Volcanic Holocrystalline Bedrock and Hydrothermal Alteration: A Terrestrial Analogue for Mars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Settingof the Terrestrial Analogue
2.2. Methodology
3. Results
3.1. Petrography and Geochemistry of the Etnean Basalt in Comparison with Mars
3.2. Experimental Alteration
4. Discussion
4.1. Mars vs. Earth Mineralogical Analogies
4.2. Insight into Alteration Processes from the Experimental Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamilton, V.E.; Christensen, P.R.; McSween, H.Y., Jr.; Bandfield, J.L. Searching for the source regions of martian meteorites using MGS TES: Integrating Martian meteorites into the global distribution of igneous materials on Mars. Meteor. Planet. Sci. 2003, 38, 871–885. [Google Scholar] [CrossRef]
- Wyatt, M.B.; McSween, H.Y. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 2002, 417, 263–266. [Google Scholar] [CrossRef]
- Saunders, R.S.; Arvidson, R.E.; Badhwar, G.D.; Boynton, W.V.; Christensen, P.R.; Cucinotta, F.A.; Feldman, W.C.; Gibbs, R.G.; Kloss, C., Jr.; Landano, M.R.; et al. 2001 Mars Odyssey mission summary. Space Sci. Rev. 2004, 110, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Bibring, J.P.; Langevin, Y.; Mustard, J.F.; Poulet, F.; Arvidson, R.; Gendrin, A.; Gondet, B.; Mangold, N.; Pinet, P.; Forget, F. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 2006, 312, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Murchie, S.L.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 2007, 112, E05S03. [Google Scholar] [CrossRef]
- Bristow, T.F.; Rampe, E.B.; Achilles, C.N.; Blake, D.F.; Chipera, S.J.; Craig, P.; Crisp, J.A.; Des Marais, D.J.; Downs, R.T.; Gellert, R.; et al. Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars. Sci. Adv. 2018, 4, eaar3330. [Google Scholar] [CrossRef] [Green Version]
- McSween, H.Y. Petrology on Mars. Am. Mineral. 2015, 100, 2380–2395. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.; Meunier, A.; Fraeman, A.; Langevin, Y. Subsurface water and claymineral formation during the early history of Mars. Nature 2011, 479, 53–60. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.; Mangold, N.; Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res. 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Sun, V.Z.; Milliken, R.E. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophy. Res. Planets 2015, 120, 2293–2332. [Google Scholar] [CrossRef]
- Ruff, S.W. Spectral evidence for zeolite in the dust on Mars. Icarus 2004, 168, 131–143. [Google Scholar] [CrossRef]
- Viennet, J.C.; Bultel, B.; Riu, L.; Werner, S. Dioctahedral phyllosilicates/zeolites versus carbonates/zeolites competitions as constraints to understand early Mars alteration conditions. J. Geophys. Res. Plan. 2017, 122, 2328–2343. [Google Scholar] [CrossRef]
- Viviano-Beck, C.E.; Murchie, S.L.; Beck, A.W.; Dohm, J.M. Compositional and structural constraints on the geologic history of eastern Tharsis rise, Mars. Icarus 2017, 284, 43–58. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Mangold, N.; Dehouck, E.; Fedo, C.; Forni, O.; Achilles, C.; Bristow, T.; Downs, R.T.; Frydenvang, J.; Gasnault, O.; L’Haridon, J.; et al. Chemical alteration offine-grained sedimentary rocksat Gale crater. Icarus 2019, 321, 619–631. [Google Scholar] [CrossRef]
- Bishop, J.L.; Gross, C.; Danielsen, J.; Parente, M.; Murchie, S.L.; Horgan, B.; Wray, J.J.; Viviano, C.; Seelos, F.P. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. Icarus 2020, 341, 113634. [Google Scholar] [CrossRef]
- Velde, B. Origin and mineralogy of clays. In Clays and the Environment; Springer: Berlin, Germany, 1995; p. 334. [Google Scholar]
