Origin and Nature of Parental Magma and Sulfide Segregation of the Baixintan Magmatic Ni–Cu Sulfide Deposit, Southern Central Asian Orogenic Belt (CAOB), NW China: Insights from Mineral Chemistry of Chromite and Silicate Minerals
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Mineral Occurrence
4. Materials and Methods
5. Results
5.1. Chromite
5.2. Silicate Minerals
6. Discussion
6.1. Primary and Magmatic Chromite
6.2. Nature of Parental Magma
6.2.1. Temperature and Pressure
6.2.2. Oxygen Fugacity
6.2.3. Compositions
6.3. Origin of the Complex
6.3.1. Tectonic Setting
6.3.2. Mantle Source
6.4. Implications for Sulfide Segregation
6.4.1. Early Segregation
6.4.2. Later Segregation
6.4.3. Segregation Factors
7. Conclusions
- (1)
- Two types of chromite were identified in mafic-ultramafic rocks. Type I chromite occurs as inclusions enclosed in olivine and has a primary and magmatic origin. Type II chromite with an interstitial phase crystallized from a more evolved melt and suffered from post-magmatic alteration.
- (2)
- The parental magma is characterized by high temperature (1389 °C), high pressure (3.8 Gpa), and high Mg content (11.4 MgO wt%) with oxidized (FMQ + 1.6) and hydrous nature.
- (3)
- The mafic-ultramafic rocks originated from high-degree partial melting of a depleted mantle that had been modified by crustal components and metasomatized by subduction fluid in a post-orogenic extensional setting.
- (4)
- Two stages of sulfide segregation have been recognized. The assimilation of crustal Si and S components played more important roles on sulfide segregation rather than fractional crystallization.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dharma Rao, C.V.; Santosh, M.; Sajeev, K.; Windley, B.F. Chromite–Silicate Chemistry of the Neoarchean Sittampundi Complex, Southern India: Implications for Subduction-Related Arc Magmatism. Precambrian Res. 2013, 227, 259–275. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Zaccarini, F.; Garuti, G.; Thalhammer, O.A.R. Mineralogical and Geochemical Investigation of Layered Chromitites From the Bracco–Gabbro Complex, Ligurian Ophiolite, Italy. Contrib. Mineral. Petrol. 2013, 165, 477–493. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian Spinel as a Petrogenetic Indicator. Part I Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian Spinel as a Petrogenetic Indicator. Part II Petrological Applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Allan, J.F.; Sack, R.O.; Batiza, R. Cr-Rich Spinels as Petrogenetic Indicators; MORB-type Lavas from the Lamont Seamount Chain, Eastern Pacific. Am. Mineral. 1988, 73, 741–753. [Google Scholar]
- Arai, S. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Kamenetsky, V.S. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Rollinson, H. The Geochemistry of Mantle Chromitites From the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contrib. Mineral. Petrol. 2008, 156, 273–288. [Google Scholar] [CrossRef]
- Lehmann, J. Diffusion Between Olivine and Spinel: Application to Geothermometry. Earth Planet. Sci. Lett. 1983, 64, 123–138. [Google Scholar] [CrossRef]
- Liermann, H.P.; Ganguly, J. Fe2+–Mg Fractionation Between Orthopyroxene and Spinel: Experimental Calibration in the System FeO–MgO–Al2O3–Cr2O3–SiO2, and Applications. Contrib. Mineral. Petrol. 2007, 154, 491. [Google Scholar] [CrossRef] [Green Version]
