Tectonomagmatic Setting and Cu-Ni Mineralization Potential of the Gayahedonggou Complex, Northern Qinghai–Tibetan Plateau, China
Abstract
:1. Introduction
2. Geology Background
2.1. Regional Geology
2.2. Geology of the Gayahedonggou Cu-Ni Deposit
3. Sampling and Analytical Methodology
3.1. Sample Descriptions
3.2. Zircon U-Pb and IN SITU Hf Isotope Analyses
3.3. Major and Trace Element Compositions
4. Analytical Results
4.1. Zircon U-Pb Ages
4.2. Major and Trace Elements
4.3. Zircon Lu-Hf Isotopes
5. Discussion
5.1. Source
5.1.1. Wehrlite Source and Crustal Contamination
5.1.2. The Source of Quartz Diorite
5.2. Tectonic Setting
5.3. Cu-Ni Mineralization Potential
6. Conclusions
- The zircon U-Pb ages of ore-bearing wehrlite and quartz diorite are 419.9 ± 1.5 and 410.2 ± 3.5 Ma, respectively. According to Lu-Hf isotope and geochemical analyses, wehrlite was likely derived from a depleted mantle or the asthenosphere, and the source region of quartz diorite is likely the lower crust.
- The parental magma of the wehrlite was modified by subduction-related fluids.
- The Gayahedonggou complex formed in a post-collision extensional environment.
- The pyroxene in the Gayahedonggou complex is mainly clinopyroxene, which is enriched in the CaO content, indicating that the CaO content of the parent magma of the Gayahedonggou complex is high or that the complex has been contaminated by Ca-rich surrounding rocks, which hinders Cu-Ni mineralization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Y.G.; Chung, S.L.; Jahn, B.M.; Wu, G.Y. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Tao, Y.; Putirka, K.; Hu, R.Z.; Li, C.S. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting. Am. Mineral. 2015, 100, 2509–2517. [Google Scholar] [CrossRef]
- Liu, Y.G.; Lü, X.B.; Wu, C.M.; Duan, L.; Deng, G.; Wang, H.; Zhu, X.K.; Zeng, H.D.; Wang, P.; Wang, W.; et al. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: As suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geol. Rev. 2016, 72, 538. [Google Scholar] [CrossRef]
- Song, X.Y.; Yi, J.N.; Chen, L.M.; Yu, S.Y.; Liu, C.Z.; Dang, X.Y.; Yang, Q.A.; Wu, S.K. The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Econ. Geol. 2016, 111, 29–55. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, W.Y.; Jia, Q.Z.; Zhang, Z.W.; Wang, Z.A.; Zhang, Z.B.; Zhang, J.W.; Qian, B. The dynamic sulfide saturation process and a possible slab break-off model for the Giant Xiarihamu magmatic nickel ore deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. Econ. Geol. 2018, 113, 1383–1417. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Fu, Y.; Zhang, J.; Li, L.; Tang, Q.; Li, Z. The magmatic intrusive direction constrains from noble gas isotopic compositions: A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt. Acta Petrol. Sin. 2018, 34, 3433–3444. (In Chinese) [Google Scholar]
- Feng, Y.Q.; Qian, Z.Z.; Duan, J.; Xu, G.; Ren, M.; Jiang, C. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China). Ore Geol. Rev. 2018, 95, 366–381. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lei, H.L.; Ma, C.Q.; Li, J.W.; Pan, Y.M. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China. J. Geochem. Explor. 2018, 190, 345–356. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Qian, B.; Liu, Y.G.; Zhang, D.Y.; Lü, P.R.; Dong, J. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geol. Rev. 2018, 96, 236–246. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Ling, J.L.; Zhou, W.; Du, W.; Wang, Z.X.; Fan, Y.Z.; Song, Y.F.; Song, Z.B. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrol. Sin. 2015, 31, 1117–1136. (In Chinese) [Google Scholar]
