Identification of Technogenic Magnetic Particles and Forms of Occurrence of Potentially Toxic Elements Present in Fly Ashes and Soil
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fly Ashes Analysis
3.2. Soil Samples Analysis
3.3. Geoaccumulation Index and Risk Assessment Code
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission statement on the adoption of the new energy lending policy of the European Investment Bank Group, 14 November 2019, Brussels. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2019,1,11.html. (accessed on 29 August 2020).
- Energy Statistics in 2017 and 2018—Statistics Poland Supervised by Katarzyna Walkowska (GUS), Warsaw. 2019. Available online: https://stat.gov.pl/en/topics/environment-energy/energy/energy-statistics-in-2017-and-2018,4,14.html (accessed on 29 August 2020).
- Czajkowska, A. Installations for cleaning exhaust fumes from dust–gas pollutants. Environ. Prot. Nat. Resour. 2018, 29, 26–32. [Google Scholar] [CrossRef]
- Environment 2019 Statistical Analyses, Statistics Poland supervised by Wiesława Domańska, Warsaw. 2019. Available online: https://stat.gov.pl/en/topics/environment-energy/ (accessed on 29 August 2020).
- Rattanavaraha, W.; Canagaratna, M.R.; Budisulistiorini, S.H.; Croteau, P.L.; Baumann, K.; Canonaco, F.; Prevot, A.S.H.; Edgerton, E.S.; Zhang, Z.F.; Jayne, J.T.; et al. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmos. Environ. 2017, 167, 389–402. [Google Scholar] [CrossRef]
- Sah, D.; Verma, P.K.; Kandikonda, M.K.; Lakhani, A. Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. Urban Clim. 2019, 27, 149–162. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmur, A.; Park, S.-K.; Mulholland, J.A.; Tolbert, P.E.; Russell, A.G. Source apportionment of PM2.5 in the southeastern United States using receptor and emissions based models: Conceptual differences and implications for time series health studies. Atmos. Environ. 2006, 40, 2533–2551. [Google Scholar] [CrossRef]
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health. 2016, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, M.; Smołka-Danielowska, D. Iron oxides particles in the air and fly ash, and their influence on the environment (Preliminary Studies). Pol. Geol. Inst. Spec. Pap. 2008, 24, 93–98. [Google Scholar]
- Ram, L.C.; Masto, R.E.; Srivastava, N.K.; George, J.; Selvi, V.A.; Das, T.B.; Pal, S.K.; Maity, S.; Mohanty, D. Potentially toxic elements in lignite and its combustion residues from a power plant. Environ. Monit. Assess. 2015, 187, 4148–4161. [Google Scholar] [CrossRef]
- Bourliva, A.; Papadopoulou, L.; Aidona, E. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Sci. Total Environ. 2016, 553, 380–391. [Google Scholar] [CrossRef]
- Doichinova, V.; Zhiyanski, M.; Hursthouse, A.; Bech, J. Study on the mobility and bioavailability of PTEs in soils from Urban Forest Parks in Sofia, Bulgaria. J. Geochem. Explor. 2014, 147, 222–228. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Nowińska, K. Environmental mobility of trace elements present in dusts emitted from Zn–Pb metallurgical processes. Environ. Earth Sci. 2016, 75, 956. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.; Mickus, T.; Camacho, L.M. Abandoned Pb–Zn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Rachwał, M.; Kardel, K.; Magiera, T.; Bens, O. Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 2017, 295, 10–21. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E. Mobility of Cd and Zn in polluted and unpolluted Spodosols. Eur. J. Soil Sci. 2006, 57, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Inspection for Environmental Protection Report: The State of the Environment in Poland in the Years 1996–2001; Environmental Monitoring Library: Warsaw, Poland, 2003.