- Meunier, A.; Petit, S.; Ehlmann, B.L.; Dudoignon, P.; Westall, F.; Mas, A.; El Albani, A.; Ferrage, E. Magmatic precipitation as a possible origin of Noachian clays on Mars. Nat. Geosci. 2012, 5, 739–743. [Google Scholar] [CrossRef]
- Galán, E.; Ferrell, R.E. Chapter 3—genesis of clay minerals. In Developments in Clay Science; Faïza, B., Gerhard, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–126. [Google Scholar]
- Wilson, M.J. The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Min. 1999, 34, 7–25. [Google Scholar] [CrossRef]
- Schröder, C.; Bland, P.A.; Golombek, M.P.; Ashley, J.W.; Warner, N.H.; Grant, J.A. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars. Nat. Commun. 2016, 7, 13459. [Google Scholar] [CrossRef]
- Gitreau, M.; Flahaut, J. Record of low-temperature aqueous alteration of Martian zircon during the late Amazonian. Nat. Commun. 2019, 10, 2457. [Google Scholar] [CrossRef]
- Banin, A.; Han, F.X.; Kan, I.; Cicelsky, A. Acidic volatiles and the Mars soil. J. Geophys. Res. 1997, 102, 13341–13356. [Google Scholar] [CrossRef]
- Tosca, N.J.; McLennan, S.M.; Lindsley, D.H.; Schoonen, M.A. Acid-sulfate weathering of synthetic Martian basalt: The acid-fog model revisited. J. Geophys. Res. 2004, 109, E05003. [Google Scholar] [CrossRef] [Green Version]
- Hurowitz, J.A.; McLennan, S.M. A ~3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 2007, 260, 432–443. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Mironenko, M.V. Timing of acid weathering on Mars: A thermodynamic-kinetic assessment. J. Geophys. Res. Planets 2007, 112, E07006. [Google Scholar] [CrossRef] [Green Version]
- Bloise, A.; Cannata, C.B.; De Rosa, R. Hydrothermal Alteration of Etna Ash and Implications for Mars. Minerals 2020, 10, 450. [Google Scholar] [CrossRef]
- Altheide, T.S.; Chevrier, V.F.; Noe Dobrea, E. Mineralogical characterization of acid weathered phyllosilicates with implications for secondary Martian deposits. Geochim. Cosmochim. Acta 2010, 74, 6232–6248. [Google Scholar] [CrossRef]
- Gaudin, A.; Dehouck, E.; Grauby, O.; Mangold, N. Formation of clay minerals on Mars: Insights from long-term experimental weathering of olivine. Icarus 2018, 311, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Viennet, J.C.; Bultel, B.; Werner, S.C. Experimental reproduction of the martian weathering profiles argues for a dense Noachian CO2 atmosphere. Chem. Geol. 2019, 525, 82–95. [Google Scholar] [CrossRef]
- Dehouck, E.; Gaudin, A.; Mangold, N.; Lajaunie, L.; Dauzères, A.; Grauby, O.; Le Menn, E. Weathering of olivine under CO2 atmosphere: A Martian perspective. Geochim. Cosmochim. Acta 2014, 135, 170–189. [Google Scholar] [CrossRef]
- Smith, R.J.; Horgan, B.H.N.; Mann, P.; Cloutis, E.A.; Christensen, P.R. Acid weathering of basalt and basaltic glass: 2. Effects of microscopic alteration textures on spectral properties. J. Geophys. Res. Planets 2017, 122, 203–227. [Google Scholar] [CrossRef]
- McCollom, T.M.; Robbins, M.; Moskowitz, B.; Berquó, T.S.; Jöns, N.; Hynek, B.M. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars. J. Geophys. Res. Planets 2013, 118, 577–614. [Google Scholar] [CrossRef]
- Marcucci, E.C.; Hynek, B.M. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars. J. Geophys. Res. Planets 2014, 119, 679–703. [Google Scholar] [CrossRef] [Green Version]
- Horgan, B.H.N.; Smith, R.J.; Cloutis, E.A.; Mann, P.; Christensen, P.R. Acidic weathering of basalt and basaltic glass: 1. Near-infrared spectra, thermal infrared spectra, and implications for Mars. J. Geophys. Res. Planets 2017, 122. [Google Scholar] [CrossRef]
- Peretyazhko, T.S.; Niles, P.B.; Sutter, B.; Morris, R.V.; Agresti, D.G.; Le, L.; Ming, D.W. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars. Geochim. Cosmochim. Acta 2018, 220, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Sætre, C.; Hellevang, H.; Riu, L.; Dypvik, H.; Pilorget, C.; Poulet, F.; Werner, S.C. Experimental hydrothermal alteration of basaltic glass with relevance to Mars. Meteor. Planet. Sci. 2018, 54, 357–378. [Google Scholar] [CrossRef]