- Qian, Y.; Li, H.R.; Sun, F.Y.; Sun, J.; Wang, G. Zircon U-Pb dating and sulfide Re-Os isotopes of the Xiarihamu Cu-Ni sulfide deposit in Qinghai Province, Northwestern China. Can. J. Earth Sci. 2020, 57, 885–902. [Google Scholar]
- Du, W. Study on the Mafic-Ultramafic Rocks of Xiarihamu Nickel Mining Area in East Kunlun. Ph.D. Thesis, Chang’an University, Xi’an, China, 2015. (In Chinese). [Google Scholar]
- Li, C.S.; Zhang, Z.W.; Li, W.Y.; Wang, Y.L.; Sun, T.; Ripley, E.M. Geochronology, petrology and Hf–S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China. Lithos 2015, 216–217, 224–240. [Google Scholar] [CrossRef]
- Peng, B.; Sun, F.Y.; Li, B.L.; Wang, G.; Li, S.J.; Zhao, T.F.; Li, L.; Zhi, Y.B. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits. Ore Geol. Rev. 2016, 73, 13–28. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Wang, C.Y.; Qian, B.; Li, W.Y.; Zhang, J.W.; You, M.X. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China. China Geol. 2019, 2, 467–477. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Sun, F.Y.; Li, B.L.; Li, S.J.; Chen, G.J.; Wang, W.; Yan, J.M.; Zhao, T.F.; Dong, J.; Zhang, D.X. Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of No. I Complex from the Shitoukengde Ni–Cu sulfide deposit in the Eastern Kunlun Orogen, Western China: Implications for the MAGMATIC source, geodynamic setting and genesis. Acta Geol. Sin. Engl. Ed. 2018, 92, 106–126. [Google Scholar] [CrossRef]
- Liu, Y.G.; Chen, Z.G.; Li, W.Y.; Xu, X.H.; Kou, X.; Jia, Q.Z.; Zhang, Z.W.; Liu, F.; Wang, Y.L.; You, M.X. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. J. Geochem. Explor. 2019, 198, 41–53. [Google Scholar] [CrossRef]
- Li, W.Y.; Wang, Y.L.; Qian, B.; Liu, Y.G.; Han, Y.X. Discussion on formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block. Earth Sci. Front. 2020, 27, 276–293. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.H.; Fu, L.B.; Huizenga, J.M.; Santosh, M.; Chen, J.J.; Wang, D.Z.; Li, A.B. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B.; Li, J.W.; Pan, Y.M. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off. Lithos 2014, 210–211, 129–146. [Google Scholar] [CrossRef]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Wang, C.M.; Qing, M.; Li, W.L.; Carranza, E.J.M.; Guo, X.D.; Ge, L.S.; Zeng, G.Z. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234–235, 47–60. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Xia, R.; Shan, X.Y.; Ma, Y.; Zhao, E.Q.; Guo, W.H. Geochronology and geochemistry of ore-hosting rhyolitic tuff in the Kengdenongshe polymetallic deposit in the Eastern Segment of the East Kunlun Orogen. Minerals 2019, 9, 589. [Google Scholar] [CrossRef] [Green Version]
- Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.B.; Wei, J.H.; Bagas, L.; Santosh, M.; Liu, Y.; Zhang, D.H.; Zhou, H.Z. Late Permian back-arc extension of the eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos 2019, 340–341, 34–48. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, Z.W.; Zhang, C.J.; Chen, C.H.; Li, Y.; Qian, B. Constraints on sulfide saturation by crustal contamination in the Shitoukengde Cu-Ni deposit, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China. Geosci. J. 2020, 8, 356–371. [Google Scholar] [CrossRef]