- Magiera, T.; Jabłońska, M.; Strzyszcz, Z.; Rachwał, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 2011, 45, 4281–4290. [Google Scholar] [CrossRef]
- Strzyszcz, Z. Magnetic susceptibility of soils in the area influenced by industrial emissions. In Soil Monitoring; Schulin, R., Desaules, A., Webster, R., von Steiger, B., Eds.; Monte Verità. Birkhäuser Basel: Basel, Switzerland, 1993; pp. 255–269. [Google Scholar]
- Lu, S.; Yu, X.; Chen, Y. Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: Their source identification and environmental implications. Sci. Total Environ. 2016, 543, 239–247. [Google Scholar] [CrossRef]
- Yu, X.; Lu, S. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils. Environ. Pollut. 2016, 219, 19–27. [Google Scholar] [CrossRef]
- Cao, L.W.; Appel, E.; Rösler, W.; Magiera, T. Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution. Geophys. J. Int. 2015, 203, 767–775. [Google Scholar] [CrossRef]
- Van Maanen, J.M.; Borm, P.J.A.; Knaapen, A.; van Herwijnen, M.; Schilderman, P.A.E.L.; Smith, K.R.; Aust, A.E.; Tomatis, M.; Fubini, B. In vitro effects of coal fly ashes: Hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal. Toxicol. 1999, 11, 1123–1141. [Google Scholar] [CrossRef]
- Valavanidis, A.; Salika, A.; Theodoropoulou, A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmos. Environ. 2000, 34, 2379–2386. [Google Scholar] [CrossRef]
- Dellinger, B.; Pryor, W.A.; Cueto, R.; Squadrito, G.L.; Hegde, V.; Deutsch, W.A. Role of free radicals in the toxicity of airborne fine particulate matter. Chem. Res. Toxicol. 2001, 14, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef]
- Bourliva, A.; Papadopoulou, L.; Aidona, E.; Giouri, K.; Simeonidis, K.; Vourlias, G. Characterization and geochemistry of technogenic magnetic particles (TMPs) in contaminated industrial soils: Assessing health risk via ingestion. Geoderma 2017, 295, 86–97. [Google Scholar] [CrossRef]
- Chaudhary, S.; Banerjee, D.K. Speciation of some heavy metals in coal fly ash. Chem. Speciat. Bioavailab. 2007, 19, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Zeien, H.; Brümmer, G.W. Chemische extractionen zur bestimmung von schwermetall bindungsformen. Boden. Mitteilgn. Dtsch. Bodenkundl. Geselsch. 1989, 59, 505–510. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Rauret, G. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 1998, 46, 449–455. [Google Scholar] [CrossRef]
- Arey, J.S.; Seaman, J.C.; Bertsch, P.M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ. Sci. Technol. 1999, 33, 337–342. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy metal speciation in the sediments of northern Adriatic Sea—A new approach for environmental toxicity determination. Heavy Met. Environ. 1985, 2, 454–456. [Google Scholar]
- Sutkowska, K.; Czech, T.; Teper, L.; Krzykawski, T. Heavy metals soil contamination induced by historical zinc smelting in Jaworzno. Ecol. Chem. Eng. A 2013, 20, 1441–1450. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. J. Environ. Qual. 1997, 26, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Rinklebe, J.; Shaheen, S.M. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water Air Soil Pollut. 2014, 225, 2039. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. J. Geol. 1969, 2, 108–118. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Pan, Y.; Wu, Z.; Zhou, J.; Zhao, J.; Ruan, X.; Liu, J.; Qian, G. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J. Hazard. Mater. 2013, 261, 269–276. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, X.; Liao, X.; Lin, M.; Liu, J.; Wang, J. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol. Environ. Saf. 2013, 95, 130–136. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Gluskoter, H.J. Mineralogy of ash of some American coals: Variations with temperature and source. Fuel 1976, 55, 90–96. [Google Scholar] [CrossRef]
- Zyryanov, V.V.; Petrov, S.A.; Matvienko, A.A. Characterization of spinel and magnetospheres of coal fly ashes collected in power plants in the former USSR. Fuel 2011, 90, 486–492. [Google Scholar] [CrossRef]
- da Silva, L.; Coelho, L.M.; Rosolen, V.; Coelho, N.M. Metal speciation in surface sediments of the Uberabinha river in Uberlândia, MG state, Brazil. J. Braz. Chem. Soc. 2011, 2222, 2094–2100. [Google Scholar] [CrossRef] [Green Version]
- Karakaśeva, E.; Boev, B.; Zajkova, V. Total and extractable forms of Cu, Zn, Ni, Cr, Pb and Fe in vineyard soil (Valandovo Valley, Macedonia) determined by a sequential extraction procedure. Maced. J. Chem. Chem. Eng. 2012, 3131, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Dąbek-Złotorzyńska, E.; Kelly, M.; Chen, H.; Chakrabarti, C.L. Application of capillary electrophoresis combined with a modified BCR sequential extraction for estimating of distribution of selected trace metals in PM2.5 fractions of urban airborne particulate matter. Chemosphere 2005, 58, 1365–1376. [Google Scholar] [CrossRef]
- USEPA. Air Quality Criteria for LEAD (Final Report, 2006); U.S. Environmental Protection Agency: Washington, DC, USA, 2006; EPA/600/R-05/144aF-bF.
