The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Minerals
2.2. Determination the Point of Zero Charge
2.3. Adsorption Kinetics Experiment
2.4. Kinetics Models
3. Results and Discussion
3.1. Characteristics of Minerals
3.2. Point of Zero Change
3.3. Effect of Contact Time
3.4. Models Based on Chemical Reaction Order
3.5. Diffusion Kinetic Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | initial sorption rate, mg/g⋅min |
ARE | average relative error |
b | desorption constant related to the extent of surface coverage and activation energy for chemisorption, g/mg |
B | basalt |
ci | intercept of IPD model, mg/g |
C0 | initial concentration of Mn, mg/L |
Ce | equilibrium concentration of Mn, mg/L |
Ct | concentration of Mn at defined time, mg/L |
ERRSQ | the sum of the squares of the errors |
F | fractional attainment of equilibrium, equals qt/qe |
IPD | intraparticle diffusion model |
kfd | film diffusion rate constant, min−1 |
ki | intraparticle diffusion rate constant, mg/g⋅min0.5 |
k1 | pseudo-first constant, min−1 |
k2 | pseudo-second constant, g/(mg⋅min) |
LFM | liquid film diffusion model |
m | mass of sorbent, g |
N | number of data points |
PFO | pseudo-first order model |
PSO | pseudo-first order model |
p | number of model parameters |
pHPZC | point of zero change, - |
pHi | initial value of pH, - |
pHf | final value of pH, - |
qt | sorption capacity in time, mg/g |
qcal | calculated sorption capacities, mg/g |
qe | amount of sorption at equilibrium, mg/g |
qexp | experimental sorption capacities, mg/g |
qref | amount of sorption at time t = tref, mg/g |
R.E. | removal efficiency, % |
R2 | coefficient of determination, - |
RE | approaching equilibrium factor based on Elovich equation, - |
RW | approaching equilibrium factor in the PSO model, - |
SD | standard deviation, % |
SSABET | specific surface area by Brunauer-Emmett-Teller (BET) method, m2/g |
T | tuff |
TF | Fisher’s test |
t | time, min |
tref | longest time of sorption process, min |
V | volume of sample, L |
χ2 | chi-square test |
References
- Tangviroon, P.; Noto, K.; Igarashi, T.; Kawashima, T.; Ito, M.; Sato, T.; Mufalo, W.; Chirwa, M.; Nyambe, I.; Nakata, H.; et al. Immobilization of lead and zinc leached from mining residual materials in Kabwe, Zambia: Possibility of Chemical Immobilization by Dolomite, Calcined Dolomite, and Magnesium Oxide. Minerals 2020, 10, 763. [Google Scholar] [CrossRef]
- Radziemska, M.; Bęś, A.; Gusiatin, Z.M.; Majewski, G.; Mazur, Z.; Bilgin, A.; Jaskulska, I.; Brtnický, M. Immobilization of potentially toxic elements (PTE) by mineral-based amendments: Remediation of contaminated soils in post-industrial sites. Minerals 2020, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Siwiec, T. The sphericity of grains of filtration beds applied for water treatment on examples of selected minerals. Electron. J. Pol. Agric. Univ. 2007, 10, 1–30. [Google Scholar]
- Filtration Materials for Groundwater: A Guide to Good Practice; Kozyatnyk, I. (Ed.) IWA Publishing: London, UK, 2016; ISBN 978-1-78040-699-2. [Google Scholar]
- Rizzo, A.; Bresciani, R.; Martinuzzi, N.; Masi, F. Online monitoring of a long-term full-scale constructed wetland for the treatment of winery wastewater in Italy. Appl. Sci. 2020, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Sen Gupta, S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Alshameri, A.; Xinghu, W.; Dawood, A.; Assabri, A.; Xin, C.; Yan, C. Characterization of Yemeni natural zeolite (Al-Ahyuq Area) and its environment applications: A review. J. Ecol. Eng. 2019, 20, 157–166. [Google Scholar] [CrossRef]
