Magma Plumbing System of Emeishan Large Igneous Province at the End-Permian: Insights from Clinopyroxene Compositional Zoning and Thermobarometry
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Techniques
4. Results
4.1. Petrography
4.2. Whole-Rock Major and Trace Element Compositions
4.3. Clinopyroxene Phenocryst Compositions
5. Discussion
5.1. Petrogenetic Implications from Zoned Clinopyroxene Phenocrysts
5.2. Clinopyroxene-Melt Thermobarometry
5.3. Magma Plumbing System in the ELIP
6. Conclusions
- (1)
- Cpx-liquid thermobarometry suggests that the staging chamber(s) beneath the ELIP spread across the middle to upper crust. Cpx phenocryst crystallization for the high-Mg basalts took place mainly in the middle crust, and those for the low-Mg basalts happened in the upper crust.
- (2)
- Similar to the giant layered mafic-ultramafic intrusions (e.g., Panzhihua intrusion in ELIP), the high-Mg basalts experienced multistage magma replenishments in the deep-staging chamber(s). This suggests that magma replenishments played a key role in generating the ELIP magma pluming system.
- (3)
- Sector zoning of Cpx in the picrites indicate that the crystals had grown slowly under low-degree undercooling conditions. The compress growth of the crystals were also nearly-equilibrium conditions. This stable environment may induce prolonged fractionation of the high-Mg magmas to form the low-Mg basalts and/or mafic-ultramafic intrusions in the shallow staging magma chamber(s).
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ernst, R.E.; Jowitt, S.M. Large igneous provinces (LIPs) and metallogeny. Soc. Econ. Geol. Spec. Publ. 2013, 17, 17–51. [Google Scholar]
- Bai, Z.-J.; Zhong, H.; Hu, R.-Z.; Zhu, W.-G.; Hu, W.-J. Composition of the Chilled Marginal Rocks of the Panzhihua Layered Intrusion, Emeishan Large Igneous Province, SW China: Implications for Parental Magma Compositions, Sulfide Saturation History and Fe–Ti Oxide Mineralization. J. Pet. 2019, 60, 619–648. [Google Scholar] [CrossRef]
- Chung, S.-L.; Jahn, B.-M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 1995, 23, 889–892. [Google Scholar] [CrossRef]
- Song, X.-Y.; Keays, R.R.; Xiao, L.; Qi, H.-W.; Ihlenfeld, C. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem. Geol. 2009, 262, 246–261. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, M.-F.; Qi, L. Permian flood basalts and mafic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chem. Geol. 2007, 243, 317–343. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Shen, N.-P.; Song, X.-Y.; Ripley, E.M.; Li, C.; Chen, L.-M. An integrated chemical and oxygen isotopic study of primitive olivine grains in picrites from the Emeishan Large Igneous Province, SW China: Evidence for oxygen isotope heterogeneity in mantle sources. Geochim. Cosmochim. Acta 2017, 215, 263–276. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, J.; Saunders, A.D.; Ai, Y.; Li, Y.; Zhao, L. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 2009, 113, 369–392. [Google Scholar] [CrossRef]
- Zhong, H.; Qi, L.; Hu, R.; Zhou, M.-F.; Gou, T.-Z.; Zhu, W.-G.; Liu, B.-G.; Chu, Z.-Y. Rhenium–osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochim. Cosmochim. Acta 2011, 75, 1621–1641. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Malpas, J.; Song, X.-Y.; Robinson, P.T.; Sun, M.; Kennedy, A.K.; Lesher, C.; Keays, R.R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Yan, D.-P.; Kennedy, A.K.; Li, Y.; Ding, J. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Yan, T.; Putirka, K.; Hu, R.; Li, C. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting. Am. Miner. 2015, 100, 2509–2517. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral Textures and Zoning as Evidence for Open System Processes. Rev. Miner. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Faure, F.; Schiano, P. Crystal morphologies in pillow basalts: Implications for mid-ocean ridge processes. Earth Planet. Sci. Lett. 2004, 220, 331–344. [Google Scholar] [CrossRef]