- Krasnodębska-Ostręga, B.; Sadowska, M.; Ostrowska, S. Thallium speciation in plant tissues–Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals. Talanta 2012, 93, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Vaněk, A.; Chrastný, V.; Komárek, M.; Penížek, V.; Teper, L.; Cabała, J.; Drábeka, O. Geochemical position of thallium in soils from a smelter-impacted area. J. Geochem. Explor. 2013, 124, 176–182. [Google Scholar] [CrossRef]
- Kuokkanen, T.; Poykio, R.; Nurmesniemi, H.; Ramo, J. Sequential leaching of heavy metals and sulfur in bottom ash and fly ash from the co-combustion of wood and peat at a municipal district heating plant. Chem. Speciat. Bioavailab. 2006, 18, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Torvela, H. Measurement of Atmospheric Emissions; Springer: Berlin, Germany, 1994. [Google Scholar]
- Jakubowski, M. Zinc and cadmium compounds. In Patty’s Toxicol, 6th ed.; 6 Volume Set; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Johnston, C.P. Reduction of chromium (VI) in saturated zone sediments by calcium polysulfide and nanoscale zerovalent iron derived from green tea extract. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering; Hryciw, R.D., Athanasopoulos-Zekkos, A., Yesiller, N., Eds.; ASCE Press: Reston, VA, USA, 2012; pp. 3959–3967. [Google Scholar]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Bućko, M.S.; Magiera, T.; Johanson, B.; Petrovský, E.; Pesonen, L.J. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ. Pollut. 2011, 159, 1266–1276. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of acritical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Regulation of the Minister of Environment of September 1, 2016 on the Method of Assessing the Pollution of the Earth’s Surface; Warsaw, September 5, 2016, Journal of Laws 2016 Item 1395. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 11 November 2020).
- Ullrich, S.M.; Ramsey, M.H.; Helios-Rybicka, E. Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Appl. Geochem. 1999, 14, 187–196. [Google Scholar] [CrossRef]
- Rachwał, M. The impact of industrial dust immissions on the formation of magnetic and geochemical anomalies of forest soils in the transect Jaworzno–Bukowno–Olkusz. Ph.D. Thesis, Wroclaw University of Science and Technology, Wrocław, Poland, 2006. (In Polish). [Google Scholar]
- Cabała, J.; Warchulski, R.; Rozmus, D.; Środek, D.; Szełęg, E. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian Region (Southern Poland). Minerals 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
Step | Fraction | Extractants | Equilibration |
---|---|---|---|
F1 | Soluble + Exchangeable fraction | 1 M NH4NO3, pH 7.0 | S:L* 1:25, shaking for 24 h at room temperature |
F2 | Easily mobilizable fraction (bound to carbonate) | 1 M NH4OAc, pH 6.0 | S:L* 1:25, shaking for 24 h at room temperature |
F3 | Manganese oxide fraction (bound to Mn (hydr)oxides) | 0.1 M NH2OH-HCl + 1 M NH4OAc, pH 6.0 | S:L* 1:25, shaking for 30 min at room temperature |
F4 | Organic fraction (bound to soil organic matter-SOM) | 0.025 M NH4EDTA, pH 4.6 | S:L* 1:25, shaking for 90 min at room temperature |