- Weidner, E.; Ciesielczyk, F. Removal of hazardous oxyanions from the environment using metal-oxide-based materials. Materials 2019, 12, 927. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.; Al-Salaymeh, A.; Khan, M.S. Removing heavy metals through different types of soils and marble powder found in Oman. J. Ecol. Eng. 2019, 20, 136–142. [Google Scholar] [CrossRef]
- Aygun, A.; Yilmaz, T. Improvement of coagulation-flocculation process for treatment of detergent wastewaters using coagulant aids. Int. J. Chem. Environ. Eng. 2011, 1, 97–101. [Google Scholar]
- Hendricks, D. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological; CRC Press: Cleveland, OH, USA, 2011; ISBN 978-1-4200-6192-5. [Google Scholar]
- Greiserman, M.; Hasson, D.; Semiat, R.; Shemer, H. Kinetics of dolomite dissolution in a packed bed by acidified desalinated water. Desalination 2016, 396, 39–47. [Google Scholar] [CrossRef]
- Michel, M.M.; Reczek, L.; Papciak, D.; Włodarczyk-Makuła, M.; Siwiec, T.; Trach, Y. Mineral Materials coated with and consisting of MnOx—characteristics and application of filter media for groundwater treatment: A review. Materials 2020, 13, 2232. [Google Scholar] [CrossRef] [PubMed]
- Taffarel, S.R.; Rubio, J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Miner. Eng. 2010, 23, 1131–1138. [Google Scholar] [CrossRef]
- Belchinskaya, L.; Novikova, L.; Khokhlov, V.; Ly Tkhi, J. Contribution of ion-exchange and non-ion-exchange reactions to sorption of ammonium ions by natural and activated aluminosilicate sorbent. J. Appl. Chem. 2013, 2013, 789410. [Google Scholar] [CrossRef] [Green Version]
- Filatova, E.G.; Pozhidaev, Y.N.; Pomazkina, O.I. Investigation of adsorption of heavy metal ions by natural aluminosilicate. Prot. Met. Phys. Chem. Surf. 2016, 52, 438–442. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Ilmi, M.M. Indonesia natural mineral for heavy metal adsorption: A review. JESSD 2019, 2. [Google Scholar] [CrossRef]
- Mary Ugwu, I.; Anthony Igbokwe, O. Sorption of heavy metals on clay minerals and oxides: A review. In Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-818-2. [Google Scholar]
- Zhou, C.H.; Zhou, Q.; Wu, Q.Q.; Petit, S.; Jiang, X.C.; Xia, S.T.; Li, C.S.; Yu, W.H. Modification, hybridization and applications of saponite: An overview. Appl. Clay Sci. 2019, 168, 136–154. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Wang, X.; Dong, W.; Tao, Z. A multitracer study on the adsorption of 32 elements on a natural hematite (α-Fe2O3): Effects of pH and fulvic acid. Colloid Surf. Physicochem. Eng. Asp. 2003, 223, 135–143. [Google Scholar] [CrossRef]
- Franco, F.; Benítez-Guerrero, M.; Gonzalez-Triviño, I.; Pérez-Recuerda, R.; Assiego, C.; Cifuentes-Melchor, J.; Pascual-Cosp, J. Low-cost aluminum and iron oxides supported on dioctahedral and trioctahedral smectites: A comparative study of the effectiveness on the heavy metal adsorption from water. Appl. Clay Sci. 2016, 119, 321–332. [Google Scholar] [CrossRef]
- Melnychuk, V.; Trach, Y.; Kosinov, V.; Michel, M.M.; Reczek, L. Research of the mineral complex and opportunities using basalts and tuffs of Ivanodolinsky quarry of the Rivne region in water treatment. Probl. Water Supply Sew Hydraul. Sci. Tech. J. 2018, 30, 36–47. [Google Scholar]
