Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation
Abstract
:1. Introduction
2. Regional Geology and Mineralization
3. Samples and Analytical Methods
4. Results
4.1. Mineralogy of Studied Maletoyvayam Deposit Ores
4.2. Quartz Generations and Corresponding Types of Fluid Inclusions
4.2.1. Pyrite-Quartz Association
4.2.2. Maletoyvayamite–Quartz Association
4.3. Results of the Fluid Inclusions Microthermometry
4.3.1. Pyrite-Quartz Association
4.3.2. Maletoyvayamite-Quartz Association
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindgren, W. Mineral. Deposits; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1933; p. 930. [Google Scholar]
- Heald, P.; Hayba, D.O.; Foley, N.K. Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types. Econ. Geol. 1987, 82, 1–26. [Google Scholar] [CrossRef]
- Taylor, B.E. Epithermal gold deposits. In Mineral. Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Mineral Deposits Division, Special Publication; Geological Association of Canada: Saint John, NL, Canada, 2007; Volume 5, pp. 113–139. [Google Scholar]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Hedenquist, J.W. Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In Transactions of the Fourth Circum Pacific Conference on Energy and Mineral Resources Conference, Singapore; American Association of Petroleum Geologists: Tulsa, OK, USA, 1987; pp. 513–524. [Google Scholar]
- Ashley, R.P. Occurrence model for enargite-gold deposits. In U.S. Geological Survey Open-File Report 82-795; U.S. Department of the Interior, Geological Survey USA: Reston, VA, USA, 1982; pp. 144–147. [Google Scholar]
- Bethke, P.M. Controls on base- and precious-metal mineralization in deeper epithermal environments. In US Geological Survey Open-File Report 84–890; U.S. Dept. of the Interior, Geological Survey USA: Reston, VA, USA, 1984; 39 p. [Google Scholar]
- Ransome, F.L. The association of alunite with gold in the Goldfield district, Nevada. Econ. Geol. 1907, 2, 801–803. [Google Scholar] [CrossRef]
- Bonham, H.F. Three major types of epithermal precious metal deposits. Geol. Soc. Am. Abstr. Programs 1984, 16, 449. [Google Scholar]
- Bonham, H.F., Jr. Models for volcanic-hosted epithermal precious metal deposits: A review. In Proceedings Symposium 5th, Volcanism, Hydrothermal Systems and Related Mineralisation; International Volcanological Congress: Auckland, New Zealand, 1986; pp. 13–17. [Google Scholar]
- Berger, B.R. Descriptive model of low-sulfide Au-quartz veins. In Mineral deposit models, US Geological Survey Bulletin; United States Government Printing Office: Washington, DC, USA, 1992; p. 239. [Google Scholar]
- Berger, B.R.; Henley, R.W. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States. Econ. Geol. Monogr. 1989, 6, 405–423. [Google Scholar]
- Henley, R.W.; Ellis, A.J. Geothermal systems ancient and modern: A geochemical review. Earth Sci. Rev. 1983, 19, 1–50. [Google Scholar] [CrossRef]
- Arribas, A., Jr. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineral. Assoc. Can. Short Course 1995, 23, 419–454. [Google Scholar]
- Kubota, Y. Temporal and spatial relationship and significance of island arc junctions on Late Cenozoic gold deposits in the Japanese Islands. Res. Geol. 1994, 44, 17–24. [Google Scholar]
- Okrugin, V.; Kokarev, S.; Okrugina, A.; Chubarov, V.; Shuvalov, R. An unusual example of the interaction of modern hydrothermal system with Au-Ag veins (Southern Kamchatka). Miner. Mag. 1994, 58A, 669–670. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Ivanov, V.V. Meso-Cenozoic geodynamic settings and gold mineralization of the Russian Far East. Russ. Geol. Geophys. 1999, 40, 1607–1617. [Google Scholar]
- Konstantinov, M.M.; Vargunina, N.P.; Kosovets, T.N.; Struzhkov, S.F.; Syngaevskii, E.D.; Shishakova, L.N. Gold-Silver Deposits. Series: Models of Noble-and Nonferrous-Metal Deposits; TsNIGRI: Moscow, Russia, 2000; 239p. (In Russian) [Google Scholar]
