Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology
4. Sample Description and Analytical Methods
4.1. In-Situ Trace Elements Analysis
4.2. In-Situ Sulfur Isotope Analysis
4.3. Bulk Trace Elements of Pyrite
5. Results
5.1. In-Situ Chemical Composition of Pyrite
5.2. In-Situ Sulfur Isotope Compositions
5.3. Bulk Chemical Composition of Pyrite
6. Discussion
6.1. Factor Analysis of Trace Element Compositions
6.2. Controls on Trace Element Distribution in Pyrite
6.3. Sulfur Isotope Fractionation
6.4. Physicochemical Conditions of Ore-Forming Fluid and Mechanisms of Ore Deposition
6.4.1. Physicochemical Conditions of Ore-Forming Fluid
6.4.2. Mechanisms of Mineral Deposition
6.5. Comparison with Other Gold Deposits in the Zhangjiakou District
7. Conclusions
- (1)
- Pyrite in stage I contains high Te, and low Zn and As contents; pyrite in stage II has the highest Co and Ni contents; pyrite in stage III contains high concentrations of Cr, Zn, Pb, Ag, Cu, Sb, Bi and Au. The calculated in‑situ δ34SH2S values range from 0.9‰ to 6.1‰, and the values in stages I and II are higher than those in stage III, which is due to the increase in fluid fO2 and/or the precipitation of minor sulfate.
- (2)
- Bisulfide complexes were the predominant metal species during gold mineralization stages in the Zhangquanzhuang ore fluids, and the pH and logfO2 of stage III were constrained to range from 4.1 to 5.2 and −36.9 to −32.1, respectively.
- (3)
- Sulfidation and boiling derived from decompression were the dominant mechanisms that led to the precipitation of sulfides and Au−Ag minerals during the evolution from stage II to stage III, which also controlled the distribution of isotopes and trace elements in sulfides.
- (4)
- The Zhangquanzhuang gold deposit was formed in a mineral system that was different from the system that formed the Dongping and Xiaoyingpan Te-Au-Ag deposits and should; thus, be called the “Zhangquanzhuang-type” deposit, representing a third gold deposit type in the Zhangjiakou ore field.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hart, C.J.R.; Goldfarb, R.J.; Qiu, Y.; Snee, L.; Miller, L.D.; Miller, M.L. Gold deposits of the northern margin of the North China Craton: Multiple late Paleozoic-Mesozoic mineralizing events. Miner. Deposita 2002, 37, 326–351. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Mao, J.W.; Li, Y.Q.; Goldfarb, R.; He, Y.; Zaw, K. Fluid Inclusion and Noble Gas Studies of the Dongping Gold Deposit, Hebei Province, China: A Mantle Connection for Mineralization? Econ. Geol. 2003, 98, 517–534. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zhai, D.; Carranza, E.J.M.; Wang, Y.; Zhen, S.; Wang, J.; Wang, J.; Liu, J.; Zhang, F. Mineral paragenesis and ore-forming processes of the dongping gold deposit, Hebei Province, China. Resour. Geol. 2019, 69, 287–313. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J. A comparison study on geological and geochemical features and ore genesis of the Xiaoyingpan and Dongping gold deposits, Hebei. Gold Geol. 1998, 4, 12–24. (In Chinese) [Google Scholar]
- Nie, F.-J. Geology and origin of the dongping alkalic-type gold deposit, Northern Hebei Province, People’s Republic of China. Resour. Geol. 1998, 48, 139–158. [Google Scholar] [CrossRef]
- Yin, J.Z.; Shi, H.Y. Geology of Gold Ore Deposits in Zhangjiakou-Xuanhua Region, Hebei Province, China; Geological Publishing House: Beijing, China, 1995. [Google Scholar]
- Yin, J.Z.; Shi, H.Y. Mineralogy characteristics of quartz in Zhangquanzhuang gold deposit, northwestern Hebei Province. Geoscience 1994, 8, 459–465. (In Chinese) [Google Scholar]