- Ubide, T.; Mollo, S.; Zhao, J.-X.; Nazzari, M.; Scarlato, P. Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochim. Cosmochim. Acta 2019, 251, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Welsch, B.; Hammer, J.; Baronnet, A.; Jacob, S.; Hellebrand, E.; Sinton, J. Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib. Miner. Pet. 2015, 171, 1–19. [Google Scholar] [CrossRef]
- Ganne, J.; Bachmann, O.; Feng, X. Deep into magma plumbing systems: Interrogating the crystal cargo of volcanic deposits. Geology 2018, 46, 415–418. [Google Scholar] [CrossRef]
- Ginibre, C.; Wörner, G.; Kronz, A. Crystal Zoning as an Archive for Magma Evolution. Elements 2007, 3, 261–266. [Google Scholar] [CrossRef]
- Hu, J.-H.; Song, X.-Y.; He, H.-L.; Zheng, W.-Q.; Yu, S.-Y.; Chen, L.-M.; Lai, C. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China. J. Asian Earth Sci. 2018, 154, 342–353. [Google Scholar] [CrossRef]
- Humphreys, M.C.S.; Blundy, J.; Sparks, R. Magma Evolution and Open-System Processes at Shiveluch Volcano: Insights from Phenocryst Zoning. J. Pet. 2006, 47, 2303–2334. [Google Scholar] [CrossRef] [Green Version]
- Kahl, M.; Chakraborty, S.; Costa, F.; Pompilio, M. Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: An example from Mt. Etna. Earth Planet. Sci. Lett. 2011, 308, 11–22. [Google Scholar] [CrossRef]
- Morgan, D.; Blake, S. Magmatic residence times of zoned phenocrysts: Introduction and application of the binary element diffusion modelling (BEDM) technique. Contrib. Miner. Pet. 2005, 151, 58–70. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and Barometers for Volcanic Systems. Rev. Miner. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- De Maisonneuve, C.B.; Costa, F.; Huber, C.; Vonlanthen, P.; Bachmann, O.; Dungan, M.A.; De Maisonneuve, C.B. How do olivines record magmatic events? Insights from major and trace element zoning. Contrib. Miner. Pet. 2016, 171. [Google Scholar] [CrossRef] [Green Version]
- Elardo, S.M.; Shearer, J.C.K. Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032. Am. Miner. 2014, 99, 355–368. [Google Scholar] [CrossRef]
- Costa, F. Time constraints from chemical equilibration in magmatic crystals. In Timescales of Magmatic Processes: From Core to Atmosphere; Dosseto, A., Turner, S.P., Van Orman, J.A., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 125–159. [Google Scholar]
- Feng, W.; Zhu, Y. Magmatic plumbing system beneath a fossil continental arc volcano in western Tianshan (NW China): Constraints from clinopyroxene and thermodynamic modelling. Lithos 2019, 105221. [Google Scholar] [CrossRef]
- Giacomoni, P.P.; Coltorti, M.; Bryce, J.G.; Fahnestock, M.F.; Guitreau, M. Mt. Etna plumbing system revealed by combined textural, compositional, and thermobarometric studies in clinopyroxenes. Contrib. Miner. Pet. 2016, 171. [Google Scholar] [CrossRef]
- Müller, T.; Dohmen, R.; Becker, H.W.; Ter Heege, J.H.; Chakraborty, S. Fe–Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Miner. Pet. 2013, 166, 1563–1576. [Google Scholar] [CrossRef]
- Van Orman, J.A.; Grove, T.L.; Shimizu, N. Rare earth element diffusion in diopside: Influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib. Miner. Pet. 2001, 141, 687–703. [Google Scholar] [CrossRef]
- Zhang, Y. Diffusion in Minerals and Melts: Theoretical Background. Rev. Miner. Geochem. 2010, 72, 5–59. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, D.; Dimanov, A. Diffusion in Pyroxene, Mica and Amphibole. Rev. Miner. Geochem. 2010, 72, 641–690. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Liang, Y. Ti diffusion in natural pyroxene. Geochim. Cosmochim. Acta 2012, 98, 31–47. [Google Scholar] [CrossRef]