- Friedman, I.; Long, W. Volcanic glasses, their origins and alteration processes. J. Non-Cryst. Solids 1984, 67, 127–133. [Google Scholar] [CrossRef]
- de la Fuente, S.; Cuadros, J.; Fiore, S.; Linares, J. Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays Clay Miner. 2000, 48, 339–350. [Google Scholar] [CrossRef]
- McSween, H.Y.; Taylor, G.J.; Wyatt, M.B. Elemental Composition of the Martian Crust. Science 2009, 324, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Leveille, R.; Datta, S. Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planet. Space Sci. 2010, 58, 592–598. [Google Scholar] [CrossRef]
- Sauro, F.; Pozzobon, R.; Massironi, M.; De Berardinis, P.; Santagata, T.; Waele, J. Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology. Earth Sci. Rev. 2020, 209, 103288. [Google Scholar] [CrossRef]
- Chester, D.K.; Duncan, A.M.; Guest, J.E.; Kilbum, C.R.J. Mount Etna: The Anatomy of a Volcano; Chapman and Hall: London, UK, 1985; p. 404. [Google Scholar]
- Bonaccorso, A.; Calvari, S.; Coltelli, M.; Del Negro, C.; Falsaperla, S. Etna Volcano Laboratory; American Geophysical Union: Washington, DC, USA, 2004; Volume 143. [Google Scholar]
- Monaco, C.; de Guidi, G.; Ferlito, C. The Morphotectonic map of Mt.Etna. Ital. J. Geosci. 2010, 129, 408–428. [Google Scholar]
- Tanguy, J.C.; Condomines, M.; Kieffer, G. Evolution of Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geoth. Res. 1997, 75, 221–250. [Google Scholar] [CrossRef]
- Branca, S.; Coltelli, M.; Groppelli, G. Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy. Ital. J. Geosci. 2011, 130, 265–291. [Google Scholar]
- Gillot, P.Y.; Kieffer, G.; Romano, R. The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol. 1994, 5, 81–87. [Google Scholar]
- De Beni, E.; Wijbrans, J.R.; Branca, S.; Coltelli, M.; Groppelli, G. New results of 40Ar/39Ar dating constrain the timing of transition from fissure-type to central volcanism at Mount Etna (Italy). Terra Nova 2005, 17, 292–298. [Google Scholar] [CrossRef]
- Branca, S.; Coltelli, M.; De Beni, E.; Wijbrans, J. Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Int. J. Earth. Sci. 2008, 97, 135–152. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Pompilio, M. Magma dynamics at Mount Etna. In Etna—Volcano Laboratory; Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., Eds.; American Geological Union: Washington, DC, USA, 2004; pp. 91–110. [Google Scholar]
- Kurokawa, H.; Kurosawa, K.; Usui, T. A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 2018, 299, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar]
- McSween, H.Y.; Ruff, S.W.; Morris, R.S.; Gellert, R.; Klingelhöfer, G.; Christensen, P.R.; McCoy, T.J.; Ghosh, A.; Moersch, J.M.; Cohen, B.A. Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. J. Geophys. Res. 2008, 113, E06S04. [Google Scholar] [CrossRef] [Green Version]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of igneous rocks analyzed by chemcam at gale crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Cardinale, M.; Pozzobon, R.; Tangari, A.C.; Runyon, K.; Di Primio, M.; Marinangeli, L. Reconstruction of the sand transport pathways and provenance in Moreux crater, Mars. Planet Space Sci. 2019, 181, 104788. [Google Scholar] [CrossRef]
- Pelkey, S.M.; Mustard, J.F.; Murchie, S.; Clancy, R.T.; Wolff, M.; Smith, M.; Milliken, R.; Bibring, J.P.; Gendrin, A.; Poulet, F.; et al. CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. J. Geophys. Res. 2007, 112, E8. [Google Scholar] [CrossRef]