- Shui, L.S. Research on geological-tectonic feature and regularity of the concentration of gold mineralization of Zhang-Quan-Zhuang gold deposit. Gold 2000, 21, 10–13. (In Chinese) [Google Scholar]
- Shui, L.S.; He, P.S. The features of gold-containing quartz vein in the gold mine at Zhang Quan. J. Hebei Inst. Technol. 1998, 20, 89–92. (In Chinese) [Google Scholar]
- Li, C.Y.; Shi, L.D. The elemental geochemistry and exploration significance of Zhangquanzhuang gold deposit. J. Precious Met. Geol. 1999, 8, 223–226. (In Chinese) [Google Scholar]
- Yin, J.Z.; Shi, H.Y. The typomorphic characteristics and their genetic meaning on the pyrite of Zhang-Quan-Zhuang gold deposit in Hebei Province. Gold 1994, 15, 6–11. (In Chinese) [Google Scholar]
- Zhen, S.; Wang, Q.; Wang, D.; Carranza, E.J.M.; Liu, J.; Pang, Z.; Cheng, Z.; Xue, J.; Wang, J.; Zha, Z. Genesis of the Zhangquanzhuang gold deposit in the northern margin of North China Craton: Constraints from deposit geology and ore isotope geochemistry. Ore Geol. Rev. 2020, 122, 103511. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Liu, J.; Hu, J.M.; Chen, Z.L.; Pei, J.L.; Chen, Z.Y.; Zhou, J.X. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China block and their tectonic implications. Acta Geol. Sin. 2007, 23, 625–638. (In Chinese) [Google Scholar]
- Zhai, M.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Li, C.J.; Bao, Z.W.; Zhao, Z.Z.; Qiao, Y.L. Zircon U-Pb age and Hf isotopic compositions of the granitic gneisses from the Sanggan complex in the Zhangjiakou area: Constraints on the early evolution of North China Craton. Acta Geol. Sin. 2012, 28, 1057–1072. (In Chinese) [Google Scholar]
- Liu, Z.F.; Wang, J.M.; Lv, J.B.; Zheng, G.S. Geological features and age of the Wenquan rapakivi granite, Chicheng County, Hebei. Geol. China 2006, 33, 1052–1058. (In Chinese) [Google Scholar]
- Luo, Z.K.; Miao, L.C.; Guan, K.; Qiu, Y.S.; Qiu, Y.M.; McNaughton, N.J.; Groves, D.I. SHRIMP chronological study of Shuiquangou intrusive body in Zhangjiakou area, Hebei province and its geochemical significance. Geochimica 2001, 30, 116–122. (In Chinese) [Google Scholar]
- Miao, L.; Qiu, Y.; McNaughton, N.; Luo, Z.; Groves, D.; Zhai, Y.; Fan, W.; Zhai, M.; Guan, K. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: Constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol. Rev. 2002, 19, 187–204. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, Y.; Zhou, W.; Yang, J.; Zhang, S.Q. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim. Cosmochim. Acta 2007, 71, 2591–2608. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, S.; Zhou, W.; Liu, Y. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? Contrib. Miner. Pet. 2009, 158, 113–130. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.; Bao, Z.; Liang, P.; Sun, T.; Yuan, H. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. J. Anal. At. Spectrom. 2017, 32, 107–116. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Li, F. Ideal models of superimposed primary halos in hydrothermal gold deposits. J. Geochem. Explor. 1995, 55, 329–336. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.M.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Meng, Y.-M.; Hu, R.-Z.; Huang, X.-W.; Gao, J.-F.; Sasseville, C. The origin of the carbonate-hosted Huize Zn–Pb-Ag deposit, Yunnan province, SW China: Constraints from the trace element and sulfur isotopic compositions of pyrite. Miner. Pet. 2019, 113, 369–391. [Google Scholar] [CrossRef]
- Román, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F.; Deditius, A.P. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim. Cosmochim. Acta 2019, 246, 60–85. [Google Scholar] [CrossRef]