- Downes, M.J. Sector and oscillatory zoning in calcic augites from M. Etna, Sicily. Contrib. Miner. Pet. 1974, 47, 187–196. [Google Scholar] [CrossRef]
- Kouchi, A.; Sugawara, Y.; Kashima, K.; Sunagawa, I. Laboratory growth of sector zoned clinopyroxenes in the system CaMgSi2O6-CaTiAl2O6. Contrib. Miner. Pet. 1983, 83, 177–184. [Google Scholar] [CrossRef]
- Lofgren, G.E.; Donaldson, C.H. Curved branching crystals and differentiation in comb-layered rocks. Contrib. Miner. Pet. 1975, 49, 309–319. [Google Scholar] [CrossRef]
- Mollo, S.; Hammer, J.E. Dynamic crystallization in magmas. EMU Notes Mineral. 2017, 16, 373–418. [Google Scholar]
- Schwandt, C.S.; McKay, G.A. Minor- and trace-element sector zoning in synthetic enstatite. Am. Miner. 2006, 91, 1607–1615. [Google Scholar] [CrossRef]
- Shearer, C.; Larsen, L. Sector-zoned aegirine from the Ilimaussaq alkaline intrusion, South Greenland: Implications for trace-element behavior in pyroxene. Am. Mineral. 1994, 79, 340–352. [Google Scholar]
- Shimizu, N. Trace element incorporation into growing augite phenocryst. Nat. Cell Biol. 1981, 289, 575–577. [Google Scholar] [CrossRef]
- Watson, E.B.; Liang, Y. A simple model for sector zoning in slowly grown crystals; implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am. Miner. 1995, 80, 1179–1187. [Google Scholar] [CrossRef]
- McKay, G.; Wagstaff, J.; Yang, S.-R. Clinopyroxene REE distribution coefficients for shergottites: The REE content of the Shergotty melt. Geochim. Cosmochim. Acta 1986, 50, 927–937. [Google Scholar] [CrossRef]
- Stock, M.J.; Bagnardi, M.; Neave, D.A.; MacLennan, J.; Bernard, B.; Buisman, I.; Gleeson, M.; Geist, D. Integrated Petrological and Geophysical Constraints on Magma System Architecture in the Western Galápagos Archipelago: Insights From Wolf Volcano. Geochem. Geophys. Geosystems 2018, 19, 4722–4743. [Google Scholar] [CrossRef]
- Watson, E.B. Surface enrichment and trace-element uptake during crystal growth. Geochim. Cosmochim. Acta 1996, 60, 5013–5020. [Google Scholar] [CrossRef]
- Lofgren, G.E.; Huss, G.R.; Wasserburg, G.J. An experimental study of trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects including sector zoning. Am. Miner. 2006, 91, 1596–1606. [Google Scholar] [CrossRef]
- Mollo, S.; Blundy, J.D.; Iezzi, G.; Scarlato, P.; Langone, A. The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib. Miner. Pet. 2013, 166, 1633–1654. [Google Scholar] [CrossRef]
- Ginibre, C.; Kronz, A.; Wörner, G. High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: New constraints on oscillatory zoning. Contrib. Miner. Pet. 2002, 142, 436–448. [Google Scholar] [CrossRef]
- Ginibre, C.; Wörner, G.; Kronz, A. Minor- and trace-element zoning in plagioclase: Implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib. Miner. Pet. 2002, 143, 300–315. [Google Scholar] [CrossRef]
- Pearce, T. Recent work on oscillatory zoning in plagioclase. In Feldspars and Their Reactions; Springer: Berlin, Germany, 1994; pp. 313–349. [Google Scholar]
- Stroncik, N.A.; Klügel, A.; Hansteen, T.H. The magmatic plumbing system beneath El Hierro (Canary Islands): Constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib. Miner. Pet. 2008, 157, 593–607. [Google Scholar] [CrossRef]
- Shore, M.; Fowler, A.D. Oscillatory zoning in minerals; a common phenomenon. Can. Mineral. 1996, 34, 1111–1126. [Google Scholar]