- Puszkarewicz, A.; Kaleta, J. Adsorption of chromium(VI) on raw and modified Carpathian diatomite. J. Ecol. Eng. 2019, 20, 11–17. [Google Scholar] [CrossRef]
- Petra, L.; Billik, P.; Melichová, Z.; Komadel, P. Mechanochemically activated saponite as materials for Cu2+ and Ni2+ removal from aqueous solutions. Appl. Clay Sci. 2017, 143, 22–28. [Google Scholar] [CrossRef]
- Polyakov, V.E.; Tarasevich, Y.I. Ion-exchange equilibriums involving single-charged cations on saponite. J. Water Chem. Technol. 2012, 34, 11–16. [Google Scholar] [CrossRef]
- Minenko, V.G. Justification and design of electrochemical recovery of saponite from recycled water. J. Min. Sci. 2014, 50, 595–600. [Google Scholar] [CrossRef]
- Chanturiya, V.; Minenko, V.; Makarov, D.; Suvorova, O.; Selivanova, E. Advanced techniques of saponite recovery from diamond processing plant water and areas of saponite application. Minerals 2018, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Minenko, V.; Denisova, J.; Samusev, A.; Makarov, D. Non-ferrous metal sorbents based on waste and side products of mineral beneficiation plants. J. Pol. Miner. Eng. Soc. 2019, 99–104. [Google Scholar] [CrossRef]
- Pshinko, G.N.; Kobets, S.A.; Bogolepov, A.A.; Goncharuk, V.V. Treatment of waters containing uranium with saponite clay. J. Water Chem. Technol. 2010, 32, 10–16. [Google Scholar] [CrossRef]
- Yanovska, E.; Nikolaeva, O.; Kondratenko, O.; Vretik, L. Sorption properties of saponite clay, in situ modified by poly(4-vinylpyridine-co-styrene), towards Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions. Fr. Ukr. J. Chem. 2019, 7, 145–152. [Google Scholar] [CrossRef]
- Alemu, A.; Lemma, B.; Gabbiye, N. Adsorption of chromium(III) from aqueous solution using vesicular basalt rock. Cogent Environ. Sci. 2019, 5. [Google Scholar] [CrossRef]
- Pandová, I.; Rimár, M.; Panda, A.; Valíček, J.; Kušnerová, M.; Harničárová, M. A study of using natural sorbent to reduce iron cations from aqueous solutions. IJERPH 2020, 17, 3686. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. Zur theorie der sogenannten adsorption gelöster stoffe: Lagergren, S., (Bihang, A.K. Svenske Vet. Ak. Handl. 24, II. Nr. 4, S. 49; 1899; Z. physik. Ch. 32, 174–175; 1900.). Zeitschr. F. Chem. Und. Ind. Der. Kolloide. 1907, 2, 15. [Google Scholar] [CrossRef]
- Ho, Y.-S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larinov, O.G. Theory of adsorption from solutions of non electrolytes on solid (I) Equation adsorption from solutions and the analysis of its simplest form, (II) Verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk 1962, 2, 209–216. [Google Scholar]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics 1. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Weber Walter, J.; Morris, J. Carrell Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar]
- Habte, L.; Shiferaw, N.; Khan, M.D.; Thriveni, T.; Ahn, J.W. Sorption of Cd2+ and Pb2+ on aragonite synthesized from eggshell. Sustainability 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Abatal, M.; Córdova Quiroz, A.V.; Olguín, M.T.; Vázquez-Olmos, A.R.; Vargas, J.; Anguebes-Franseschi, F.; Giácoman-Vallejos, G. Sorption of Pb(II) from aqueous solutions by acid-modified clinoptilolite-rich tuffs with different Si/Al ratios. Appl. Sci. 2019, 9, 2415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, S.; Liu, J.; Zhang, Z.; Song, K.; Tan, C.; Li, H. A