- Grant, H.L.; Hannington, M.D.; Petersen, S.; Frische, M.; Fuchs, S.H. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem. Geol. 2018, 498, 45–71. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Velasquez, G.; Beziat, D.; Salvi, S.; Siebenaller, L.; Borisova, A.Y.; Pokrovski, G.S.; De Parseval, P. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Venezuela. Econ. Geol. 2013, 109, 457–486. [Google Scholar] [CrossRef]
- Voute, F.; Hagemann, S.G.; Evans, N.J.; Villanes, C. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: Implication for paragenesis, fluid source, and gold deposition mechanisms. Miner. Deposita 2019, 54, 1077–1100. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern australian volcanic-hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in Pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia. Miner. Deposita 1987, 22, 292–300. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Deposita 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Ballantyne, J.M.; Moore, J.N. Arsenic geochemistry in geothermal systems. Geochim. Cosmochim. Acta 1988, 52, 475–483. [Google Scholar] [CrossRef]
- Layton-Matthews, D.; Peter, J.M.; Scott, S.D.; Leybourne, M.I. Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake District, Yukon Territory, Canada. Econ. Geol. 2008, 103, 61–88. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Mathieu, L. Detecting magmatic-derived fluids using pyrite chemistry: Example of the Chibougamau area, Abitibi Subprovince, Québec. Ore Geol. Rev. 2019, 114, 103127. [Google Scholar] [CrossRef]
- Cooke, D.R.; McPhail, D.C. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition. Econ. Geol. 2001, 96, 109–131. [Google Scholar]
- Keith, M.; Smith, D.J.; Doyle, K.; Holwell, D.A.; Jenkin, G.R.T.; Barry, T.L.; Becker, J.; Rampe, J. Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochim. Cosmochim. Acta 2020, 274, 172–191. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Miner. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Seward, T.M.; Williams-Jones, A.E.; Migdisov, A.A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier Science: Oxford, UK, 2014; pp. 29–57. [Google Scholar]
- Zhong, R.; Brugger, J.; Chen, Y.; Li, W. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 2015, 395, 154–164. [Google Scholar] [CrossRef]
- Stefánsson, A.; Seward, T.M. Gold(I) complexing in aqueous sulphide solutions to 500 °C at 500 bar. Geochim. Cosmochim. Acta 2004, 68, 4121–4143. [Google Scholar] [CrossRef]
- Stefánsson, A.; Seward, T.M. Stability of chloridogold(I) complexes in aqueous solutions from 300 to 600 °C and from 500 to 1800 bar. Geochim. Cosmochim. Acta 2003, 67, 4559–4576. [Google Scholar] [CrossRef]
- Stefánsson, A.; Seward, T.M. The hydrolysis of gold(I) in aqueous solutions to 600 °C and 1500 bar. Geochim. Cosmochim. Acta 2003, 67, 1677–1688. [Google Scholar] [CrossRef]
- Stefánsson, A.; Seward, T.M. Experimental determination of the stability and stoichiometry of sulphide complexes of silver(I) in hydrothermal solutions to 400 °C. Geochim. Cosmochim. Acta 2003, 67, 1395–1413. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Roux, J.; Harrichoury, J.-C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology 2005, 33, 657–660. [Google Scholar] [CrossRef]
- Tooth, B.; Etschmann, B.; Pokrovski, G.S.; Testemale, D.; Hazemann, J.-L.; Grundler, P.V.; Brugger, J. Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Acta 2013, 101, 156–172. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Borisova, A.Y.; Bychkov, A.Y. Speciation and Transport of metals and metalloids in geological vapors. Rev. Miner. Geochem. 2013, 76, 165–218. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Etschmann, B.; Liu, W.; Sherman, D.M.; Testemale, D.; Brugger, J. Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2016, 179, 32–52. [Google Scholar] [CrossRef]