- Melluso, L.; de Gennaro, R.; Rocco, I. Compositional Variations of Chromiferous Spinel in Mg-rich Rocks of the Deccan Traps, India. J. Earth Syst. Sci. 2010, 119, 343–363. [Google Scholar] [CrossRef] [Green Version]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Kumar, S.P.; Shaikh, A.M.; Patel, S.C.; Sheikh, J.M.; Behera, D.; Pruseth, K.L.; Ravi, S.; Tappe, S. Multi-Stage Magmatic History of Olivine-Leucite Lamproite Dykes From Banganapalle, Dharwar Craton, India: Evidence From Compositional Zoning of Spinel. Mineral. Petrol. 2020. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation of the Mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Wan, Z.H.; Coogan, L.A.; Canil, D. Experimental Calibration of Aluminum Partitioning Between Olivine and Spinel as a Geothermometer. Am. Mineral. 2008, 93, 1142–1147. [Google Scholar] [CrossRef]
- Barnes, S.J.; Tang, Z.L. Chrome Spinels from the Jinchuan Ni-Cu Sulfide Deposit, Gansu Province, People’s Republic of China. Econ. Geol. 1999, 94, 343–356. [Google Scholar] [CrossRef]
- Ryabov, V.V.; Shevko, A.Y.; Gora, M.P. Trap Magmatism and Ore Formation in the Siberian Noril’sk Region; Modern Approaches in Solid Earth Sciences; Springer: Dordrecht, The Netherlands, 2014; pp. 223–230. [Google Scholar]
- Zhou, M.; Lightfoot, P.C.; Keays, R.R.; Moore, M.L.; Morrison, G.G. Petrogenetic Significance of Chromian Spinels From the Sudbury Igneous Complex, Ontario, Canada. Can. J. Earth Sci. 1997, 34, 1405. [Google Scholar] [CrossRef]
- Ruan, B.; Yu, Y.; Lv, X.; Feng, J.; Wei, W.; Wu, C.; Wang, H. Occurrence and Mineral Chemistry of Chromite and Related Silicates From the Hongshishan Mafic-Ultramafic Complex, NW China with Petrogenetic Implications. Mineral. Petrol. 2017, 111, 693–708. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.Y.; Wei, B. Magma Oxygen Fugacity of Permian to Triassic Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusions in the Central Asian Orogenic Belt, North China. J. Asian Earth Sci. 2019, 173, 250–262. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.C.; Wei, B. Magma Oxygen Fugacity of Mafic-Ultramafic Intrusions in Convergent Margin Settings: Insights for the Role of Magma Oxidation States on Magmatic Ni–Cu Sulfide Mineralization. Am. Mineral. 2020. [Google Scholar] [CrossRef]
- Qin, K.; Su, B.; Sakyi, P.A.; Tang, D.; Li, X.; Sun, H.; Xiao, Q.; Liu, P. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints On a Ca. 280 Ma Mantle Plume. Am. J. Sci. 2011, 311, 237–260. [Google Scholar] [CrossRef]
- Su, B. Mafic-Ultramafic Intrusions in Beishan and Eastern Tianshan at Southern CAOB: Petrogenesis, Mineralization and Tectonic Implication; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–310. [Google Scholar]
- Li, W.; Wang, Y.; Qian, B.; Liu, Y.; Han, Y. Discussion on the Formation of Magmatic Cu-Ni-Co Sulfide Deposits in Margin of Tarim Block. Earth Sci. Front. 2020, 27, 276–293. [Google Scholar]
- Feng, Y.; Qian, Z.; Duan, J.; Xu, G.; Ren, M.; Jiang, C. Geochronological and Geochemical Study of the Baixintan Magmatic Ni-Cu Sulphide Deposit: New Implications for the Exploration Potential in the Western Part of the East Tianshan Nickel Belt (NW China). Ore Geol. Rev. 2018, 95, 366–381. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Lv, X.; Yu, M.; Long, L. Geochronology, Petrogenesis and Tectonic Implications of the Newly Discovered Cu–Ni Sulfide-Mineralized Yueyawan Gabbroic Complex, Kalatag District, Northwestern Eastern Tianshan, NW China. Ore Geol. Rev. 2019, 109, 598–614. [Google Scholar] [CrossRef]
