Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. High-Temperature Powder X-ray Diffraction
2.2.2. Thermal Analysis
2.2.3. Solid-State Nuclear Magnetic Resonance (NMR) at Increasing Temperature
3. Results
3.1. High-Temperature Powder X-ray Diffraction
3.1.1. Carbonate Members: Quintinite, Hydrotalcite, and Stichtite
3.1.2. Chlorine Member: Iowaite
3.1.3. Reversibility Check
3.2. Thermal Analysis
3.2.1. Carbonate Members: Quintinite, Hydrotalcite, and Stichtite
3.2.2. Chlorine Member: Iowaite
3.2.3. Annealed Samples
3.3. Solid-State Nuclear Magnetic Resonance at Increasing Temperature
4. Discussion
4.1. The Influence of Cation Identity and Cation Ratio: M2+:M3+ = 2:1 and 3:1 on Thermal Behavior
4.2. The Influence of Interlayer Species on High-Temperature Behavior
- From 200 to 380–420 °C dehydroxylation and decarbonization (the loss of OH groups associating with metal-hydroxide layer and interlayer carbonate) starting with a sharp contraction of d00n-value to 6.3–6.5 Å, i.e., formation of a high-temperature “collapsed” modification. The structural changes are reversible at least up to 300 °C. The partial change of Al coordination is recorded from 300 °C, indicating that some decomposition or irreversible transformation of the LDH has started. The amount of tetrahedrally coordinated Al increases with temperature, but remains minor relative to octahedrally coordinated Al.
- >~400 °C amorphization of quintinite, hydrotalcite, and stichtite. The reflections of periclase-type phase appear almost simultaneously with amorphization, whereas reflections of spinel-type phase appear at higher temperature.
- 25–200 °C dehydration (the loss of interlayer water) accompanied by the contraction of the d00n-value from 8.0 to 7.5 Å.
- 200–320 °C thermal behavior of high-temperature dehydrated modification without changes in d00n-value which remains at 7.5 Å. The dehydroxylation and dechlorination (the loss of OH groups associating with metal-hydroxide layer and interlayer Cl) precedes the mineral decomposition. The structural changes related to dehydration are reversible, at least up to 300 °C.
- >~320 °C amorphization of iowaite. The reflections of periclase-type phase appear almost simultaneously with amorphization, whereas reflections of spinel-type phase appear at higher temperature.
4.3. Comparison of Synthetic and Natural Samples
4.3.1. Quintinite and Hydrotalcite: Mg-Al-CO3 Series
4.3.2. Stichtite
4.3.3. Iowaite
4.3.4. Water Content and Its Role
4.4. Insight from Natural Quintinite into LDH Structure and Thermal Decomposition Events
5. Conclusions
- In the range from 25 to 170–210 °C quintinite, hydrotalcite, and stichtite (carbonate members of the LDH family) demonstrated contraction of the basal d00n-value of 0.1–0.3 Å, followed by a sharp contraction of 1.0–1.1 Å at T > 170–210 °C. The high-temperature modified states were stable up to 380–420 °C, before decomposing to an amorphous phase. The structural changes are reversible at least up to 300 °C. The partial change of Al coordination is recorded from 300 °C, indicating that some decomposition or irreversible transformation of the LDH has started. The amount of tetrahedrally coordinated Al increases with temperature, but remains minor relative to octahedrally coordinated Al.
- Iowaite (chlorine member of the family) was stable up to 320 °C and transformed to an amorphous phase at higher temperature. Iowaite experiences continuous contraction of the d00n-value of up to 0.5 Å in the temperature range 25–200 °C, reaching a plateau at a temperature range of 200–320 °C. The structural changes are reversible at least up to 300 °C.
- Thermal analysis of samples annealed at 125 °C shows that carbonate members do not have a tendency to form dehydrated phases, whereas for iowaite a dehydrated phase having 0.9 apfu lesser water content as in the initial sample has been obtained.