- Hu, X.D.; Zhao, J.N.; Li, S.B. Gold Mineralization in Archean Metamorphic Rocks, Zhangjiakou-Xuanhua Area, Hebei Province; Geological Publishing House: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 1992, 18, 899–947. [Google Scholar] [CrossRef]
- Zimmer, K.; Zhang, Y.; Lu, P.; Chen, Y.; Zhang, G.; Dalkilic, M.; Zhu, C. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. Comput. Geosci. 2016, 90, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Sverjensky, D.A.; Shock, E.L.; Helgeson, H.C. Prediction of the thermodynamic properties of aqueous metal complexes to 1000 degrees C and 5 kb. Geochim. Cosmochim. Acta 1997, 61, 1359–1412. [Google Scholar] [CrossRef]
- Mei, Y.; Sherman, D.M.; Liu, W.; Etschmann, B.; Testemale, D.; Brugger, J. Zinc complexation in chloride-rich hydrothermal fluids (25–600 °C): A thermodynamic model derived from ab initio molecular dynamics. Geochim. Cosmochim. Acta 2015, 150, 265–284. [Google Scholar] [CrossRef]
- Reed, M.H. Sulfide mineral precipitation from hydrothermal fluids. Rev. Miner. Geochem. 2006, 61, 609–631. [Google Scholar] [CrossRef]
- Velasquez, G.; Carrizo, D.; Salvi, S.; Vela, I.; Pablo, M.; Pérez, A. Tracking Cobalt, REE and Gold from a porphyry-type deposit by LA-ICP-MS: A geological approach towards metal-selective mining in tailings. Minerals 2020, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Zhai, D.; Williams-Jones, A.E.; Liu, J.; Tombros, S.F.; Ciobanu, C.L. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the sandaowanzi epithermal Au-Ag-Te deposit, NE China. Econ. Geol. 2018, 113, 1359–1382. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Li, C.; Zhao, Z. Metallogeny of the syenite-related Dongping gold deposit in the northern part of the North China Craton: A review and synthesis. Ore Geol. Rev. 2016, 73, 198–210. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Zhang, D.; Shao, H.; Quan, S. Ore petrography and chemistry of the tellurides from the Dongping gold deposit, Hebei Province, China. Ore Geol. Rev. 2015, 64, 23–34. [Google Scholar] [CrossRef]
- Yin, J.Z.; Zhai, Y.S. On the metallogenic seroes of gold deposits in Zhangjiakou-Xuanhua region, Hebei. J. Guilin Coll. Geol. 1994, 14, 360–369, (In Chinese with English abstract). [Google Scholar]
Samples | Characteristics | Metal Minerals |
---|---|---|
pyrite from stage I | euhedral, disseminated, fine grained, unaltered | none |
pyrite from stage II | euhedral, coarse, altered by sulfides formed in stage III, sometimes fragmented, | scarce, include little chalcopyrite |
pyrite from stage III | veins, coarse | galena, chalcopyrite, sphalerite, native gold |
Principal Component Analysis | ||||||
Element | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
Eigenvalue | 4.846 | 2.942 | 1.957 | 1.877 | 1.501 | 1.402 |
Variance % | 24.231 | 14.709 | 9.784 | 9.383 | 7.504 | 7.009 |
Cumulative % | 24.231 | 38.941 | 48.725 | 58.108 | 65.612 | 72.621 |
Cr | 0.670 | 0.062 | 0.014 | −0.050 | −0.162 | 0.544 |
Mn | −0.088 | 0.476 | −0.274 | −0.541 | −0.300 | −0.012 |
Co | −0.219 | 0.848 | −0.029 | 0.122 | 0.289 | 0.081 |
Ni | −0.221 | 0.601 | 0.233 | −0.226 | 0.424 | 0.213 |
Cu | 0.121 | 0.502 | −0.296 | 0.638 | −0.311 | −0.017 |
Zn | 0.103 | −0.023 | 0.818 | 0.351 | −0.171 | −0.193 |
Ge | 0.151 | −0.394 | 0.063 | −0.394 | −0.430 | 0.029 |
As | −0.069 | 0.253 | −0.334 | 0.690 | −0.230 | 0.185 |