- Chen, B.; Yu, J.; Liu, S.; Tian, J. Formation of the Lubei Magmatic Ni–Cu Deposit in a Post-Subduction Setting in East Tianshan, North West China. Ore Geol. Rev. 2019, 104, 356–372. [Google Scholar] [CrossRef]
- Deng, Y.; Yuan, F.; Hollings, P.; Song, X.; Zhou, T.; Fu, B.; Denyszyn, S.; Zhao, B. Magma Generation and Sulfide Saturation of Permian Mafic-Ultramafic Intrusions From the Western Part of the Northern Tianshan in NW China: Implications for Ni-Cu Mineralization. Miner. Depos. 2020, 55, 515–534. [Google Scholar] [CrossRef]
- Ren, M. Study on Petrography, Mineralogy and Genesis of Baixintan Cu–Ni Sulfide Deposits in Xinjiang. Master Thesis, Chang’an University, Xi’an, China, 2017. [Google Scholar]
- Li, X.; Wang, D.; Zhao, S. The Discovery of Baixintan Magmatic Ni–Cu Sulfide Deposits in Hami Area, Xinjiang. Xinjiang Geol. 2014, 32, 466–469. [Google Scholar]
- Wang, Y.L.; Zhang, Z.W.; You, M.X.; Xin, L.I.; Kan, L.I.; Wang, B.L. Chronological and Geochemical Characteristics of the Baixintan Ni–Cu Deposit in Eastern Tianshan Mountains, Xinjiang, and their Implications for Ni-Cu Mineralization. Geol. China 2015, 42, 452–467. [Google Scholar]
- Zhao, B.; Deng, Y.; Zhou, T.; Yuan, F.; Zhang, D.; Deng, G.; Li, W.; Li, Y. Petrogenesis of the Baixintan Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, East Tianshan: Evidence From Geochronology, Petrogeochemistry and Sr–Nd Isotope. Acta Petrol. Sin. 2018, 34, 2733–2753. [Google Scholar]
- Jahn, B.; Windley, B.; Natal’In, B.; Dobretsov, N. Phanerozoic Continental Growth in Central Asia. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Ruan, B.; Yu, Y.; Lv, X.; Wu, C.; Liu, X. Sulfide Segregation Mechanism of Magmatic Ni Mineralization in Western Beishan Region, Xinjiang, NW China: Case Study of the Hongshishan Mafic–Ultramafic Complex. Ore Geol. Rev. 2020, 122, 103503. [Google Scholar] [CrossRef]
- Sun, B.; Ruan, B.; Lv, X.; Tuohan, B.; Ratchford, M.E. Geochronology and Geochemistry of the Igneous Rocks and Ore-Forming Age in the Huangtan AuCu Deposit in the Kalatag District, Eastern Tianshan, NW China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Lithos 2020, 368–369, 105594. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Allen, M.B.; Han, C.M. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Deng, X.; Wang, J.; Pirajno, F.; Mao, Q.; Long, L. A Review of Cu-dominant Mineral Systems in the Kalatag District, East Tianshan, China. Ore Geol. Rev. 2020, 117, 103284. [Google Scholar] [CrossRef]
- Xie, W.; Luo, Z.Y.; Xu, Y.G.; Chen, Y.B.; Ma, Q. Petrogenesis and Geochemistry of the Late Carboniferous Rear-Arc (Or Back-Arc) Pillow Basaltic Lava in the Bogda Mountains, Chinese North Tianshan. Lithos 2016, 244, 30–42. [Google Scholar] [CrossRef]
- Xie, W.; Xu, Y.; Chen, Y.; Luo, Z.; Hong, L.; Ma, L.; Liu, H. High-Alumina Basalts From the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan During the Late Carboniferous. Lithos 2016, 256, 165–181. [Google Scholar] [CrossRef]
- Shu, L.; Wang, B.; Zhu, W.; Guo, Z.; Charvet, J.; Zhang, Y. Timing of Initiation of Extension in the Tianshan, Based On Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogda Shan (NW China). Int. J. Earth Sci. 2011, 100, 1647–1663. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Chen, L.; Deng, Y.; Xie, W. Syncollisional Tholeiitic Magmatism Induced by Asthenosphere Upwelling Owing to Slab Detachment at the Southern Margin of the Central Asian Orogenic Belt. J. Geol. Soc. 2013, 170, 941–950. [Google Scholar] [CrossRef]