study on the removal of Copper (II) from aqueous solution using lime sand bricks. Appl. Sci. 2019, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lin, L.; Papelis, C.; Xu, P. Sorption of arsenic from desalination concentrate onto drinking water treatment solids: Operating conditions and kinetics. Water 2018, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Fronczyk, J.; Mumford, K. The impact of temperature on the removal of inorganic contaminants typical of urban stormwater. Appl. Sci. 2019, 9, 1273. [Google Scholar] [CrossRef] [Green Version]
- Lazarević, S.; Janković-Častvan, I.; Jovanović, D.; Milonjić, S.; Janaćković, D.; Petrović, R. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 2007, 37, 47–57. [Google Scholar] [CrossRef]
- Bujdák, J. Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci. 2020, 191, 105630. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Huang, S.-C.; Juang, R.-S. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. Chem. Eng. J. 2009, 151, 1–9. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Marcin, C.; Roman, P.; Joanna, W.; Piotr, K. Równowaga sorpcji w procesach usuwania jonów metali ciężkich ze środowiska wodnego. Weryfikacja statystyczna modeli matematycznych. Przemysł. Chemiczny. 2008, 87, 436–438. [Google Scholar]
- Wang, A.; Wang, W. Introduction. In Nanomaterials from Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. ISBN 978-0-12-814533-3. [Google Scholar]
- Mudzielwana, R.; Gitari, M.W.; Msagati, T.A.M. Characterisation of smectite-rich clay soil: Implication for groundwater defluoridation. S. Afr. J. Sci. 2016, 112. [Google Scholar] [CrossRef] [Green Version]
- Drzymała, J.; Swatek, A. Mineral Processing: Foundations of Theory and Practice of Minerallurgy; University of Technology: Wroclaw, Poland, 2007; ISBN 978-83-7493-362-9. [Google Scholar]
- Strawn, D.; Bohn, H.L.; O’Connor, G.A. Soil Chemistry, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-119-51518-0. [Google Scholar]
- Arpa, C.; Say, R.; Satiroglu, N.; Bektas, S.; Yurum, Y.; Gnec, O. Heavy metal removal from aquatic systems by Northern Anatolian smectites. Turk. J. Chem. 2000, 24, 209–215. [Google Scholar]
- Yavuz, Ö.; Altunkaynak, Y.; Güzel, F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 2003, 37, 948–952. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. (Eds.) Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2015. [Google Scholar]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Taffarel, S.R.; Rubio, J. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 2009, 22, 336–343. [Google Scholar] [CrossRef]
- Khan, T.A.; Chaudhry, S.A.; Ali, I. Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq. 2015, 202, 165–175. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of Ni(II) on clays. J. Colloid Interface Sci. 2006, 295, 21–32. [Google Scholar] [CrossRef]
Model | Equation | References |
---|---|---|
Models based on chemical reaction order | ||
PFO | (3) | [36] |
PSO | (4) | [37] |
(5) | [49] | |
Elovich | (6) | [38,39] |
(7) | [50] | |
Models based on molecules diffusion | ||
LFM | (8) | [40] |
(9) | ||
IPD | (10) | [41] |
Material | SSABET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Radius (nm) |
---|---|---|---|
Volcanic tuff | 79.3 | 0.113 | 2.76 |
Basaltic rock | 28.6 | 0.048 | 2.37 |
R.E., % | |||
---|---|---|---|
Material | 10 °C | 17.5 °C | 25 °C |
Tuff | 50.4 | 48.6 | 49.7 |