- The thermal behavior and transformation of LDHs depends on the nature of the interactions between the interlayer species and water molecules to the H atoms of the metal-hydroxide layer. The scheme of hydrogen bonding for carbonate LDHs determined destabilization of carbonate ion since dehydration step that results in abrupt structural transformations to high-temperature “collapsed” phase. For LDH with interlayer Cl, the continuous loss of H2O molecules is compensated (in terms of bonding) by shortening of the distance between donor (Cl) and acceptor (H) atoms.
- The structural water is lost at the first endotherm, and the second endotherm is the carbonate and hydroxyl group removal, the calculated mass loss of 12.05% (measured 14.3%) and 31.85% (measured 29.7%), respectively. It seems reasonable to speculate that to account for this discrepancy some small fraction of the carbonate reacts with certain layer hydroxyl groups during the first thermal event, alongside removal of structural water, thereby increasing the first mass loss through removal of CO2, and/or further H2O, as observed in the experiment, and decreasing the second mass loss, as was also observed.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serna, C.J.; Rendon, J.L.; Iglesias, J.E. Crystal-chemical study of layered [Al2Li(OH)6]+⋅nH2O. Clays. Clay. Miner. 1982, 30, 180–184. [Google Scholar] [CrossRef]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite type anionic clays: Preparation, properties and applications. Catal. Today. 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Génin, J.M.R.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Miner. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef] [PubMed]
- Matusinovic, Z.; Wilkie, C.A. Fire retardancy and morphology of layered double hydroxide nanocomposites: A review. J. Mater. Chem. 2012, 22, 18701–18704. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Wang, Q.; Wilkie, A.; Hare, D.O. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2014, 2, 10996–11016. [Google Scholar] [CrossRef]
- Albuquerque, D.W.S.; Costa, E.S.; de Miranda, J.L.; Gonçalves, R.D.; de Moura, L.C. Evaluation of the Behavior of Hydrotalcite Like-Materials for CO2 Capture. Appl. Mech. Mater. 2016, 830, 3–10. [Google Scholar] [CrossRef]
- Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol. 2012, 2, 1113–1125. [Google Scholar] [CrossRef]
- Lv, L.; He, J.; Wei, M.; Evans, D.G.; Duan, X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Res. 2006, 40, 735–743. [Google Scholar] [CrossRef]
- Ni, Z.M.; Xia, S.J.; Wang, L.G.; Xing, F.F.; Pan, G.X. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies. J. Colloid Interface Sci. 2007, 316, 284–291. [Google Scholar] [CrossRef]
- El Gaini, L.; Lakraimi, M.; Sebbar, E.; Meghea, A.; Bakasse, M. Removal of indigo carmine dye from water to Mg–Al–CO3-calcined layered double hydroxides. J. Hazard. Mater. 2009, 161, 627–632. [Google Scholar] [CrossRef]
- Chetia, M.; Goswamee, R.L.; Banerjee, S.; Chatterjee, S.; Singh, L.; Srivastava, R.B.; Sarma, H.P. Arsenic removal from water using calcined Mg–Al layered double hydroxide. Clean Technol. Envir. 2012, 14, 21–27. [Google Scholar] [CrossRef]