- Guo, X.Z.; Lü, X.B.; Jia, Q.Z.; Li, J.C.; Kong, H.L. Fluid Inclusions and S–Pb Isotopes of the Reshui Porphyry Mo Deposit in East Kunlun, Qinghai Province, China. Minerals 2019, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.F.; Jiang, S.Y.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
- Liu, Y.J.; Genser, J.; Neubauer, F.; Jin, W.; Ge, X.H.; Handler, R.; Takasu, A. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 2005, 398, 199–224. [Google Scholar] [CrossRef]
- He, D.F.; Dong, Y.P.; Liu, X.M.; Yang, Z.; Sun, S.S.; Cheng, B.; Li, W. Tectono-thermal events in East Kunlun, Northern Tibetan Plateau: Evidence from zircon U–Pb geochronology. Gondwana Res. 2016, 30, 179–190. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Dai, M.N.; Zong, C.L.; Günther, D.; Fontaine, G.H.; Liu, X.M.; Diwu, C.R. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 2008, 247, 100–118. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K. Mathematical–statistical treatment of data and errors for 230Th/U geochronology. Rev. Mineral. Geochem. 2003, 52, 631–656. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220. (In Chinese) [Google Scholar]
- Zhou, B.; Dong, Y.P.; Zhang, F.F.; Yang, Z.; Sun, S.S.; He, D.F. Geochemistry and zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: Origin and tectonic implications. J. Asian Earth Sci. 2016, 130, 265–281. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Zhou, H.W.; Liu, Y.; Kinny, P. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res. 2002, 113, 135–154. [Google Scholar] [CrossRef]
- Boynton, W.V. Chapter 3—Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Dev. Geochem. 1984, 2, 63–114. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Blichert, T.J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Amelin, Y. Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 2005, 310, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Campbell, I.H.; Griffiths, R.W. The evolution of the mantle’s chemical structure. Lithos 1993, 30, 389–399. [Google Scholar] [CrossRef]
- Macdonald, R.; Rogers, N.; Fitton, J.; Black, S.; Smith, M. Plume-lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa. J. Petrol. 2001, 42, 877–900. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.H. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochim. Cosmochim. Acta 2002, 66, 1651–1661. [Google Scholar] [CrossRef]
- Furman, T.; Bryce, J.; Karson, J.; Iotti, A. East African Rift System (EARS) Plume Structure: Insights from Quaternary Mafic Lavas of Turkana, Kenya. J. Petrol. 2004, 45, 1069–1088. [Google Scholar] [CrossRef] [Green Version]
- Neal, C.R.; Mahoney, J.J.; Chazey, W.J., III. Mantle Sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. J. Petrol. 2002, 43, 1177–1205. [Google Scholar] [CrossRef] [Green Version]
- White, A.; Chappell, B. Granitoid types and their distribution in the Lachlan Fold Belt, Southeastern Australia. Geol. Soc. Am. 1983, 159, 21–34. [Google Scholar] [CrossRef]
- Whalen, J.; Currie, K.; Chappell, B. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Sylvester, P. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Chen, H.W.; Luo, Z.H.; Mo, X.X.; Zhang, X.T.; Wang, J.; Wang, B.Z. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications. Acta Petrol. Mineral. 2006, 25, 25–32. [Google Scholar]
- Li, Y.J.; Wei, J.H.; Santosh, M.; Li, H.; Liu, H.W.; Niu, M.W.; Liu, B. Anisian granodiorites and mafic microgranular enclaves in the eastern Kunlun Orogen, NW China: Insights into closure of the eastern Paleo-Tethys. Geol. J. 2020, 55, 1–21. [Google Scholar] [CrossRef]