Se | −0.034 | −0.387 | −0.100 | 0.237 | 0.677 | 0.237 |
Mo | 0.238 | −0.065 | 0.287 | −0.054 | −0.170 | 0.836 |
Ag | 0.791 | 0.016 | −0.015 | −0.095 | −0.132 | −0.172 |
Cd | −0.211 | 0.153 | 0.805 | 0.165 | −0.103 | −0.182 |
Sn | −0.256 | 0.764 | 0.127 | −0.172 | −0.159 | −0.052 |
Sb | 0.927 | 0.114 | 0.061 | 0.037 | 0.046 | 0.133 |
Te | −0.268 | −0.448 | −0.175 | 0.013 | 0.119 | −0.089 |
Ba | 0.488 | 0.067 | −0.367 | 0.151 | −0.060 | −0.228 |
Au | 0.864 | 0.043 | −0.014 | −0.097 | −0.057 | −0.175 |
Pb | 0.850 | 0.097 | 0.105 | 0.073 | 0.285 | −0.160 |
Bi | 0.871 | 0.104 | 0.101 | 0.061 | 0.263 | −0.117 |
Sr | 0.218 | 0.399 | −0.076 | −0.430 | 0.210 | −0.111 |
Rotation of the Principal Component Analysis Matrix | ||||||
Element | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
Cr | 0.512 | −0.058 | −0.122 | 0.082 | 0.058 | 0.699 |
Mn | −0.064 | 0.222 | −0.355 | −0.093 | 0.710 | 0.007 |
Co | −0.080 | 0.869 | −0.012 | 0.292 | 0.145 | −0.066 |
Ni | −0.125 | 0.817 | 0.046 | −0.196 | 0.060 | 0.115 |
Cu | 0.148 | 0.137 | 0.016 | 0.886 | 0.177 | −0.045 |
Zn | 0.125 | −0.077 | 0.919 | 0.028 | −0.036 | 0.040 |
Ge | 0.030 | −0.541 | −0.030 | −0.325 | 0.286 | 0.204 |
As | −0.100 | 0.033 | −0.058 | 0.849 | −0.063 | 0.070 |
Se | −0.047 | 0.080 | −0.187 | −0.097 | −0.823 | 0.031 |
Mo | 0.019 | −0.023 | 0.074 | −0.039 | −0.052 | 0.929 |
Ag | 0.780 | −0.200 | −0.018 | −0.026 | 0.169 | 0.061 |
Cd | −0.149 | 0.158 | 0.851 | −0.088 | 0.090 | −0.030 |
Sn | −0.155 | 0.576 | 0.131 | 0.105 | 0.580 | −0.043 |
Sb | 0.882 | 0.002 | −0.004 | 0.055 | −0.030 | 0.341 |
Te | −0.282 | −0.285 | −0.158 | −0.121 | −0.288 | −0.204 |
Ba | 0.517 | −0.139 | −0.237 | 0.283 | 0.050 | −0.176 |
Au | 0.864 | −0.149 | −0.032 | −0.043 | 0.130 | 0.059 |
Pb | 0.900 | 0.092 | 0.075 | −0.040 | −0.170 | 0.010 |
Bi | 0.909 | 0.089 | 0.061 | −0.035 | −0.154 | 0.059 |
Sr | 0.308 | 0.399 | −0.220 | −0.267 | 0.270 | −0.084 |
Deposit Type | Zhangquanzhuang-Type | Dongping-Type | Xiaoyingpan-Type | Jiaodong Deposits |
---|---|---|---|---|
Size scale | medium | large | large | super-large |
Wall rock | metamorphic rocks | syenitic complex | metamorphic rocks | metamorphic rocks |
Ore type | sulfide-enriched quartz veins | low-sulfide quartz veins | low-sulfide quartz veins | sulfide-enriched feldspar-quartz veins |
S-isotopes values range | zero to positive | negative to zero | negative | zero to positive |
Mineral assemblages | quartz, k-feldspar, sulfides, native gold, electrum, fluorite | quartz, k-feldspar, sulfides, native gold, Te-Au-Ag minerals, Te-Bi-Pb minerals | quartz, k-feldspar, sulfides, native gold, Te-Au-Ag minerals | pyrite, chalcopyrite, galena, sphalerite, electrum, native gold |
Gold grade | 1.2 to 3.6 g/t | average of 6 g/t | average of 9.7 g/t | 2 to 6 g/t |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, S.; Wang, D.; Yu, X.; Wang, Q.; Li, Y.; Zha, Z.; Wang, J. Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms. Minerals 2020, 10, 1089. https://doi.org/10.3390/min10121089
Zhen S, Wang D, Yu X, Wang Q, Li Y, Zha Z, Wang J. Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms. Minerals. 2020; 10(12):1089. https://doi.org/10.3390/min10121089
Chicago/Turabian StyleZhen, Shimin, Dazhao Wang, Xiaofei Yu, Qingfei Wang, Yongsheng Li, Zhongjian Zha, and Jiang Wang. 2020. "Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms" Minerals 10, no. 12: 1089. https://doi.org/10.3390/min10121089
APA StyleZhen, S., Wang, D., Yu, X., Wang, Q., Li, Y., Zha, Z., & Wang, J. (2020). Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms. Minerals, 10(12), 1089. https://doi.org/10.3390/min10121089