- Cai, P.; Zheng, H.; Wang, C.; Ma, H.; Hu, J.; Pu, Y.; Liang, P. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides. J. Hazard. 2012, 213, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Bera, P.; Rajamathi, M.; Hegde, M.S.; Kamath, P.V. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites. B. Mater. Sci. 2000, 23, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Kanezaki, E. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ion. 1998, 106, 279–284. [Google Scholar] [CrossRef]
- Valente, J.S.; Rodriguez-Gattorno, G.; Valle-Orta, M.; Torres-Garcia, E. Thermal decomposition kinetics of MgAl layered double hydroxides. Mater. Chem. Phys. 2012, 133, 621–629. [Google Scholar] [CrossRef]
- Yang, W.; Kim, Y.; Liu, P.K.; Sahimi, M.; Tsotsis, T.T. A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, 2945–2953. [Google Scholar] [CrossRef]
- Thomas, G.S.; Radha, A.V.; Kamath, P.V.; Kannan, S. Thermally Induced Polytype Transformations among the Layered Double Hydroxides (LDHs) of Mg and Zn with Al. Phys. Chem. 2006, 110, 12365–12371. [Google Scholar] [CrossRef]
- Thomas, G.S.; Kamath, P.V.; Kannan, S. Variable Temperature PXRD Studies of LiAl2(OH)6X*H2O (X = Cl, Br): Observation of Disorder→ Order Transformation in the Interlayer. Phys. Chem. C. 2007, 111, 18980–18984. [Google Scholar] [CrossRef]
- Budhysutanto, W.N.; van Agterveld, D.; Schomaker, E.; Talma, A.G.; Kramer, H.J.M. Stability and transformation kinetics of 3R1 and 3R2 polytypes of Mg–Al layered double hydroxides. Appl. Clay Sci. 2010, 48, 208–213. [Google Scholar] [CrossRef]
- Cherepanova, S.; Leont’eva, N.; Drozdov, V.; Doronin, V. Thermal evolution of Mg–Al and Ni–Al layered double hydroxides: The structure of the dehydrated phase. Acta Cryst. A. 2016, 72, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.N.; Maiya, P.S.; Jayaramu, M.; Sreenivasa, S. Thermal evolution of polytypic modifications during thermal decomposition studies of magnesium aluminium based layered double hydroxide. Int. J. Sci. Res. 2012, 1, 65–67. [Google Scholar]
- Leont’eva, N.N.; Cherepanova, S.V.; Drozdov, V.A. Thermal decomposition of layered double hydroxides Mg-Al, Ni-Al, Mg-Ga: Structural features of hydroxide, dehydrated, and oxide phases. J. Struct. Chem. 2014, 55, 1326–1341. [Google Scholar] [CrossRef]
- Costa, D.G.; Rocha, A.B.; Souza, W.F.; Chiaro, S.S.X.; Leitão, A.A. Ab initio study of reaction pathways related to initial steps of thermal decomposition of the layered double hydroxide compounds. J. Phys. Chem. C. 2012, 116, 13679–13687. [Google Scholar] [CrossRef]
- Shimamura, A.; Kanezaki, E.; Jones, M.I.; Metson, J.B. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides. J. Solid State Chem. 2012, 186, 116–123. [Google Scholar] [CrossRef]
- Vaysse, C.; Guerlou-Demourgues, L.; Delmas, C. Thermal evolution of carbonate pillared layered hydroxides with (Ni, L)(L = Fe, Co) based slabs: Grafting or nongrafting of carbonate anions? Inorg. Chem. 2002, 41, 6905–6913. [Google Scholar] [CrossRef]
- Zhang, S.T.; Dou, Y.; Zhou, J.; Pu, M.; Yan, H.; Wei, M.; Evans, D.G.; Duan, X. DFT-Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides. Chem. Phys. Chem. 2016, 17, 2754–2766. [Google Scholar] [CrossRef]
- Meng, Q.; Yan, H. Theoretical study on the topotactic transformation and memory effect of M (II) M (III)-layered double hydroxides. Mol. Simulat. 2017, 43, 1338–1347. [Google Scholar] [CrossRef]
- Lyu, P.; Ertl, M.; Heard, C.J.; Grajciar, L.; Radha, A.V.; Martin, T.; Breu, J.; Nachtigall, P. Structure Determination of the Oxygen Evolution Catalyst Mössbauerite. J. Phys. Chem. C. 2019, 123, 25157–25165. [Google Scholar] [CrossRef]
