Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods and Analysis
3. Results and Discussion
3.1. Adsorption Mechanism between Mineral Surfaces and Flotation Reagents
3.2. Characterization of the Tungsten Ore from Sangdong Mine in South Korea
3.3. Effect of Flotation Reagent on the Selective Depression of Ca-Bearing Minerals in Real Ore System
3.4. Locked Cycle Test (LCT)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X. Beneficiation studies of tungsten ores—A review. Miner. Eng. 2018, 125, 111–119. [Google Scholar] [CrossRef]
- Yan, W.; Liu, C.; Ai, G.; Feng, Q.; Zhang, W. Flotation separation of scheelite from calcite using mixed collectors. Int. J. Miner. Process. 2017, 169, 106–110. [Google Scholar] [CrossRef]
- Bo, F.; Xianping, L.; Jinqing, W.; Pengcheng, W. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng. 2015, 80, 45–49. [Google Scholar] [CrossRef]
- Ahmad Hamid, S.; Alfonso, P.; Oliva, J.; Anticoi, H.; Guasch, E.; Hoffmann Sampaio, C.; Garcia-Vallès, M.; Escobet, T. Modeling the Liberation of Comminuted Scheelite Using Mineralogical Properties. Minerals 2019, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Dong, L.; Jiao, F.; Qin, W.; Wei, Q. Use of Sodium Hexametaphosphate and Citric Acid Mixture as Depressant in the Flotation Separation of Scheelite from Calcite. Minerals 2019, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Hu, Y.; Sun, W.; Gao, Z.; Liu, R. Utilization of Sodium Hexametaphosphate for Separating Scheelite from Calcite and Fluorite Using an Anionic–Nonionic Collector. Minerals 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Fu, J.; Han, H.; Sun, W.; Yue, T.; Wang, L.; Sun, L. A Highly Selective Reagent Scheme for Scheelite Flotation: Polyaspartic Acid and Pb–BHA Complexes. Minerals 2020, 10, 561. [Google Scholar] [CrossRef]
- Abdalla, M.A.M.; Peng, H.; Younus, H.A.; Wu, D.; Abusin, L.; Shao, H. Effect of synthesized mustard soap on the scheelite surface during flotation. Colloids Surf. Physicochem. Eng. Aspects 2018, 548, 108–116. [Google Scholar] [CrossRef]
- Choi, W.; Park, C.; Song, Y.; Park, C.; Kim, H.; Lee, C. Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach. Minerals 2020, 10, 678. [Google Scholar] [CrossRef]
- Klepper, M.R. The Sangdong tungsten deposit, southern Korea. Econ. Geol. 1947, 42, 465–477. [Google Scholar] [CrossRef]
- Deng, R.; Yang, X.; Hu, Y.; Ku, J.; Zuo, W.; Ma, Y. Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite. Miner. Eng. 2018, 118, 133–140. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. Selective depressive effect of sodium fluorosilicate on calcite during scheelite flotation. Miner. Eng. 2019, 131, 262–271. [Google Scholar] [CrossRef]
- Feng, B.; Guo, W.; Peng, J.; Zhang, W. Separation of scheelite and calcite using calcium lignosulphonate as depressant. Sep. Purif. Technol. 2018, 199, 346–350. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, Y.; Han, H.; Sun, W.; Wang, R.; Wang, J. Selective flotation of scheelite from calcite using Al-Na2SiO3 polymer as depressant and Pb-BHA complexes as collector. Miner. Eng. 2018, 120, 29–34. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Yin, Z.; Wang, J.; Hu, Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2018, 512, 39–46. [Google Scholar] [CrossRef]
- Han, H.; Hu, Y.; Sun, W.; Li, X.; Cao, C.; Liu, R.; Yue, T.; Meng, X.; Guo, Y.; Wang, J.; et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice. Int. J. Miner. Process. 2017, 159, 22–29. [Google Scholar] [CrossRef]
- Meng, Q.-Y.; Feng, Q.-M.; Ou, L.-M. Effect of temperature on floatability and adsorption behavior of fine wolframite with sodium oleate. J. Cent. South Univ. 2018, 25, 1582–1589. [Google Scholar] [CrossRef]
- Baek, S.; Jeon, H. Application of Jig Separation for Pre-Concentration of Low-Grade Scheelite Ore. Mater. Trans. 2018, 59, 494–498. [Google Scholar] [CrossRef]
- Kupka, N.; Rudolph, M. Froth flotation of scheelite–A review. Int. J. Min. Sci. Technol. 2018, 28, 373–384. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, C.; Yin, W.; Luo, B. An investigation of the mechanism of using iron chelate as a collector during scheelite flotation. Miner. Eng. 2019, 131, 146–153. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, G.; Zhong, H.; Wang, S.; Liu, G. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem. 2016, 33, 131–141. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Gu, G.-H.; Wu, X.-B.; Zhao, K.-I. Selective depression behavior of guar gum on talc-type scheelite flotation. Int. J. Min. Metall. Mater. 2017, 24, 857–862. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, Y.; Han, H.; Sun, W.; Wang, R.; Sun, W.; Wang, J.; Gao, Z.; Wang, L.; Zhang, C.; et al. Selective Separation of Scheelite from Calcite by Self-Assembly of H2SiO3 Polymer Using Al3+ in Pb-BHA Flotation. Minerals 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Kupka, N.; Babel, B.; Rudolph, M. The Potential Role of Colloidal Silica as a Depressant in Scheelite Flotation. Minerals 2020, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Filippov, L.O.; Foucaud, Y.; Filippova, I.V.; Badawi, M. New reagent formulations for selective flotation of scheelite from a skarn ore with complex calcium minerals gangue. Miner. Eng. 2018, 123, 85–94. [Google Scholar] [CrossRef]