- Maniar, P.; Piccoli, P. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology; Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1986. [Google Scholar]
- Meng, F.C.; Zhang, J.X.; Cui, M.H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Li, J.Y.; Qian, Y.; Li, H.R.; Sun, J.L.; Yang, X.M.; Chen, B.; Fan, X.Z. The Late Ordovician granitoids in the East Kunlun Orogenic Belt, Northwestern China: Petrogenesis and constraints for tectonic evolution of the Proto-Tethys Ocean. Int. J. Earth Sci. 2019, 109, 1439–1461. [Google Scholar] [CrossRef]
- Zhou, W.X.; Li, H.Q.; Chang, F.; Lv, X.B. The Early Silurian Gabbro in the Eastern Kunlun Orogenic Belt, Northeast Tibet: Constraints on the Proto-Tethyan ocean closure. Minerals 2020, 10, 794. [Google Scholar] [CrossRef]
- Liu, B.; Ma, C.Q.; Jiang, H.A.; Guo, P.; Zhang, J.Y.; Xiong, F.H. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin Mafic rocks. Acta Petrol. Sin. 2013, 29, 2093–2106. (In Chinese) [Google Scholar]
- Dong, G.C.; Luo, M.F.; Mo, X.X.; Zhao, Z.D.; Dong, L.Q.; Yu, X.H.; Wang, X.; Li, X.W.; Huang, X.F.; Liu, Y.B. Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 2018, 9, 1383–1397. [Google Scholar] [CrossRef]
- Wang, G. Metallogenesis of nickel deposits in Eastern Kunlun Orogenic Belt Qinghai Province. Ph.D. Thesis, Jinlin University, Changchun, China, 2014. (In Chinese). [Google Scholar]
- Jia, L.H.; Meng, F.C.; Feng, H.B. Eclogite-facies peak fluid activity: Evidence from the British East Kunlun eclogite rock veins. Acta Petrol. Sin. 2014, 30, 2339–2350. (In Chinese) [Google Scholar]
- Pearce, J.A.; Petae, D.W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; McDermott, F.; Defant, M.; Hochstaedter, A.; Drummond, M.; Hawkesworth, C.; Koloskov, A.; Maury, R.; Bellon, H. Trace element and SrNdPb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- Chen, J.J.; Fu, L.B.; Wei, J.H.; Selby, D.; Zhang, D.H.; Zhou, H.Z.; Zhao, X.; Liu, Y. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian–Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos 2020, 356–357, 105304. [Google Scholar] [CrossRef]
- Liu, B.; Ma, C.Q.; Pan, G.; Zhang, J.Y.; Xiong, F.H.; Jian, H.; Jiang, H.A. Discovery of the Middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications. Earth Sci. J. China Univ. Geosci. 2013, 38, 947–962. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.G.; Lü, X.B.; Ruan, B.X.; Liu, X.; Liu, S.; Jing, F.; Deng, G.; Wang, H.; Zeng, H.D.; Wang, P.; et al. A comprehensive information exploration model for magmatic Cu-Ni sulfide deposits in Beishan, Xinjiang. Miner. Depos. 2019, 38, 644–666. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, W.Y.; Lü, X.B.; Liu, Y.R.; Ruan, B.X.; Liu, X. Sulfide saturation mechanism of the poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China. Ore Geol. Rev. 2017, 91, 419–431. [Google Scholar] [CrossRef]
- Liu, Y.G.; Wang, L.P.; Mei, S.H.; Li, W.Y.; Kohlstedt, D.L.; Zhang, Z.W. Experimental discrimination of typical “benificail crustal contamination” and “harmful crustal contamination” during the sulfide saturation process of magmatic Cu-Ni-PGE deposit. In Proceedings of the 9th National Symposium on Mineralization Theory and Prospecting Methods, Nanjing, China, 13–16 December 2019; Volume 78. (In Chinese). [Google Scholar]
Sample | Sample No. | (×10−6) | Th/U | Isotope Ratio | Age (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |||