- Borovikov, A.A.; Lapukhov, A.S.; Borisenko, A.S.; Seryotkin, Y.V. The Asachinskoe epithermal Au-Ag deposit in southern Kamchatka: Physicochemical conditions of formation. Russ. Geol. Geophys. 2009, 50, 693–702. [Google Scholar] [CrossRef]
- Takahashi, R.; Matsueda, H.; Okrugin, V.M. Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia. Res. Geol. 2002, 52, 359–369. [Google Scholar] [CrossRef]
- Takahashi, R.; Matsueda, H.; Okrugin, V.M.; Ono, S. Epithermal gold-silver mineralization of the Asachinskoe deposit in South Kamchatka, Russia. Resour. Geol. 2007, 57, 354–373. [Google Scholar] [CrossRef]
- Okrugin, V.M.; Shishkanova, K.O.; Yablokova, D.A. About ores of Amethystovoe deposits (Kamchatka). Mt. Bull. Kamchatka 2015, 3-4, 33–34. (In Russian) [Google Scholar]
- Andreeva, E.D.; Matsueda, H.; Okrugin, V.M.; Takahashi, R.; Ono, S. Au–Ag–Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Res. Geol. 2013, 63, 337–349. [Google Scholar] [CrossRef]
- Golyakov, V.I. Geological Map of the USSR Scale 1: 200 000; Pogozhev, A.G., Ed.; Series Koryak; Sheets P-5 8-XXXIII, O-58-III.; VSEGEI Cartographic Factory: St. Peterburg, Russia, 1980. (In Russian) [Google Scholar]
- Melkomukov, B.H.; Razumny, A.V.; Litvinov, A.P.; Lopatin, W.B. New highly promising gold objects of Koryakiya. Min. Bull. Kamchatka 2010, 14, 70–74. (In Russian) [Google Scholar]
- Tolstykh, N.; Vymazalova, A.; Tuhy, M.; Shapovalova, M. Conditions of formation of Au-Se-Te mineralization in the Gaching ore occurrence (Maletoivayam ore field), Kamchatka, Russia. Min. Mag. 2018, 82, 649–674. [Google Scholar] [CrossRef]
- Volkov, A.V.; Sidorov, A.A.; Chizhova, I.A.; Alekseev, V.Y.; Savva, N.E.; Kolova, E.E. The Agan epithermal gold-silver deposit and prospects for the discovery of high-sulfidation mineralization in Northeast Russia. Geol. Ore Depos. 2015, 57, 21–41. [Google Scholar] [CrossRef]
- Goryachev, N.A.; Volkov, A.V.; Sidorov, A.A.; Gamyanin, G.N.; Savva, N.Y.; Okrugin, V.M. Au-Ag-mineralization of volcanogenic belts of the northeast. Asia. Lithosphere 2010, 3, 36–50. (In Russian) [Google Scholar]
- Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Depos. 2020, 62, 383–406. [Google Scholar] [CrossRef]
- Tolstykh, N.D. Gold ore mineralization of the Maletoyvayam ore occurrence. In Materials of the Anniversary Congress of the Russian Mineralogical Society “200 Years of RMO”; LLC Publishing House LEMA: St. Peterburg, Russia, 2017; Volume 2, pp. 339–341. [Google Scholar]
- Tolstykh, N.; Palyanova, G.; Bobrova, O.; Sidorov, E. Mustard gold of the Gaching ore occurrence (Maletoyvayam deposit, Kamchatka, Russia). Minerals 2019, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Tolstykh, N.D.; Tuhý, M.; Vymazalová, A.; Plášil, J.; Laufek, F.; Kasatkin, A.V.; Nestola, F.; Bobrova, O.V. Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Min. Mag. 2020, 84, 117–123. [Google Scholar] [CrossRef]
- Shapovalova, M.; Tolstykh, N.; Bobrova, O. Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf. Ser. Earth Environ. Sci. 2019, 319, 012019. [Google Scholar] [CrossRef]
- Palyanova, G.A.; Tolstykh, N.D.; Zinina, V.Y.; Koh, K.A.; Seretkin, Y.V.; Bortnikov, N.S. Synthetic gold chalcogenides in the Au-Te-Se-S system and their natural analogs. Dokl. Earth Sci. 2019, 487, 929–934. [Google Scholar] [CrossRef]
- Palyanova, G.; Mikhlin, Y.; Zinina, V.; Kokh, K.; Seryotkin, Y.; Zhuravkova, T. New gold chalcogenides in the Au-Te-Se-S system. J. Phys. Chem. Solids. 2020, 138, 109276. [Google Scholar] [CrossRef]