- Larsen, N.; Svendsen, S.H.; Knudsen, B.M.; Voigt, C.; Weisser, C.; Kohlmann, A.; Schreiner, J.; Mauersberger, K.; Deshler, T.; Kroger, C.; et al. Microphysical mesoscale simulations of polar stratospheric cloud formation constrained by in situ measurements of chemical and optical cloud properties. J. Geophys. Res. 2002, 107, 8301. [Google Scholar] [CrossRef]
- Grotzinger, J.P. Analysis of surface materials by the Curiosity Mars Rover. Science 2013, 341, 1475. [Google Scholar] [CrossRef] [Green Version]
- Kawano, M.T.; Katsutoshi, T.; Yasushi, S. Analytical electron microscopic study of the non crystalline products formed at early weathering stages of volcanic glass. Clays Clay Miner. 1997, 45, 440–447. [Google Scholar] [CrossRef]
- Hazen, R.M.; Sverjensky, D.A.; Azzolini, D.; Bish, D.L.; Elmore, S.C.; Hinnov, L.; Milliken, R.E. Clay mineral evolution. Am. Miner. 2013, 98, 2007–2029. [Google Scholar] [CrossRef]
- Tangari, A.C.; Scarciglia, F.; Piluso, E.; Marinangeli, L.; Pompilio, L. Role of weathering of pillow basalt, pyroclastic input and geomorphic processes on the genesis of the Monte Cerviero upland soils (Calabria, Italy). Catena 2018, 171, 299–315. [Google Scholar] [CrossRef]
- Adamo, P.; Violante, P.; Wilson, M.J. Tubular and spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina volcano (Southern Italy). Geoderma 2001, 99, 295–316. [Google Scholar] [CrossRef]
- Ugolini, F.C.; Dahlgren, R.A. Soil development in volcanic ash. Glob. Environ. Res. 2002, 6, 69–81. [Google Scholar]
- Rasmussen, C.; Dahlgren, R.A.; Southard, R.J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 2010, 154, 473–485. [Google Scholar] [CrossRef]
- Egli, M.; Nater, M.; Mirabella, A.; Raimondi, S.; Plötze, M.; Alioth, L. Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 2008, 143, 101–114. [Google Scholar] [CrossRef]
- Liotta, M.; Paonita, A.; Caracausi, A.; Martelli, M.; Rizzo, A.; Favara, R. Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chem. Geol. 2010, 278, 92–104. [Google Scholar] [CrossRef]
- Liotta, M.; D’Alessandro, W.; Bellomo, S.; Brusca, L. Volcanic plume fingerprint in the groundwater of a persistently degassing basaltic volcano: Mt Etna. Chem. Geol. 2016, 433, 68–80. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Gavenda, R.T.; Kelly, E.F.; Ziegler, K.; Olso, C.G.; Elliott, W.C.; Hendricks, D.M. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 2003, 202, 195–223. [Google Scholar] [CrossRef]
- Kawano, M.; Tomita, K. Formation of allophone and beidellite during hydrothermal alteration of volcanic glass below 200 °C. Clays Clay Min. 1992, 40, 666–674. [Google Scholar] [CrossRef]
- Mirabella, A.; Egli, M.; Raimondi, S.; Giaccai, D. Origin of clay minerals in soils on pyroclastic deposits in the island of Lipari (Italy). Clays Clay Min. 2005, 53, 409–421. [Google Scholar] [CrossRef]
- Garcìa-Romero, E.; Vegas, J.; Baldonedo, J.L.; Marfil, R. Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands, Spain). Sediment. Geol. 2005, 174, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Kawano, M.; Tomita, K. Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150 and 200 °C. Clays Clay Miner. 1997, 45, 365–377. [Google Scholar] [CrossRef]
- Evans, B.W.; Hattori, K.H.; Baronnet, A. Serpentinite: What, why, where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Geptner, A.R.; Ivanovskaya, T.A.; Pokrovskaya, E.V. Hydrothermal fossilization of microorganisms at the Earth’s surface in Iceland. Lithol. Miner. Resour. 2005, 40, 505–520. [Google Scholar] [CrossRef]
- Piochi, M.; Kilburn, C.R.J.; Di Vito, M.A.; Mormone, A.; Tramelli, A.; Troise, C.; de Natale, G. The volcanic and geothermally active Campi Flegrei caldera: An integrated multidisciplinary image of its buried structure. Int. J. Earth Sci. 2014, 103, 401–421. [Google Scholar] [CrossRef]