Wehrlite | GYH01-1 | 83 | 459 | 1039 | 0.44 | 0.0555 | 0.0011 | 0.5140 | 0.0102 | 0.0672 | 0.0007 | 432 | 45 | 421 | 7 | 419 | 4 |
GYH01-2 | 46 | 181 | 581 | 0.31 | 0.0580 | 0.0015 | 0.5395 | 0.0140 | 0.0675 | 0.0008 | 528 | 57 | 438 | 9 | 421 | 5 | |
GYH01-3 | 38 | 105 | 500 | 0.21 | 0.0544 | 0.0015 | 0.5044 | 0.0137 | 0.0672 | 0.0008 | 389 | 61 | 415 | 9 | 419 | 5 | |
GYH01-4 | 132 | 521 | 1697 | 0.31 | 0.0569 | 0.0021 | 0.5275 | 0.0193 | 0.0672 | 0.0009 | 488 | 81 | 430 | 13 | 419 | 5 | |
GYH01-5 | 96 | 343 | 1241 | 0.28 | 0.0557 | 0.0012 | 0.5149 | 0.0105 | 0.0671 | 0.0007 | 438 | 45 | 422 | 7 | 419 | 4 | |
GYH01-6 | 68 | 288 | 856 | 0.34 | 0.0563 | 0.0013 | 0.5251 | 0.0118 | 0.0676 | 0.0007 | 465 | 51 | 429 | 8 | 422 | 4 | |
GYH01-7 | 216 | 647 | 2813 | 0.23 | 0.0552 | 0.0015 | 0.5133 | 0.0135 | 0.0675 | 0.0008 | 420 | 58 | 421 | 9 | 421 | 5 | |
GYH01-8 | 42 | 107 | 566 | 0.19 | 0.0577 | 0.0023 | 0.5308 | 0.0202 | 0.0667 | 0.0009 | 518 | 84 | 432 | 13 | 416 | 5 | |
GYH01-9 | 54 | 461 | 620 | 0.74 | 0.0552 | 0.0015 | 0.5084 | 0.0139 | 0.0668 | 0.0008 | 419 | 61 | 417 | 9 | 417 | 5 | |
GYH01-10 | 56 | 269 | 697 | 0.39 | 0.0543 | 0.0017 | 0.5034 | 0.0150 | 0.0672 | 0.0008 | 384 | 67 | 414 | 10 | 419 | 5 | |
GYH01-11 | 76 | 368 | 952 | 0.39 | 0.0541 | 0.0012 | 0.5024 | 0.0111 | 0.0673 | 0.0007 | 376 | 50 | 413 | 8 | 420 | 4 | |
GYH01-12 | 46 | 210 | 598 | 0.35 | 0.0555 | 0.0028 | 0.5124 | 0.0257 | 0.0669 | 0.0011 | 433 | 110 | 420 | 17 | 418 | 6 | |
GYH01-13 | 127 | 527 | 1613 | 0.33 | 0.0557 | 0.0012 | 0.5148 | 0.0111 | 0.0670 | 0.0007 | 440 | 48 | 422 | 7 | 418 | 4 | |
GYH01-14 | 51 | 154 | 665 | 0.23 | 0.0560 | 0.0014 | 0.5196 | 0.0127 | 0.0673 | 0.0008 | 453 | 55 | 425 | 9 | 420 | 5 | |
GYH01-15 | 61 | 388 | 731 | 0.53 | 0.0548 | 0.0015 | 0.5110 | 0.0140 | 0.0676 | 0.0008 | 405 | 61 | 419 | 9 | 422 | 5 | |
GYH01-16 | 56 | 212 | 709 | 0.30 | 0.0534 | 0.0026 | 0.4963 | 0.0239 | 0.0675 | 0.0010 | 344 | 107 | 409 | 16 | 421 | 6 | |
GYH01-17 | 73 | 242 | 948 | 0.26 | 0.0550 | 0.0012 | 0.5123 | 0.0111 | 0.0676 | 0.0007 | 410 | 49 | 420 | 7 | 422 | 4 | |
GYH01-18 | 110 | 511 | 1381 | 0.37 | 0.0552 | 0.0013 | 0.5098 | 0.0116 | 0.0670 | 0.0007 | 420 | 51 | 418 | 8 | 418 | 4 | |
GYH01-19 | 92 | 266 | 1211 | 0.22 | 0.0551 | 0.0012 | 0.5108 | 0.0112 | 0.0673 | 0.0007 | 415 | 49 | 419 | 8 | 420 | 4 | |
GYH01-20 | 147 | 482 | 1915 | 0.25 | 0.0564 | 0.0024 | 0.5218 | 0.0219 | 0.0671 | 0.0010 | 468 | 93 | 426 | 15 | 419 | 6 | |
GYH01-21 | 59 | 296 | 733 | 0.40 | 0.0549 | 0.0014 | 0.5125 | 0.0129 | 0.0677 | 0.0008 | 410 | 56 | 420 | 9 | 422 | 5 | |
GYH01-22 | 132 | 534 | 1674 | 0.32 | 0.0548 | 0.0012 | 0.5096 | 0.0107 | 0.0675 | 0.0007 | 404 | 47 | 418 | 7 | 421 | 4 | |
GYH01-23 | 74 | 433 | 903 | 0.48 | 0.0549 | 0.0012 | 0.5108 | 0.0112 | 0.0675 | 0.0007 | 407 | 49 | 419 | 8 | 421 | 4 | |
GYH01-24 | 185 | 816 | 2324 | 0.35 | 0.0547 | 0.0018 | 0.5115 | 0.0168 | 0.0678 | 0.0009 | 400 | 72 | 419 | 11 | 423 | 5 | |
GYH01-25 | 197 | 1153 | 2415 | 0.48 | 0.0545 | 0.0018 | 0.5034 | 0.0165 | 0.0670 | 0.0008 | 392 | 72 | 414 | 11 | 418 | 5 | |
GYH01-26 | 38 | 194 | 476 | 0.41 | 0.0549 | 0.0016 | 0.5101 | 0.0144 | 0.0674 | 0.0008 | 409 | 62 | 419 | 10 | 420 | 5 | |
GYH01-27 | 76 | 357 | 982 | 0.36 | 0.0559 | 0.0013 | 0.5182 | 0.0119 | 0.0672 | 0.0007 | 448 | 51 | 424 | 8 | 420 | 4 | |
GYH01-28 | 94 | 542 | 1140 | 0.48 | 0.0550 | 0.0011 | 0.5111 | 0.0100 | 0.0674 | 0.0007 | 412 | 44 | 419 | 7 | 420 | 4 | |