F5 | Amorphous iron oxide fraction (bound by low crystalline Fe (hydr)oxides) | 0.2 MNH4-Oxalate buffer, pH 3.25 | S:L* 1:25, shaking for 4 h at room temperature |
F6 | Crystalline iron oxide fraction (bound by crystalline Fe (hydr)oxides) | 0.1 M ascorbic acid in 0.2 M NH4-Oxalate, pH 3.25 | S:L* 1:25, shaking for 30 min at water bath on 96 °C |
F7 | Residual fraction (mineral form) | Aqua regia (HCl + HNO3) | S:L* 1:25 |
PTEs | Dust after Hard Coal Combustion | Dust after Lignite Combustion | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | |
Zn | 213 | 188 | 199 | 245 | 165 | 159 | 161 | 163 |
Pb | 117 | 97 | 102 | 112 | 75 | 73 | 100 | 115 |
Cd | 6,3 | 16 | 11 | 4.4 | 7 | 16 | 5.8 | 19 |
Cu | 79 | 78 | 83 | 92 | 52 | 56 | 53 | 59 |
Cr | 82 | 92 | 105 | 106 | 90 | 88 | 88 | 88 |
Horizon | Depth | χ | Fe | Mn | Zn | Pb | Cd | Cu | Cr | Ni | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | 10−8 m3·kg−1 | mg·kg−1 | |||||||||
Oi | 0–1 | 57 | 3884 | 193 | 354 | 231 | 3.5 | 47 | 5 | 8 | 4.5 |
Oe | 1–6 | 154 | 9890 | 250 | 450 | 385 | 5 | 75 | 10 | 14.5 | 2.5 |
Oa/Ah | 6–15 | 81 | 16,605 | 203 | 418 | 713 | 7.2 | 77 | 9.5 | 15 | 5.8 |
Ah | 15–20 | 90 | 3620 | 23 | 249 | 239 | 7.5 | 33 | 4.5 | 24 | 2.8 |
E | 20–25 | 6.2 | 94 | 2.8 | 40 | 5.5 | 1 | 4.5 | 1 | 2 | 0 |
E/B | 25–40 | 3.7 | 114 | 4 | 51 | 5 | 1.4 | 6 | 3.5 | 5.5 | 0 |
B | <40 | 1.7 | 121 | 1.8 | 32 | 0 | 1.6 | 1.5 | 4.3 | 0 | 0 |
Soil Horizon | Fe | Mn | Zn | Pb | Cd | Cu | Cr | Ni | Co |
---|---|---|---|---|---|---|---|---|---|
Background | 7000 | 600 | 17.5 | 6.5 | 0.35 | 6 | 10.5 | 13.5 | 1.6 |
Igeo Oi | −1.44 | −2.22 | 3.75 | 4.57 | 2.74 | 2.38 | −1.66 | −1.34 | 0.91 |
Igeo Oe | −0.09 | −1.85 | 4.1 | 5.3 | 3.24 | 3.06 | −0.66 | −0.48 | 0.06 |
Igeo Oa/Ah | 0.66 | −2.15 | 3.99 | 6.19 | 3.78 | 3.09 | −0.73 | −0.41 | 1.26 |
Igeo Ah | −1.54 | −5.32 | 3.25 | 4.61 | 3.83 | 1.85 | −1.81 | 0.25 | 0.2 |
Category | RAC % | Risk | Hard Coal | Lignite | Soil |
---|---|---|---|---|---|
I | <1 | No risk | - | - | Fe |
II | 1–10 | Low risk | Zn, Pb | Zn | Cu, Cr |
III | 11–30 | Medium risk | Cr | Cr | Pb, Ni, Co |
IV | 31–50 | High risk | Cu | Cd, Cu, Pb | Zn |
V | >50 | Very high risk | Cd | - | Mn, Cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawer, M. Identification of Technogenic Magnetic Particles and Forms of Occurrence of Potentially Toxic Elements Present in Fly Ashes and Soil. Minerals 2020, 10, 1066. https://doi.org/10.3390/min10121066
Wawer M. Identification of Technogenic Magnetic Particles and Forms of Occurrence of Potentially Toxic Elements Present in Fly Ashes and Soil. Minerals. 2020; 10(12):1066. https://doi.org/10.3390/min10121066
Chicago/Turabian StyleWawer, Małgorzata. 2020. "Identification of Technogenic Magnetic Particles and Forms of Occurrence of Potentially Toxic Elements Present in Fly Ashes and Soil" Minerals 10, no. 12: 1066. https://doi.org/10.3390/min10121066
APA StyleWawer, M. (2020). Identification of Technogenic Magnetic Particles and Forms of Occurrence of Potentially Toxic Elements Present in Fly Ashes and Soil. Minerals, 10(12), 1066. https://doi.org/10.3390/min10121066