- Gresse, M.; Vandemeulebrouck, J.; Byrdina, S.; Chiodini, G.; Roux, P.; Rinaldi, A.P.; Wathelet, M.; Ricci, T.; Letort, J.; Petrillo, Z.; et al. Anatomy of a fumarolic system inferred from a Multiphysics approach. Sci. Rep. 2018, 8, 7580–7590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shevenell, L.; Goff, F. Evolution of hydrothermal waters at Mount St. Helens, Washington, USA. J. Volcanol. Geotherm. Res. 1995, 69, 73–94. [Google Scholar] [CrossRef]
- Pirajno, F. Subaerial hot springs and near-surface hydrothermal mineral systems past and present, and possible extraterrestrial analogues. Geosci. Front. 2020, 11, 1549–1569. [Google Scholar] [CrossRef]
- Triana, J.M.R.; Herrera, J.F.R.; Rios, R.C.A.; Castellanos, O.M.A.; Henao, J.A.M.; Williams, C.D.; Roberts, C.L. Natural zeolites filling amygdales and veins in basalts from the British Tertiary igneous Province on the Isle of Skye, Scotland. Earth Sci. Res. J. Petrol. 2012, 16, 41–53. [Google Scholar]
- Le Deit, L.; Flahaut, J.; Quantin, C.; Hauber, E.; Mège, D.; Bourgeois, O.; Gurgurewicz, J.; Massé, M.; Jaumann, R. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J. Geophys Res. 2012, 117, E00J05. [Google Scholar] [CrossRef]
- Yen, A.S.; Morris, R.V.; Clarck, B.C.; Gellert, R.A.; Knudson, T.; Squyres, S.; Mittlefehldt, D.W.; Ming, D.W.; Arvidson, R.; McCoy, T.; et al. Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles Class soils. J. Geophys. Res. 2008, 113, E06S10. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, I.O.; Fedo, C.M.; McSween, H.Y., Jr. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. J. Geophys. Res. 2012, 117, 1006. [Google Scholar] [CrossRef] [Green Version]
- Nazari-Sharabian, M.; Aghababaei, M.; Karakouzian, M.; Karami, M. Water on Mars—A Literature Review. Galaxies 2020, 8, 40. [Google Scholar] [CrossRef]
- Pondrelli, M.; Rossi, A.P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A. Geological, geomorphological, facies and allostratigraphic maps or the Eberwalde fan delta. Planet. Space Sci. 2011, 59, 1166–1178. [Google Scholar] [CrossRef]
- Le Deit, L.; Mangold, N.; Forni, O.; Schröder, S.; Stack, K.M.; Sumner, D.; Fisk, M.; Dromart, G.; Blaney, D.; Fabre, C.; et al. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity. J. Geophys. Res. Planets 2016, 121, 784–804. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Remolar, D.C.; Morris, R.V.; Gruener, J.E.; Amils, R.; Knoll, A.H. The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240, 149–167. [Google Scholar] [CrossRef]
- Fernández-Remolar, D.C.; Prieto-Ballesteros, O.; Gómez-Ortíz, D.; Fernández-Sampedro, M.; Sarrazin, P.; Gailhanou, M.; Amils, R. Río Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathways of phyllosilicates on Mars. Icarus 2011, 211, 114–138. [Google Scholar] [CrossRef]
- Kyle, J.E.; Schroeder, P.A. Role of smectite in siliceous-sinter formation and microbial-texture preservation: Octopus Spring, Yellowstone National Park, Wyoming, USA. Clay Clay Miner. 2007, 55, 189–199. [Google Scholar] [CrossRef]
- Ruff, S.W.; Campbell, K.A.; Van Kranendonk, M.J.; Rice, M.S.; Farmer, J.D. The case for ancient hot springs in Gusev crater, Mars. Astrobiology 2020, 20, 475–499. [Google Scholar] [CrossRef] [Green Version]
- Costello, L.J.; Filiberto, J.; Crandall, J.R.; Potter-McIntyre, S.L.; Schwenzer, S.P.; Miller, M.A.; Hummer, D.R.; Olsson-Francis, K.; Perl, S. Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike. Geochemistry 2020, 80, 125613. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F. Orbital identification of clays and carbonates in Gusev crater. Icarus 2012, 219, 250–253. [Google Scholar] [CrossRef]