- Keiding, J.K.; Sigmarsson, O. Geothermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.-L.; Jahn, B.-M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Bai, Z.-J.; Zhong, H.; Li, C.; Zhu, W.-G.; He, D.-F.; Qi, L. Contrasting parental magma compositions for the Hongge and Panzhihua magmatic Fe-Ti-V oxide deposits, Emeishan large igneous province, SW China. Econ. Geol. 2014, 109, 1763–1785. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Chung, S.-L.; Kamenetsky, M.B.; Kuzmin, D.V. Picrites from the Emeishan Large Igneous Province, SW China: A Compositional Continuum in Primitive Magmas and their Respective Mantle Sources. J. Pet. 2012, 53, 2095–2113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Mahoney, J.J.; Mao, J.; Wang, F. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. J. Pet. 2006, 47, 1997–2019. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.R.; Thompson, G.M.; Song, X.; Wang, Y. Emeishan Basalts (SW China) and the ‘end-Guadalupian’ crisis: Magnetobiostratigraphic constraints. J. Geol. Soc. 2002, 159, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-Y.; Zhou, M.-F.; Hou, Z.-Q.; Cao, Z.-M.; Wang, Y.-L.; Li, Y. Geochemical Constraints on the Mantle Source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China. Int. Geol. Rev. 2001, 43, 213–225. [Google Scholar] [CrossRef]
- Yang, J.; Cawood, P.A.; Du, Y.; Condon, D.J.; Yan, J.; Liu, J.; Huang, Y.; Yuan, D. Early Wuchiapingian cooling linked to Emeishan basaltic weathering? Earth Planet. Sci. Lett. 2018, 492, 102–111. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.; Mei, H.; Zheng, Y.; He, B.; Pirajno, F. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume–lithosphere interaction. Earth Planet. Sci. Lett. 2004, 228, 525–546. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Qi, L.; Ripley, E.M. Controls on PGE fractionation in the Emeishan picrites and basalts: Constraints from integrated lithophile–siderophile elements and Sr–Nd isotopes. Geochim. Cosmochim. Acta 2012, 90, 12–32. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhi, X.; Chen, L.; Saunders, A.D.; Reichow, M.K. Re–Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth Planet. Sci. Lett. 2008, 276, 30–39. [Google Scholar] [CrossRef]
- Hanski, E.; Kamenetsky, V.S.; Luo, Z.; Xu, Y.-G.; Kuzmin, D.V. Primitive magmas in the Emeishan Large Igneous Province, southwestern China and northern Vietnam. Lithos 2010, 119, 75–90. [Google Scholar] [CrossRef]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Le Bas, M.J. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. J. Pet. 2000, 41, 1467–1470. [Google Scholar] [CrossRef] [Green Version]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks(Eds.), 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; p. 256. [Google Scholar]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geol. Assoc. Can. Short Course Notes 1996, 12, 113. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spéc. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of Pyroxenes. Miner. Pet. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Carracedo, J.C. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J. Volcanol. Geotherm. Res. 1999, 94, 1–19. [Google Scholar] [CrossRef]
- Pearce, T.H. The analysis of zoning in magmatic crystals with emphasis on olivine. Contrib. Miner. Pet. 1984, 86, 149–154. [Google Scholar] [CrossRef]
- Leung, I.S. Sector-zoned titanaugites: Morphology, crystal chemistry, and growth. Am. Mineral. 1974, 59, 127–138. [Google Scholar]
- Nakamura, Y. Origin of sector-zoning of igneous clinopyroxenes. Am. Mineral. 1973, 58, 986–990. [Google Scholar]
- Pearce, T.; Kolisnik, A. Observations of plagioclase zoning using interference imaging. Earth Sci. Rev. 1990, 29, 9–26. [Google Scholar] [CrossRef]
- Clague, D.A.; Dixon, J. Extrinsic controls on the evolution of Hawaiian ocean island volcanoes. Geochem. Geophys. Geosystems 2000, 1. [Google Scholar] [CrossRef]
- Arth, J.G. Behavior of trace elements during magmatic processes-a summary of theoretical models and their applications. J. Res. US Geol. Surv. 1976, 4, 41–47. [Google Scholar]
- Streck, M.J.; Dungan, M.A.; Malavassi, E.; Reagan, M.K.; Bussy, F. The role of basalt replenishment in the generation of basaltic andesites of the ongoing activity at Arenal volcano, Costa Rica: Evidence from clinopyroxene and spinel. Bull. Volcanol. 2002, 64, 316–327. [Google Scholar] [CrossRef]