- Kupka, N.; Rudolph, M. Role of sodium carbonate in scheelite flotation–A multi-faceted reagent. Miner. Eng. 2018, 129, 120–128. [Google Scholar] [CrossRef]
- Amarante, M.M. Scheelite Flotation from Tarouca Mine Ores AU–Martins, J.I. Miner. Process. Extr. Metall. Rev. 2013, 34, 367–386. [Google Scholar]
- Liu, C.; Feng, Q.; Zhang, G.; Chen, W.; Chen, Y. Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int. J. Miner. Process. 2016, 157, 210–215. [Google Scholar] [CrossRef]
- Han, Y.; Han, S.; Kim, B.; Yang, J.; Choi, Y.; Kim, K.; You, K.-S.; Kim, H. Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents. J. Ind. Eng. Chem. 2019, 70, 107–115. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Han, S.; Han, Y.; Park, J. Silanol-rich ordered mesoporous silica modified thiol group for enhanced recovery performance of Au(III) in acidic leachate solution. Chem. Eng. J. 2018, 351, 1027–1037. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Jung, M.; Han, S.; Kim, S.; Jeon, H. Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration. Langmuir 2020, 36, 10331–10340. [Google Scholar] [CrossRef] [PubMed]
- Vinnett, L.; da Silva, G.R.; Marion, C.; Carrasco, C.; Waters, K.E. The use of enrichment ratios to support kinetic studies in flotation. Miner. Eng. 2019, 144, 106054. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Hou, B.; Ye, J.; Mao, S.; Li, X. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol. 2017, 318, 224–229. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. Activation effect of lead ions on scheelite flotation: Adsorption mechanism, AFM imaging and adsorption model. Sep. Purif. Technol. 2019, 209, 955–963. [Google Scholar] [CrossRef]
- Jia, W.-H.; Qin, W.-Q.; Chen, C.; Zhu, H.-I.; Jiao, F. Collecting performance of vegetable oils in scheelite flotation and differential analysis. J. Cent. South Univ. 2019, 26, 787–795. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2016, 154, 10–15. [Google Scholar] [CrossRef]
- Marinakis, K.I.; Shergold, H.L. Influence of sodium silicate addition on the adsorption of oleic acid by fluorite, calcite and barite. Int. J. Miner. Process. 1985, 14, 177–193. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, Y.; Sun, W.; Drelich, J.W. Surface-Charge Anisotropy of Scheelite Crystals. Langmuir 2016, 32, 6282–6288. [Google Scholar] [CrossRef]
- Lu, Y.; Drelich, J.; Miller, J.D. Oleate Adsorption at an Apatite Surface Studied by Ex-Situ FTIR Internal Reflection Spectroscopy. J. Colloid Interface Sci. 1998, 202, 462–476. [Google Scholar] [CrossRef]
- Huggins, M.L. Atomic Radii. IV. Dependence of Interatomic Distance on Bond Energy1. J. Am. Chem. Soc. 1953, 75, 4126–4133. [Google Scholar] [CrossRef]
- Cooke, S.R.B. Minerals Beneficiation–The Flotation of Quartz Using Calcium Ion as ivator. Trans. Am. Inst. Min. Metall. Pet. Eng. 1950, 184, 306. [Google Scholar]
- Miller, J.D.; Hiskey, J.B. Electrokinetic behavior of fluorite as influenced by surface carbonation. J. Colloid Interface Sci. 1972, 41, 567–573. [Google Scholar] [CrossRef]
- Gao, Z.; Bai, D.; Sun, W.; Cao, X.; Hu, Y. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng. 2015, 72, 23–26. [Google Scholar] [CrossRef]
Elements | WO3 | SiO2 | CaO | Fe2O3 | Al2O3 | MgO | K2O | TiO2 | Na2O | P2O5 | LOI. 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
% | 0.41 | 57.20 | 13.61 | 10.48 | 6.79 | 3.05 | 3.19 | 0.97 | 0.62 | 0.30 | 2.72 |
Cycle | Grade (WO3%) | ER | Recovery (%) | Yield (%) |
---|---|---|---|---|
1 | 67.51 | 164.66 | 81.24 | 0.68 |
2 | 72.25 | 176.22 | 85.16 | 0.77 |
3 | 71.94 | 175.46 | 83.78 | 0.75 |
4 | 71.17 | 173.59 | 83.45 | 0.73 |
5 | 71.23 | 173.73 | 83.37 | 0.71 |
6 | 71.2 | 173.66 | 83.29 | 0.72 |
Average (4–6) | 71.2 | 173.66 | 83.37 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Baek, S.-H.; Han, Y.; Jeon, H.-S. Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development. Minerals 2020, 10, 971. https://doi.org/10.3390/min10110971
Kim S, Baek S-H, Han Y, Jeon H-S. Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development. Minerals. 2020; 10(11):971. https://doi.org/10.3390/min10110971
Chicago/Turabian StyleKim, Seongmin, Sang-Ho Baek, Yosep Han, and Ho-Seok Jeon. 2020. "Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development" Minerals 10, no. 11: 971. https://doi.org/10.3390/min10110971
APA StyleKim, S., Baek, S. -H., Han, Y., & Jeon, H. -S. (2020). Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development. Minerals, 10(11), 971. https://doi.org/10.3390/min10110971