GYH01-29 | 68 | 318 | 860 | 0.37 | 0.0553 | 0.0013 | 0.5123 | 0.0118 | 0.0673 | 0.0007 | 422 | 51 | 420 | 8 | 420 | 4 | |
GYH01-30 | 125 | 554 | 1591 | 0.35 | 0.0537 | 0.0021 | 0.4972 | 0.0189 | 0.0672 | 0.0009 | 358 | 85 | 410 | 13 | 419 | 5 | |
GYH01-31 | 148 | 266 | 1997 | 0.13 | 0.0547 | 0.0018 | 0.5085 | 0.0165 | 0.0674 | 0.0008 | 400 | 72 | 417 | 11 | 421 | 5 | |
GYH01-32 | 108 | 147 | 1453 | 0.10 | 0.0544 | 0.0016 | 0.5057 | 0.0148 | 0.0675 | 0.0008 | 386 | 65 | 416 | 10 | 421 | 5 | |
GYH01-33 | 158 | 480 | 2037 | 0.24 | 0.0555 | 0.0019 | 0.5189 | 0.0175 | 0.0678 | 0.0009 | 433 | 75 | 424 | 12 | 423 | 5 | |
GYH01-34 | 171 | 718 | 2152 | 0.33 | 0.0550 | 0.0011 | 0.5103 | 0.0104 | 0.0673 | 0.0007 | 413 | 45 | 419 | 7 | 420 | 4 | |
GYH01-35 | 160 | 575 | 2080 | 0.28 | 0.0525 | 0.0022 | 0.4854 | 0.0195 | 0.0671 | 0.0009 | 305 | 91 | 402 | 13 | 419 | 6 | |
GYH01-36 | 99 | 374 | 1269 | 0.29 | 0.0558 | 0.0014 | 0.5175 | 0.0129 | 0.0672 | 0.0008 | 445 | 55 | 424 | 9 | 420 | 5 | |
Quartz diorite | GYH02-1 | 22 | 154 | 260 | 0.59 | 0.0563 | 0.0027 | 0.5110 | 0.0238 | 0.0659 | 0.0010 | 462 | 103 | 419 | 16 | 411 | 6 |
GYH02-2 | 17 | 113 | 231 | 0.49 | 0.0560 | 0.0033 | 0.5353 | 0.0311 | 0.0693 | 0.0012 | 453 | 127 | 435 | 21 | 432 | 7 | |
GYH02-3 | 20 | 117 | 237 | 0.50 | 0.0576 | 0.0033 | 0.5231 | 0.0292 | 0.0659 | 0.0011 | 513 | 121 | 427 | 19 | 411 | 7 | |
GYH02-4 | 20 | 166 | 236 | 0.70 | 0.0571 | 0.0035 | 0.5224 | 0.0313 | 0.0663 | 0.0012 | 495 | 130 | 427 | 21 | 414 | 7 | |
GYH02-5 | 16 | 87 | 197 | 0.44 | 0.0553 | 0.0037 | 0.4886 | 0.0324 | 0.0641 | 0.0012 | 424 | 144 | 404 | 22 | 400 | 7 | |
GYH02-6 | 22 | 155 | 260 | 0.59 | 0.0542 | 0.0051 | 0.4965 | 0.0462 | 0.0665 | 0.0017 | 377 | 200 | 409 | 31 | 415 | 10 | |
GYH02-7 | 15 | 76 | 188 | 0.40 | 0.0558 | 0.0029 | 0.5120 | 0.0259 | 0.0666 | 0.0010 | 442 | 111 | 420 | 17 | 416 | 6 | |
GYH02-8 | 19 | 112 | 233 | 0.48 | 0.0539 | 0.0034 | 0.4905 | 0.0303 | 0.0660 | 0.0012 | 368 | 135 | 405 | 21 | 412 | 7 | |
GYH02-9 | 16 | 95 | 195 | 0.49 | 0.0548 | 0.0037 | 0.4700 | 0.0314 | 0.0622 | 0.0012 | 405 | 146 | 391 | 22 | 389 | 7 | |
GYH02-10 | 21 | 138 | 258 | 0.53 | 0.0557 | 0.0030 | 0.5124 | 0.0274 | 0.0668 | 0.0011 | 438 | 117 | 420 | 18 | 417 | 7 | |
GYH02-11 | 16 | 92 | 203 | 0.45 | 0.0556 | 0.0027 | 0.5068 | 0.0245 | 0.0662 | 0.0010 | 434 | 106 | 416 | 17 | 413 | 6 | |
GYH02-12 | 19 | 120 | 239 | 0.50 | 0.0554 | 0.0026 | 0.5016 | 0.0232 | 0.0657 | 0.0010 | 427 | 102 | 413 | 16 | 410 | 6 | |
GYH02-13 | 22 | 168 | 263 | 0.64 | 0.0555 | 0.0029 | 0.4881 | 0.0250 | 0.0638 | 0.0010 | 431 | 113 | 404 | 17 | 399 | 6 | |
GYH02-14 | 17 | 102 | 219 | 0.47 | 0.0548 | 0.0029 | 0.5055 | 0.0267 | 0.0669 | 0.0011 | 403 | 116 | 415 | 18 | 418 | 7 | |
GYH02-15 | 19 | 108 | 236 | 0.46 | 0.0548 | 0.0020 | 0.5066 | 0.0182 | 0.0671 | 0.0009 | 404 | 80 | 416 | 12 | 418 | 5 | |
GYH02-16 | 23 | 84 | 311 | 0.27 | 0.0545 | 0.0029 | 0.4926 | 0.0259 | 0.0656 | 0.0011 | 390 | 116 | 407 | 18 | 410 | 6 | |
GYH02-17 | 17 | 98 | 211 | 0.46 | 0.0556 | 0.0051 | 0.4897 | 0.0441 | 0.0639 | 0.0016 | 435 | 193 | 405 | 30 | 399 | 10 | |
GYH02-18 | 15 | 78 | 188 | 0.42 | 0.0556 | 0.0023 | 0.5049 | 0.0207 | 0.0659 | 0.0009 | 436 | 90 | 415 | 14 | 411 | 6 | |
GYH02-19 | 27 | 199 | 322 | 0.62 | 0.0582 | 0.0023 | 0.5274 | 0.0205 | 0.0657 | 0.0009 | 537 | 85 | 430 | 14 | 410 | 5 | |
GYH02-20 | 19 | 129 | 236 | 0.55 | 0.0561 | 0.0027 | 0.4951 | 0.0232 | 0.0641 | 0.0010 | 454 | 103 | 408 | 16 | 400 | 6 | |