- Sotiles, A.R.; Gomez, N.A.G.; Wypych, F. Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M62+Al3(OH)18][A+(SO4)2]·12H2O (M2+ = Mn, Mg, Zn; A.+ = Li, Na, K). J. Therm. Anal. Calorim. 2019, 140, 1–9. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Yakovenchuk, V.N.; Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Mikhailova, J.A. Crystal chemistry of natural layered double hydroxides. 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline massif, Kola peninsula, Russia. Miner. Mag. 2018, 82, 329–346. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Greenwell, H.C. Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. Miner. Mag. 2019, 83, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Zhitova, E.S.; Pekov, I.V.; Chukanov, N.V.; Yapaskurt, V.O.; Bocharov, V.N. Minerals of the stichtite-pyroaurite-iowaite-woodallite system from serpentinites of Terektinsky range, Altay Mountains, Russia. Russ. Geol. Geoph. 2020, 61, 36–46. [Google Scholar]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A. Correlation between the d-value and the M2+:M3+ cation ratio in Mg–Al–CO3 layered double hydroxides. Appl. Clay Sci. 2016, 130, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.S.W.; Dunn, P.J.; Pritchard, R.G.; Paar, W.H. Iowaite, a re-investigation. Miner. Mag. 1994, 58, 79–85. [Google Scholar] [CrossRef]
- Hudson, M.J.; Carlino, S.; Apperley, D.C. Thermal conversion of a layered (Mg/Al) double hydroxide to the oxide. J. Mater. Chem. 1995, 5, 323–329. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yapaskurt, V.O. Crystal Chemistry of Chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a Natural Layered Double Hydroxide. Minerals 2019, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Zhitova, E.S.; Pekov, I.V.; Chaikovskiy, I.I.; Chirkova, E.P.; Yapaskurt, V.O.; Bychkova, Y.V.; Belakovskiy, D.I.; Chukanov, N.V.; Zubkova, N.V.; Krivovichev, S.V.; et al. Dritsite, Li2Al4(OH)12Cl2·3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals 2019, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Bookin, A.S.; Drits, V.A. Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their dffraction patterns. Clay Clay Min. 1993, 41, 551–557. [Google Scholar] [CrossRef]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry, 2nd ed.; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Uvarova, Y.A.; Sokolova, E.; Hawthorne, F.C.; Karpenko, V.V.; Agakhanov, A.A.; Pautov, L.A. The crystal chemistry of the “nickelalumite”–group minerals. Can. Miner. 2005, 43, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Madej, D.; Tyrała, K. In Situ Spinel Formation in a Smart Nano-Structured Matrix for No-Cement Refractory Castables. Materials 2020, 13, 1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trave, A.; Selloni, A.; Goursot, A.; Tichit, D.; Weber, J. First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays. J. Phys. Chem. B. 2002, 106, 12291–12296. [Google Scholar] [CrossRef]
- Stanimirova, T.; Piperov, N.; Petrova, N.; Kirov, G. Thermal evolution of Mg-Al-CO3 hydrotalcites. Clay Miner. 2004, 39, 177–191. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Zhitova, E.S.; Krivovichev, S.V.; Zolotarev, A.A.; Britivn, S.N.; Yakovenchuk, V.N.; Krzhizhanovskaya, M.G. Thermal «memory effect» in quintinite polytypes-2H,-3R, and-1M. Zapiski RMO 2015, 144, 109–119. [Google Scholar]
