0.1 | 2.9 | 2.9 | 0.7 | 0.1 | 6.0 |
AMK-6045/2 | 2.6 | 1.8 | 13.6 | 61.5 | 0.1 | 3.0 | 2.7 | 0.7 | 0.1 | 6.2 |
AMK-6053 | 2.7 | 2.4 | 14.6 | 56.9 | 0.2 | 2.9 | 1.8 | 1.0 | 0.1 | 9.2 |
AMK-6056 | 2.4 | 1.9 | 14.6 | 62.6 | 0.1 | 2.8 | 1.0 | 0.7 | 0.1 | 6.5 |
AMK-6058 | 2.7 | 1.8 | 13.1 | 61.9 | 0.2 | 2.6 | 1.8 | 0.7 | 0.1 | 6.1 |
LV78-9 | 2.9 | 1.8 | 14.3 | 59.7 | 0.2 | 2.8 | 1.7 | 0.8 | 0.1 | 6.9 |
LV78-12 | 2.7 | 1.5 | 13.8 | 64.2 | 0.1 | 2.5 | 2.4 | 0.8 | 0.1 | 5.8 |
LV78-17 | 2.6 | 1.3 | 13.6 | 65.3 | 0.1 | 2.8 | 0.9 | 0.5 | 0.1 | 4.2 |
LV78-21 | 2.3 | 1.8 | 13.1 | 57.9 | 0.1 | 2.7 | 1.9 | 0.7 | 0.1 | 5.6 |
LV78-23 | 2.6 | 1.3 | 12.7 | 65.5 | 0.2 | 2.1 | 1.7 | 0.9 | 0.1 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, A.; Rudmin, M.; Dudarev, O.; Mazurov, A. The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea. Minerals 2020, 10, 948. https://doi.org/10.3390/min10110948
Ruban A, Rudmin M, Dudarev O, Mazurov A. The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea. Minerals. 2020; 10(11):948. https://doi.org/10.3390/min10110948
Chicago/Turabian StyleRuban, Alexey, Maxim Rudmin, Oleg Dudarev, and Alexey Mazurov. 2020. "The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea" Minerals 10, no. 11: 948. https://doi.org/10.3390/min10110948
APA StyleRuban, A., Rudmin, M., Dudarev, O., & Mazurov, A. (2020). The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea. Minerals, 10(11), 948. https://doi.org/10.3390/min10110948