Basalt | 21.4 | 21.5 | 21.5 |
Tuff | |||||||||
PFO Model | qe mg/g | k1 1/min | R2 | SD | ERRSQ | ARE | TF | χ2 | |
10 °C | 5.2 | 0.23 | 0.9362 | 0.036 | 0.1418 | 2.5373 | 12.0966 | 0.0288 | |
17.5 °C | 5.1 | 0.21 | 0.9404 | 0.021 | 0.0529 | 1.3014 | 36.9299 | 0.0105 | |
25 °C | 5.0 | 0.27 | 0.8177 | 0.046 | 0.2478 | 3.7851 | 4.8286 | 0.0498 | |
PSO Model | qe mg/g | k2 g/(mg⋅min) | R2 | SD | RW | ERRSQ | ARE | TF | χ2 |
10 °C | 5.6 | 0.065 | 0.9918 | 0.012 | 0.01 | 0.0177 | 0.9335 | 97.1013 | 0.0035 |
17.5 °C | 5.5 | 0.062 | 0.9791 | 0.037 | 0.02 | 0.1469 | 2.6028 | 13.3081 | 0.0326 |
25 °C | 5.3 | 0.095 | 0.8528 | 0.043 | 0.01 | 0.2203 | 3.1705 | 5.4315 | 0.0433 |
Elovich Model | a mg/g⋅min | b g/mg | R2 | SD | RE | ERRSQ | ARE | TF | χ2 |
10 °C | 55.0 | 1.57 | 0.7667 | 0.048 | 0.13 | 0.1800 | 3.2419 | 9.5294 | 0.0394 |
17.5 °C | 101.5 | 1.80 | 0.7881 | 0.087 | 0.11 | 0.5762 | 6.1464 | 3.3932 | 0.1370 |
25 °C | 196.0 | 1.89 | 0.7337 | 0.066 | 0.11 | 0.3984 | 4.5675 | 3.0036 | 0.0797 |
Basalt | |||||||||
PFO Model | qe mg/g | k1 1/min | R2 | SD | ERRSQ | ARE | TF | χ2 | |
10 °C | 2.4 | 0.13 | 0.8537 | 0.094 | 0.1811 | 8.1872 | 4.9676 | 0.0893 | |
17.5 °C | 2.2 | 0.35 | 0.8501 | 0.029 | 0.0203 | 2.1287 | 5.3365 | 0.0094 | |
25 °C | 1.8 | 0.22 | 0.6209 | 0.102 | 0.1369 | 7.3550 | 2.0458 | 0.0792 | |
PSO Model | qe mg/g | k2 g/(mg⋅min) | R2 | SD | RW | ERRSQ | ARE | TF | χ2 |
10 °C | 2.8 | 0.059 | 0.9354 | 0.056 | 0.04 | 0.0738 | 4.5153 | 12.1924 | 0.0326 |
17.5 °C | 2.3 | 0.352 | 0.8733 | 0.027 | 0.01 | 0.0172 | 2.0998 | 6.3122 | 0.0079 |
25 °C | 2.0 | 0.131 | 0.8375 | 0.068 | 0.02 | 0.0577 | 4.9277 | 4.8569 | 0.0355 |
Elovich Model | a mg/g⋅min | b g/mg | R2 | SD | RE | ERRSQ | ARE | TF | χ2 |
10 °C | 1.9 | 2.14 | 0.9728 | 0.054 | 0.19 | 0.0626 | 4.3843 | 14.3639 | 0.0279 |
17.5 °C | 5.1 | 2.60 | 0.8382 | 0.120 | 0.18 | 0.2780 | 9.4243 | 0.3897 | 0.1203 |
25 °C | 8.1 | 4.19 | 0.9503 | 0.239 | 0.21 | 0.1072 | 6.5275 | 2.6125 | 0.0634 |
Temperature | ki1 mg/g⋅min0.5 | ci1 mg/g | R2 | SD | ki2 mg/g⋅min0.5 | ci2 mg/g | R2 | SD |
---|---|---|---|---|---|---|---|---|
Tuff | ||||||||
0.56 | 2.45 | 0.9852 | 0.002 | 0.06 | 4.91 | 0.7885 | 0.006 | |
17.5 °C | 0.58 | 2.18 | 0.8179 | 0.094 | 0.09 | 4.47 | 0.4602 | 0.020 |
25 °C | 0.58 | 2.34 | 0.8179 | 0.081 | 0.09 | 4.63 | 0.4600 | 0.019 |
Basalt | ||||||||
10 °C | 0.33 | 0.62 | 0.9847 | 0.028 | 0.04 | 2.00 | 0.7198 | 0.012 |
17.5 °C | 0.23 | 1.10 | 0.8515 | 0.005 | 0.01 | 2.14 | 0.2515 | 0.005 |
25 °C | 0.22 | 0.81 | 0.9999 | 0.001 | 0.12 | 1.12 | 0.0849 | 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reczek, L.; Michel, M.M.; Trach, Y.; Siwiec, T.; Tytkowska-Owerko, M. The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis. Minerals 2020, 10, 1065. https://doi.org/10.3390/min10121065
Reczek L, Michel MM, Trach Y, Siwiec T, Tytkowska-Owerko M. The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis. Minerals. 2020; 10(12):1065. https://doi.org/10.3390/min10121065
Chicago/Turabian StyleReczek, Lidia, Magdalena M. Michel, Yuliia Trach, Tadeusz Siwiec, and Marta Tytkowska-Owerko. 2020. "The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis" Minerals 10, no. 12: 1065. https://doi.org/10.3390/min10121065
APA StyleReczek, L., Michel, M. M., Trach, Y., Siwiec, T., & Tytkowska-Owerko, M. (2020). The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis. Minerals, 10(12), 1065. https://doi.org/10.3390/min10121065