- Putirka, K.; Condit, C.D. Cross section of a magma conduit system at the margin of the Colorado Plateau. Geology 2003, 31, 701. [Google Scholar] [CrossRef]
- Caprarelli, G.; Reidel, S.P. A clinopyroxene-basalt geothermobarometry perspective of Columbia Plateau (NW-USA) Miocene magmatism. Terra Nova 2005, 17, 265–277. [Google Scholar] [CrossRef]
- Barker, A.K.; Troll, V.R.; Carracedo, J.C.; Nicholls, P.A. The magma plumbing system for the 1971 Teneguía eruption on La Palma, Canary Islands. Contrib. Miner. Pet. 2015, 170, 1–21. [Google Scholar] [CrossRef]
- Hammer, J.; Jacob, S.; Welsch, B.; Hellebrand, E.; Sinton, J. Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry. Contrib. Miner. Pet. 2015, 171, 1–23. [Google Scholar] [CrossRef]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Miner. Pet. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Villiger, S.; Ulmer, P.; Müntener, O. Equilibrium and fractional crystallization experiments at 0• 7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J. Petrol. 2007, 48, 159–184. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib. Miner. Pet. 1999, 135, 151–163. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, J.; Tian, T.; Wang, X. Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications. Phys. Earth Planet. Inter. 2012, 76–87. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Pham, T.T.; Denyszyn, S.W.; Yeh, M.-W.; Tran, T.-A. Magmatic duration of the Emeishan large igneous province: Insight from northern Vietnam. Geology 2020, 48, 457–461. [Google Scholar] [CrossRef]
- Ferlito, C.; Coltorti, M.; Lanzafame, G.; Giacomoni, P.P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184, 447–455. [Google Scholar] [CrossRef]
- Valentine, G.A.; Gregg, T.K.P. Continental basaltic volcanoes—Processes and problems. J. Volcanol. Geotherm. Res. 2008, 177, 857–873. [Google Scholar] [CrossRef]
- Song, X.-Y.; Qi, H.-W.; Hu, R.-Z.; Chen, L.-M.; Yu, S.-Y.; Zhang, J.-F. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochem. Geophys. Geosystems 2013, 14, 712–732. [Google Scholar] [CrossRef]
- Hergt, J.; Peate, D.; Hawkesworth, C. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet. Sci. Lett. 1991, 105, 134–148. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Coffin, M.F. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; American Geophysical Union: Washington, DC, USA, 1997; Volume 100. [Google Scholar]
- Leterrier, J.; Maury, R.C.; Thonon, P.; Girard, D.; Marchal, M. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett. 1982, 59, 139–154. [Google Scholar] [CrossRef]
- Schweitzer, E.; Papike, J.; Bence, A.E. Statistical analysis of clinopyroxenes from deep-sea basalts. Am. Mineral. 1979, 64, 501–513. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-H.; Liu, J.-W.; Song, T.; Shi, B.-S. Magma Plumbing System of Emeishan Large Igneous Province at the End-Permian: Insights from Clinopyroxene Compositional Zoning and Thermobarometry. Minerals 2020, 10, 979. https://doi.org/10.3390/min10110979
Hu J-H, Liu J-W, Song T, Shi B-S. Magma Plumbing System of Emeishan Large Igneous Province at the End-Permian: Insights from Clinopyroxene Compositional Zoning and Thermobarometry. Minerals. 2020; 10(11):979. https://doi.org/10.3390/min10110979
Chicago/Turabian StyleHu, Jun-Hao, Jing-Wen Liu, Tao Song, and Bai-Shun Shi. 2020. "Magma Plumbing System of Emeishan Large Igneous Province at the End-Permian: Insights from Clinopyroxene Compositional Zoning and Thermobarometry" Minerals 10, no. 11: 979. https://doi.org/10.3390/min10110979
APA StyleHu, J. -H., Liu, J. -W., Song, T., & Shi, B. -S. (2020). Magma Plumbing System of Emeishan Large Igneous Province at the End-Permian: Insights from Clinopyroxene Compositional Zoning and Thermobarometry. Minerals, 10(11), 979. https://doi.org/10.3390/min10110979