GYH02-21 | 21 | 142 | 257 | 0.55 | 0.0539 | 0.0036 | 0.4841 | 0.0318 | 0.0651 | 0.0012 | 368 | 144 | 401 | 22 | 407 | 7 | |
GYH02-22 | 18 | 108 | 231 | 0.47 | 0.0559 | 0.0064 | 0.5157 | 0.0578 | 0.0670 | 0.0020 | 446 | 236 | 422 | 39 | 418 | 12 | |
GYH02-23 | 14 | 93 | 180 | 0.52 | 0.0560 | 0.0048 | 0.5078 | 0.0427 | 0.0658 | 0.0015 | 452 | 180 | 417 | 29 | 411 | 9 | |
GYH02-24 | 20 | 139 | 249 | 0.56 | 0.0556 | 0.0028 | 0.4957 | 0.0241 | 0.0647 | 0.0010 | 434 | 106 | 409 | 16 | 404 | 6 |
Rock Type | Wehrlite | Quartz Diorite | ||||||
---|---|---|---|---|---|---|---|---|
Sample No. | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 |
Sample Location | ZK0004 72–85 m | E 95°19′53.87″, N 36°06′28.53″ | ||||||
SiO2 | 39.70 | 31.67 | 34.36 | 37.16 | 31.52 | 65.68 | 65.05 | 65.90 |
TiO2 | 0.28 | 0.35 | 0.31 | 0.26 | 0.24 | 0.58 | 0.59 | 0.59 |
Al2O3 | 2.63 | 14.31 | 9.14 | 2.57 | 12.16 | 16.76 | 16.71 | 16.92 |
MnO | 0.14 | 0.09 | 0.08 | 0.10 | 0.06 | 0.06 | 0.07 | 0.07 |
MgO | 30.09 | 28.98 | 31.04 | 30.47 | 29.59 | 1.55 | 1.79 | 1.60 |
CaO | 3.22 | 3.12 | 2.69 | 2.85 | 1.97 | 4.71 | 4.73 | 4.81 |
Na2O | 0.35 | 0.47 | 0.32 | 0.20 | 0.37 | 3.96 | 4.04 | 3.96 |
K2O | 0.13 | 0.20 | 0.20 | 0.10 | 0.52 | 1.01 | 1.11 | 1.00 |
P2O5 | 0.03 | 0.03 | 0.05 | 0.03 | 0.04 | 0.14 | 0.14 | 0.14 |
Tfe2O3 | 19.20 | 16.34 | 16.36 | 21.23 | 17.86 | 3.70 | 3.94 | 3.81 |
LOI | 3.79 | 3.78 | 5.07 | 4.50 | 5.00 | 0.72 | 0.93 | 0.65 |
Total | 99.56 | 99.34 | 99.62 | 99.47 | 99.33 | 98.87 | 99.10 | 99.45 |
La | 2.37 | 2.85 | 4.66 | 2.15 | 4.15 | 10.78 | 11.61 | 9.31 |
Ce | 5.58 | 6.26 | 9.31 | 4.87 | 8.62 | 24.23 | 24.95 | 20.81 |
Pr | 0.74 | 0.80 | 1.04 | 0.63 | 0.99 | 2.94 | 3.09 | 2.63 |
Nd | 3.46 | 3.56 | 3.72 | 2.84 | 3.64 | 11.62 | 12.21 | 10.57 |
Sm | 0.87 | 0.89 | 0.75 | 0.80 | 0.77 | 2.76 | 2.71 | 2.48 |
Eu | 0.22 | 0.30 | 0.21 | 0.19 | 0.21 | 0.87 | 0.88 | 0.86 |
Gd | 0.96 | 0.95 | 0.74 | 0.90 | 0.81 | 2.61 | 2.78 | 2.43 |
Tb | 0.16 | 0.17 | 0.11 | 0.14 | 0.12 | 0.39 | 0.39 | 0.38 |
Dy | 1.05 | 0.86 | 0.76 | 0.95 | 0.64 | 2.02 | 2.06 | 2.11 |
Ho | 0.21 | 0.19 | 0.14 | 0.19 | 0.15 | 0.39 | 0.38 | 0.42 |
Er | 0.65 | 0.53 | 0.38 | 0.51 | 0.47 | 1.13 | 1.11 | 1.20 |
Tm | 0.08 | 0.08 | 0.06 | 0.07 | 0.07 | 0.15 | 0.17 | 0.16 |
Yb | 0.53 | 0.53 | 0.44 | 0.48 | 0.45 | 1.03 | 1.00 | 1.18 |
Lu | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.16 | 0.16 | 0.16 |
Y | 6.30 | 5.92 | 4.66 | 5.38 | 4.26 | 12.57 | 11.78 | 12.53 |
Rb | 5.45 | 5.48 | 5.59 | 4.65 | 26.81 | 17.84 | 18.27 | 9.85 |
Ba | 39.91 | 45.97 | 48.39 | 26.79 | 89.07 | 122.62 | 134.16 | 98.98 |
Th | 0.88 | 1.09 | 1.98 | 0.77 | 1.74 | 3.35 | 3.91 | 2.82 |
U | 0.30 | 0.39 | 0.64 | 0.28 | 0.76 | 0.52 | 0.51 | 0.47 |
Ta | 0.09 | 0.10 | 0.15 | 0.09 | 0.21 | 0.46 | 0.43 | 0.48 |
Nb | 0.88 | 0.96 | 1.68 | 0.70 | 1.57 | 5.52 | 5.52 | 5.45 |
Sr | 39.70 | 53.09 | 51.69 | 30.45 | 38.80 | 242.32 | 241.11 | 225.10 |
Zr | 21.63 | 27.52 | 39.26 | 19.37 | 26.96 | 219.41 | 228.90 | 237.11 |
Hf | 0.60 | 0.74 | 0.78 | 0.54 | 0.56 | 4.48 | 4.79 | 5.10 |
Pb | 4.03 | 11.34 | 7.82 | 3.60 | 6.06 | 5.89 | 6.04 | 5.68 |
Ga | 3.74 | 16.58 | 9.63 | 3.74 | 13.31 | 18.69 | 18.25 | 17.90 |
Zn | 64.21 | 214.52 | 102.52 | 68.44 | 152.40 | 44.04 | 43.22 | 40.82 |
K2O + Na2O | 0.48 | 0.67 | 0.52 | 0.30 | 0.89 | 4.97 | 5.15 | 4.96 |
K2O/Na2O | 0.37 | 0.43 | 0.63 | 0.50 | 1.41 | 0.26 | 0.27 | 0.25 |
A/CNK | 0.40 | 2.15 | 1.62 | 0.46 | 2.56 | 1.04 | 1.02 | 1.04 |
A/NK | 3.67 | 14.46 | 12.30 | 5.88 | 10.38 | 2.20 | 2.13 | 2.23 |
ΣREE | 16.96 | 18.04 | 22.39 | 14.79 | 21.16 | 61.08 | 63.50 | 54.70 |