- Mao, Y.; Qin, K.; Li, C.; Tang, D. A Modified Genetic Model for the Huangshandong Magmatic Sulfide Deposit in the Central Asian Orogenic Belt, Xinjiang, Western China. Miner. Depos. 2015, 50, 65–82. [Google Scholar] [CrossRef]
- Zhou, M.; Michael Lesher, C.; Yang, Z.; Li, J.; Sun, M. Geochemistry and Petrogenesis of 270 Ma Ni–Cu–(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chem. Geol. 2004, 209, 233–257. [Google Scholar] [CrossRef]
- Pirajno, F.; Mao, J.; Zhang, Z.; Zhang, Z.; Chai, F. The Association of Mafic–Ultramafic Intrusions and A-type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. J. Asian Earth Sci. 2008, 32, 165–183. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Li, Z.; Wang, H.; Ye, H. Diverse Permian Magmatism in the Tarim Block, NW China: Genetically Linked to the Permian Tarim Mantle Plume? Lithos 2010, 119, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Xie, W.; Deng, Y.; Crawford, A.J.; Zheng, W.; Zhou, G.; Deng, G.; Cheng, S.; Li, J. Slab Break-Off and the Formation of Permian Mafic–Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos 2011, 127, 128–143. [Google Scholar] [CrossRef]
- Droop, G. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2301. [Google Scholar] [CrossRef]
- Wu, J.; Lv, X.; Feng, J.; Wang, H.; Deng, G.; Liu, Y.; Yin, X.; Zhang, W.; Liu, W. Mineralogical Characteristics of Chromite from the Poyi Mafic-Ultramafic Intrusion in Beishan, Xinjiang, and its Geological Significance. Geotecton. Metallog. 2018, 42, 348–364. [Google Scholar]
- Yu, Y. Mineral Chemistry of Chromite and Solid Inclusions in the Beishan and Eastern Tianshan Area, NW China with Petrological and Mineralization Significance. Master Thesis, China University of Geosciences (Wuhan), Wuhan, China, 2017. [Google Scholar]
- Barnes, S.J. Chromite in Komatiites. II. Modification During Greenschist to Mid-Amphibolite Facies Metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef] [Green Version]
- Gervilla, F.; Padron-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; Gonzalez-Jimenez, J.M.; Fanlo, I. Formation of Ferrian Chromite in Podiform Chromitites From the Golyamo Kamenyane Serpentinite, Eastern Rhodopes, SE Bulgaria: A Two-Stage Process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-Spinel in Progressive Metamorphism—A Preliminary Analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Roeder, P.L.; Emslie, R.F. Olivine-Liquid Equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Scowen, P.A.H.; Roeder, P.L.; Helz, R.T. Reequilibration of Chromite within Kilauea Iki Lava Lake, Hawaii. Contrib. Mineral. Petrol. 1991, 107, 8–20. [Google Scholar] [CrossRef]
- Mekhonoshin, A.S.; Kolotilina, T.B.; Doroshkov, A.A.; Pikiner, E.E. Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). Minerals 2020, 10, 608. [Google Scholar] [CrossRef]
- Barra, F.; Gervilla, F.; Hernandez, E.; Reich, M.; Padron-Navarta, J.A.; Gonzalez-Jimenez, J.M. Alteration Patterns of Chromian Spinels From La Cabana Peridotite, South-Central Chile. Mineral. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- Fabriès, J. Spinel-Olivine Geothermometry in Peridotites from Ultramafic Complexes. Contrib. Mineral. Petrol. 1979, 69, 329–336. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Wall, V.J. The Olivine—Orthopyroxene—Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth’s Upper Mantle. J. Petrol. 1987, 28, 1169–1191. [Google Scholar] [CrossRef]