- Mondal, S.K.; Baidya, T.K. Stichtite [Mg6Cr2(OH)6CO3·4H2O] in Nausahi ultramafites, Orissa, India-its transformation at elevated temperatures. Miner. Mag. 1996, 58, 69–78. [Google Scholar]
- Frost, R.L.; Bouzaid, J.M. Thermal decomposition of stichtite. J. Therm. Anal. Calorim. 2007, 89, 133–135. [Google Scholar]
- Frost, R.L.; Bouzaid, J.; Musumeci, A.W.; Kloprogge, J.T.; Martens, W.N. Thermal decomposition of the synthetic hydrotalcite iowaite. J. Therm. Anal. Calorim. 2006, 86, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Bouzaid, J.M.; Martens, W.N. Thermal decomposition of the composite hydrotalcites of iowaite and woodallite. J. Therm. Anal. Calorim. 2007, 89, 511–519. [Google Scholar]
- Gusmano, G.; Nunziante, P.; Traversa, E.; Chiozzini, G. The mechanism of MgAl2O4 spinel formation from the thermal decomposition of coprecipitated hydroxides. J. Eur. Ceram. Soc. 1991, 7, 31–39. [Google Scholar] [CrossRef]
- Cadars, S.; Layrac, G.; Gérardin, C.; Deschamps, M.; Yates, J.R.; Tichit, D.; Massiot, D. Identification and quantification of defects in the cation ordering in Mg/Al layered double hydroxides. Chem. Mater. 2011, 23, 2821–2831. [Google Scholar] [CrossRef]
- Sideris, P.J.; Nielsen, U.G.; Gan, Z.; Grey, C.P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 321, 113–117. [Google Scholar] [CrossRef] [Green Version]
Mineral | Locality | Chemical Formula | Polytype | Reference |
---|---|---|---|---|
Quintinite and quint125 * | Kovdor, Kola peninsula, Russia | [Mg4.1Al1.9(OH)12][(CO3)0.95(H2O)3] | 1M | [31] |
Hydrotalcite and htc125 * | Snarum, Modum, Norway | [Mg6Al2(OH)16][(CO3)(H2O)4] | mixture of 3R (dominant) and 2H (subordinate) | [32] |
Stichtite | Terektinsky range, Altai, Russia | [Mg6(Cr,Fe3+)2(OH)16][(CO3)(H2O)4] | [33] | |
Iowaite and iow125 * | [Mg6(Fe3+,Cr)2(OH)16][Cl2(H2O)4] | [33] |
Constituent, wt.% | Quintinite 1 | Hydrotalcite 2 | Stichtite 3 | Iowaite 4 |
---|---|---|---|---|
MgO | 33.82 | 40.04 | 37.99 | 38.06 |
Al2O3 | 19.58 | 15.9 | 2.14 | 2.01 |
Fe2O3 | n.d. | 1.08 | 8.94 | 10.45 |
Cr2O3 | n.d. | n.d. | 11.43 | 9.16 |
Σoxides | 53.40 | 57.02 | 60.05 | 59.68 |
H2O (as OH groups) | 22.05 | 23.77 | 22.45 | 22.51 |
H2O (molecular) | 11.03 | 11.87 | 11.22 | 10.08 * |
CO2 | 8.50 | 7.2 | 6.67 | n.d. |
Cl | n.d. | n.d. | 0.03 | 9.97 |
Σvolatile | 41.58 | 42.84 | 40.37 | 42.56 |
Reference | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitova, E.S.; Greenwell, H.C.; Krzhizhanovskaya, M.G.; Apperley, D.C.; Pekov, I.V.; Yakovenchuk, V.N. Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup. Minerals 2020, 10, 961. https://doi.org/10.3390/min10110961
Zhitova ES, Greenwell HC, Krzhizhanovskaya MG, Apperley DC, Pekov IV, Yakovenchuk VN. Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup. Minerals. 2020; 10(11):961. https://doi.org/10.3390/min10110961
Chicago/Turabian StyleZhitova, Elena S., H. Chris Greenwell, Mariya G. Krzhizhanovskaya, David C. Apperley, Igor V. Pekov, and Victor N. Yakovenchuk. 2020. "Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup" Minerals 10, no. 11: 961. https://doi.org/10.3390/min10110961
APA StyleZhitova, E. S., Greenwell, H. C., Krzhizhanovskaya, M. G., Apperley, D. C., Pekov, I. V., & Yakovenchuk, V. N. (2020). Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3- and Cl-Members of the Hydrotalcite Supergroup. Minerals, 10(11), 961. https://doi.org/10.3390/min10110961