ΣLREE | 13.24 | 14.66 | 19.69 | 11.48 | 18.38 | 53.20 | 55.45 | 46.66 |
ΣHREE | 3.72 | 3.38 | 2.70 | 3.31 | 2.78 | 7.88 | 8.05 | 8.04 |
LREE/HREE | 3.56 | 4.34 | 7.29 | 3.47 | 6.61 | 6.75 | 6.89 | 5.80 |
(La/Yb)N | 3.01 | 3.63 | 7.14 | 3.02 | 6.22 | 7.06 | 7.83 | 5.32 |
(La/Sm)N | 1.71 | 2.01 | 3.91 | 1.69 | 3.39 | 2.46 | 2.69 | 2.36 |
(Gd/Yb)N | 1.46 | 1.45 | 1.36 | 1.51 | 1.45 | 2.04 | 2.24 | 1.66 |
δEu | 0.73 | 0.99 | 0.85 | 0.68 | 0.81 | 0.98 | 0.97 | 1.06 |
δCe | 1.01 | 0.98 | 0.98 | 1.00 | 0.99 | 1.02 | 0.98 | 1.00 |
m/f | 3.08 | 3.50 | 3.75 | 2.84 | 3.28 | - | - | - |
Nb/U | 2.93 | 2.46 | 2.63 | 2.50 | 2.07 | - | - | - |
Ce/Pb | 1.38 | 0.55 | 1.19 | 1.35 | 1.42 | - | - | - |
Sample | Analysis Spot | t(Ma) | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | (176Hf/177Hf)i | εHf(t) | 2σ | TDM1(Ma) | TDM2(Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|
Wehrlite | GYH01-5 | 419 | 0.004561 | 0.000148 | 0.282623 | 0.000029 | 0.28262 | 3.9 | 1.0 | 872 | 1157 |
GYH01-6 | 422 | 0.009725 | 0.000338 | 0.282489 | 0.000061 | 0.28249 | −0.8 | 2.2 | 1062 | 1458 | |
GYH01-8 | 416 | 0.008986 | 0.000295 | 0.282521 | 0.000034 | 0.28252 | 0.2 | 1.2 | 1016 | 1389 | |
GYH01-9 | 417 | 0.029368 | 0.000731 | 0.282620 | 0.000044 | 0.28261 | 3.6 | 1.6 | 890 | 1174 | |
GYH01-13 | 418 | 0.008110 | 0.000253 | 0.282616 | 0.000029 | 0.28261 | 3.6 | 1.0 | 883 | 1173 | |
GYH01-18 | 418 | 0.014775 | 0.000443 | 0.282600 | 0.000026 | 0.28260 | 3.0 | 0.9 | 910 | 1213 | |
GYH01-19 | 420 | 0.010267 | 0.000362 | 0.282600 | 0.000036 | 0.28260 | 3.0 | 1.3 | 909 | 1212 | |
GYH01-27 | 420 | 0.008042 | 0.000318 | 0.282583 | 0.000047 | 0.28258 | 2.4 | 1.6 | 931 | 1248 | |
GYH01-33 | 423 | 0.009852 | 0.000321 | 0.282629 | 0.000034 | 0.28263 | 4.2 | 1.2 | 867 | 1143 | |
GYH01-34 | 420 | 0.012324 | 0.000398 | 0.282594 | 0.000033 | 0.28259 | 2.8 | 1.1 | 918 | 1225 | |
Quartz diorite | GYH02-2 | 432 | 0.04142 | 0.001094 | 0.282784 | 3.7584 × 10−5 | 0.282776 | 9.6 | 1.3 | 666 | 803 |
GYH02-12 | 410 | 0.039993 | 0.00105 | 0.28267 | 3.80829 × 10−5 | 0.282662 | 5.1 | 1.3 | 826 | 1071 | |
GYH02-16 | 410 | 0.043683 | 0.001153 | 0.282731 | 4.29311 × 10−5 | 0.282722 | 7.2 | 1.5 | 742 | 937 | |
GYH02-18 | 411 | 0.0483 | 0.001238 | 0.282808 | 3.84727 × 10−5 | 0.282798 | 9.9 | 1.3 | 634 | 764 | |
GYH02-23 | 411 | 0.031246 | 0.000792 | 0.282501 | 3.28299 × 10−5 | 0.282495 | −0.8 | 1.1 | 1058 | 1446 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norbu, N.; Li, J.; Liu, Y.; Jia, Q.; Kong, H. Tectonomagmatic Setting and Cu-Ni Mineralization Potential of the Gayahedonggou Complex, Northern Qinghai–Tibetan Plateau, China. Minerals 2020, 10, 950. https://doi.org/10.3390/min10110950
Norbu N, Li J, Liu Y, Jia Q, Kong H. Tectonomagmatic Setting and Cu-Ni Mineralization Potential of the Gayahedonggou Complex, Northern Qinghai–Tibetan Plateau, China. Minerals. 2020; 10(11):950. https://doi.org/10.3390/min10110950
Chicago/Turabian StyleNorbu, Namkha, Jinchao Li, Yuegao Liu, Qunzi Jia, and Huilei Kong. 2020. "Tectonomagmatic Setting and Cu-Ni Mineralization Potential of the Gayahedonggou Complex, Northern Qinghai–Tibetan Plateau, China" Minerals 10, no. 11: 950. https://doi.org/10.3390/min10110950
APA StyleNorbu, N., Li, J., Liu, Y., Jia, Q., & Kong, H. (2020). Tectonomagmatic Setting and Cu-Ni Mineralization Potential of the Gayahedonggou Complex, Northern Qinghai–Tibetan Plateau, China. Minerals, 10(11), 950. https://doi.org/10.3390/min10110950