- Weaver, J.S.; Langmuir, C.H. Calculation of Phase Equilibrium in Mineral-Melt Systems. Comput. Geosci. 1990, 16, 1–19. [Google Scholar] [CrossRef]
- Thompson, R.N. Some High-Pressure Pyroxenes. Mineral. Mag. 1974, 39, 768–787. [Google Scholar] [CrossRef] [Green Version]
- Ernst, W.G.; Liu, J. Experimental Phase-Equilibrium Study of Al- and Ti-contents of Calcic Amphibole in MORB—A Semiquantitative Thermobarometer. Am. Mineral. 1998, 83, 952–969. [Google Scholar] [CrossRef]
- Cottrell, E.; Kelley, K.A. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle. Earth Planet. Sci. Lett. 2011, 305, 270–282. [Google Scholar] [CrossRef]
- Li, C.; Ripley, E.M.; Naldrett, A.J. Compositional Variations of Olivine and Sulfur Isotopes in the Noril’sk and Talnakh Intrusions, Siberia: Implications for Ore-Forming Processes in Dynamic Magma Conduits. Econ. Geol. 2003, 98, 69–86. [Google Scholar] [CrossRef]
- Sun, H. Ore-Forming Mechanism in Conduit System and Ore-Bearing Property Evaluation for Mafic-Ultramafic Complex in Eastern Tianshan, Xinjiang. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2009. [Google Scholar]
- Tang, D.; Qin, K.; Su, B.; Sakyi, P.A.; Mao, Y.; Xue, S. Petrogenesis and Mineralization of the Hulu Ni-Cu Sulphide Deposit in Xinjiang, NW China: Constraints From Sr-Nd Isotopic and PGE Compositions. Int. Geol. Rev. 2014, 56, 711–733. [Google Scholar] [CrossRef]
- Ao, S.J.; Xiao, W.J.; Han, C.M.; Mao, Q.G.; Zhang, J.E. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Res. 2010, 18, 466–478. [Google Scholar] [CrossRef]
- Han, C.; Xiao, W.; Zhao, G.; Ao, S.; Zhang, J.; Qu, W.; Du, A. In-Situ U–Pb, Hf and Re–Os Isotopic Analyses of the Xiangshan Ni–Cu–Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos 2010, 120, 547–562. [Google Scholar] [CrossRef]
- Johan, Z. Platinum-Group Minerals from Placers Related to the Nizhni Tagil (Middle Urals, Russia) Uralian-Alaskan-type Ultramafic Complex: Ore-Mineralogy and Study of Silicate Inclusions in (Pt, Fe) Alloys. Mineral. Petrol. 2006, 87, 1–30. [Google Scholar] [CrossRef]
- Krause, J.; Brügmann, G.E.; Pushkarev, E.V. Accessory and Rock Forming Minerals Monitoring the Evolution of Zoned Mafic–Ultramafic Complexes in the Central Ural Mountains. Lithos 2007, 95, 19–42. [Google Scholar] [CrossRef]
- Cui, M.; Bai, Y.; Luo, Y.; Su, B.; Xiao, Y.; Wang, J.; Pan, Q.; Gao, D. Characteristics, Petrogenesis and Metallogenesis of Alaskan-type Complexes. Miner. Depos. 2020, 39, 397–418. [Google Scholar]
- Mao, J.W.; Pirajno, F.; Zhang, Z.H.; Chai, F.M.; Wu, H.; Chen, S.P.; Cheng, L.S.; Yang, J.M.; Zhang, C.Q. A Review of the Cu–Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. J. Asian Earth Sci. 2008, 32, 184–203. [Google Scholar] [CrossRef]
- Pirajno, F.; Seltmann, R.; Yang, Y. A Review of Mineral Systems and Associated Tectonic Settings of Northern Xinjiang, NW China. Geosci. Front. 2011, 2, 157–185. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Li, C.; Qin, K.; Tang, D. A Non-Plume Model for the Permian Protracted (266–286Ma) Basaltic Magmatism in the Beishan–Tianshan Region, Xinjiang, Western China. Lithos 2016, 256–257, 243–249. [Google Scholar] [CrossRef]
- Wood, B.J.; Bryndzia, L.T.; Johnson, K.E. Mantle Oxidation State and its Relationship to Tectonic Environment and Fluid Speciation. Science 1990, 248, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Naldrett, A.J. From the Mantle to the Bank: The Life of a Ni–Cu-(PGE) Sulfide Deposit. S. Afr. J. Geol. 2010, 113, 1–32. [Google Scholar] [CrossRef]