- Clark, B.C.; Arvidson, R.E.; Gellert, R.; Morris, R.V.; Ming, D.W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W.H.; Yen, A.; et al. Evidence for montmorillonite or its compositional equivalent in ColumbiaHills, Mars. J. Geophys. Res. 2007, 112, E06S01. [Google Scholar]
- Catling, D.C. Mars atmosphere: History and surface interactions. In Encyclopedia of the Solar System; Spohn, T., Breur, D., Johnson, T.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 343–357. [Google Scholar]
- Hurowitz, J.A.; McLennan, S.M.; Tosca, N.J.; Arvidson, R.E.; Michalski, J.R.; Ming, D.W.; Schröder, C.; Squyres, S.W. In-situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 2006, 111, E02S19. [Google Scholar] [CrossRef] [Green Version]
- McAdam, A.C.; Zolotov, M.Y.; Mironenko, M.V.; Sharp, T.G. Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints. J. Geophys. Res. 2008, 113, 08003. [Google Scholar] [CrossRef] [Green Version]
- Squyres, S.W.; Arvidson, R.E.; Ruff, S.; Gellert, R.; Morris, R.V.; Ming, D.W.; Crumpler, L.; Farmer, J.D.; Des Marais, D.J.; Yen, A.; et al. Detection of silica-rich deposits on mars. Science 2008, 320, 1063–1067. [Google Scholar] [CrossRef]
- Halevy, I.; Head, J.W., III. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 2014, 7, 865–868. [Google Scholar] [CrossRef]
- Gaudin, A.; Dehouck, E.; Mangold, N. Evidence for weathering on early Mars from a comparison with terrestrial weathering profiles. Icarus 2011, 216, 257–268. [Google Scholar] [CrossRef]
Sample | Temperature (°C) | pH | Time | Minerals Affected by Alteration | Alteration Products |
---|---|---|---|---|---|
AC1R2 (Acireale, Etna Mount) | 80 | 3.5 | 15 days | not observed | not observed |
80 | 5 | 15 days | not observed | ||
150 | 5 | 7 days | clinopyroxene plagioclase | smectite | |
150 | 5 | 15 days | smectite | ||
150 | 3.5 | 7 days | smectite | ||
150 | 3.5 | 15 days | smectite | ||
175 | 5 | 15 days | smectite, analcime | ||
175 | 3.5 | 15 days | smectite, analcime | ||
200 | 3.5 | 7 days | clinopyroxene | oxides | |
250 | 5 | 10 days | oxides |
Major Elements | Earth | Mars | |
---|---|---|---|
ACIR2 Basalt (Moint Etna) | Backstay Basalt (Gusev Crater) | Thimble Basalt (Gale Crater) | |
SiO2 (wt%) | 49.07 | 49.50 | 48.79 |
Al2O3 | 19.20 | 13.30 | 14.50 |
MgO | 3.82 | 8.31 | 4.70 |
Fe2O3 | 9.76 | 19.5 | 19.08 |
CaO | 10.13 | 6.04 | 5.38 |
Na2O | 4.10 | 4.15 | 4.52 |
K2O | 1.67 | 1.07 | 1.68 |
P2O5 | 0.54 | 1.39 | not determined |
TiO2 | 1.52 | 0.93 | 1.23 |
MnO | 0.17 | 0.24 | not determined |
LOI | 0.53 | not determined | not determined |
Major Elements | Phenocryst of Clinapyroxene | Patina of Alteration |
---|---|---|
SiO2 (wt%) | 52.46 | 42.39 |
Al2O3 | 5.63 | 6.42 |
MgO | 14.86 | 17.17 |
Fe2O3 | 7.56 | 17.98 |
CaO | 17.51 | 13.34 |
Na2O | 1.15 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangari, A.C.; Marinangeli, L.; Scarciglia, F.; Pompilio, L.; Piluso, E. Volcanic Holocrystalline Bedrock and Hydrothermal Alteration: A Terrestrial Analogue for Mars. Minerals 2020, 10, 1082. https://doi.org/10.3390/min10121082
Tangari AC, Marinangeli L, Scarciglia F, Pompilio L, Piluso E. Volcanic Holocrystalline Bedrock and Hydrothermal Alteration: A Terrestrial Analogue for Mars. Minerals. 2020; 10(12):1082. https://doi.org/10.3390/min10121082
Chicago/Turabian StyleTangari, Anna Chiara, Lucia Marinangeli, Fabio Scarciglia, Loredana Pompilio, and Eugenio Piluso. 2020. "Volcanic Holocrystalline Bedrock and Hydrothermal Alteration: A Terrestrial Analogue for Mars" Minerals 10, no. 12: 1082. https://doi.org/10.3390/min10121082
APA StyleTangari, A. C., Marinangeli, L., Scarciglia, F., Pompilio, L., & Piluso, E. (2020). Volcanic Holocrystalline Bedrock and Hydrothermal Alteration: A Terrestrial Analogue for Mars. Minerals, 10(12), 1082. https://doi.org/10.3390/min10121082