- Barnes, S.J.; Mungall, J.E.; Maier, W.D. Platinum Group Elements in Mantle Melts and Mantle Samples. Lithos 2015, 232, 395–417. [Google Scholar] [CrossRef]
- Bai, Z.; Zhong, H.; Zhu, W. Redox State of Mantle-Derived Magma and Constraints on the Genesis of Magmatic Deposits. Acta Petrol. Sin. 2019, 35, 204–214. [Google Scholar]
- Barnes, S.; Makovicky, E.; Makovicky, M.; Rose-Hansen, J.; Karup-Moller, S. Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir Between Monosulfide Solid Solution and Sulfide Liquid and the Formation of Compositionally Zoned Ni–Cu Sulfide Bodies by Fractional Crystallization of Sulfide Liquid. Can. J. Earth Sci. 1997, 34, 366–374. [Google Scholar] [CrossRef]
- Barnes, S.J.; Couture, J.F.; Sawyer, E.W.; Bouchaib, C. Nickel–Copper Occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the Use of Cu-Pd Ratios in Interpreting Platinum-Group Element Distributions. Econ. Geol. 1993, 88, 1402–1418. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R.; Evans-Lamswood, D.; Wheeler, R. S Saturation History of Nain Plutonic Suite Mafic Intrusions: Origin of the Voisey’S Bay Ni–Cu–Co Sulfide Deposit, Labrador, Canada. Miner. Depos. 2012, 47, 23–50. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, X.; Liu, Y. Petrogenesis and Ni–Cu–Co Sulfide Formation of Mafic Enclaves in Tulaergen Mafic-Ultramafic Intrusive Rocks, Eastern Tianshan, Northwest China: Implications for Liquid Immiscibility and Hydrothermal Remobilization of Platinum-Group Elements. Econ. Geol. 2018, 113, 1795–1816. [Google Scholar]
- Li, C.S.; Ripley, E.M. Sulfur Contents at Sulfide-Liquid or Anhydrite Saturation in Silicate Melts: Empirical Equations and Example Applications. Econ. Geol. 2009, 104, 405–412. [Google Scholar] [CrossRef]
- Ruan, B. Diagenesis and Mineralization of the Hongshishan Mafic-Ultramafic Rock Belt, Western Beishan, Xinjiang. PhD. Thesis, China University of Geosciences, Wuhan, China, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, B.; Liao, M.; Sun, B.; Chen, C. Origin and Nature of Parental Magma and Sulfide Segregation of the Baixintan Magmatic Ni–Cu Sulfide Deposit, Southern Central Asian Orogenic Belt (CAOB), NW China: Insights from Mineral Chemistry of Chromite and Silicate Minerals. Minerals 2020, 10, 1050. https://doi.org/10.3390/min10121050
Ruan B, Liao M, Sun B, Chen C. Origin and Nature of Parental Magma and Sulfide Segregation of the Baixintan Magmatic Ni–Cu Sulfide Deposit, Southern Central Asian Orogenic Belt (CAOB), NW China: Insights from Mineral Chemistry of Chromite and Silicate Minerals. Minerals. 2020; 10(12):1050. https://doi.org/10.3390/min10121050
Chicago/Turabian StyleRuan, Banxiao, Mingyang Liao, Bingke Sun, and Chao Chen. 2020. "Origin and Nature of Parental Magma and Sulfide Segregation of the Baixintan Magmatic Ni–Cu Sulfide Deposit, Southern Central Asian Orogenic Belt (CAOB), NW China: Insights from Mineral Chemistry of Chromite and Silicate Minerals" Minerals 10, no. 12: 1050. https://doi.org/10.3390/min10121050
APA StyleRuan, B., Liao, M., Sun, B., & Chen, C. (2020). Origin and Nature of Parental Magma and Sulfide Segregation of the Baixintan Magmatic Ni–Cu Sulfide Deposit, Southern Central Asian Orogenic Belt (CAOB), NW China: Insights from Mineral Chemistry of Chromite and Silicate Minerals. Minerals, 10(12), 1050. https://doi.org/10.3390/min10121050