- Vlasov, G.M. Volcanic Sulfur Deposits and Some Problems of Hydrothermal ore Formation; Nauka: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Stefanov, Y.M.; Schiroky, B.I. Metallogeny of the Upper Structural Floor of Kamchatka; Science: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Melkomukov, V.N.; Amelin, S.A.; Razumny, A.V.; Kudrin, A.S. State Geological Map of the Russian Federation on a Scale of 1: 200 00; Lopatin, V.B., Ed.; Series Olyutorsky; Sheet P-58-XXXIII, O-58-III.; VSEGEI Cartographic Factory: St. Petersburg, Russia, 2010. (In Russian) [Google Scholar]
- White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. Publ. SEG Newsl. 1995, 23, 9–13. [Google Scholar]
- Hedenquist, J.W.; Arribas, R.A. Epithermal ore deposits: First-order features relevant to exploration and assessment. In Proceedings of the 14th SGA Biennial Meeting, Québec City, QC, Canada, 20–23 August 2017; Volume 1, pp. 47–50. [Google Scholar]
- Borisenko, A.S. Analysis of the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. In The Use of Methods of Thermobarogeochemistry in the Search and Study of Ore Deposits; Nedra: Moscow, Russia, 1982; pp. 37–47. (In Russian) [Google Scholar]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl-H2O fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Virginia Polytechnic Institute State University: Blacksburg, VA, USA, 1994; pp. 117–131. [Google Scholar]
- Bakker, R.J. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Comput. Geosci. 2018, 115, 122–133. [Google Scholar] [CrossRef]
- Bakker, R.J. Fluids: New software package to handle microthermometric data and to calculate isochors. Mem. Geol. Soc. 2001, 23–25. [Google Scholar]
- Brown, P.E. FLICOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Min. 1989, 74, 1390–1393. [Google Scholar]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Moritz, R.; Papavassiliou, K.; Falalakis, G. Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece. Min. Petrol. 2011, 103, 79–100. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1984; Volume 12, pp. 79–108. [Google Scholar]
- Ermakov, N.P. Geochemical Systems of Inclusions in Minerals; Nedra: Moscow, Russia, 1972. (In Russian) [Google Scholar]
- Lecumberri-Sanchez, P.; Steele-MacInnis, M.; Bodnar, R.J. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O–NaCl–FeCl2. Geochim. Cosmochim. Acta 2015, 148, 34–49. [Google Scholar] [CrossRef]
- Borovikov, A.A.; Gushchina, L.V.; Borisenko, A.S. Determination of iron (II, III) and zinc chlorides in solutions of fluid inclusions during cryometric studies. Geochemistry 2002, 1, 70–79. (In Russian) [Google Scholar]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Spiridonov, E.M. Typomorphic specific features of Fahlore from some plutonogenic, volcanogenic, and telethermal gold deposits. Geol. Rudn. Mestorozhd. 1987, 29, 83–92. (In Russian) [Google Scholar]
- Repstock, A.; Voudouris, P.; Kolitsch, U. New occurrences of watanabeite, colusite, "arsenosulvanite" and Cu-excess tetrahedrite-tennantite at the Pefka high-sulfidation epithermal deposit, northeastern Greece. Neues Jahrb. Fur Mineral. Abh. J. Mineral. Geochem. 2015, 192, 135–149. [Google Scholar] [CrossRef]
- Kovalenker, V.A.; Bortnikov, N.S. Chemical composition and mineral associations of sulphosalts in the precious metal deposits from different geological environment. Geol. Carpathica 1985, 36, 283–291. [Google Scholar]
- Buchanan, L.J. Precious metal deposits associated with volcanic environments in the southwest. Ariz. Geol. Soc. Dig. 1981, 14, 237–262. [Google Scholar]
- Hayba, D.O.; Bethke, P.M.; Heald, P.; Foley, N.K. Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious metal deposits. Rev. Econ. Geol. 1985, 2, 129–167. [Google Scholar]
- Corbett, G. Epithermal Au-Ag Deposit Types—Implications for Exploration. 2005. Available online: https://www.researchgate.net/publication/237489786 (accessed on 30 August 2014).
- Jannas, R.; Bowers, T.S.; Petersen, U.; Beane, E. High-Sulfidation Deposit Types in the El Indio District, Chile. In Geology and Ore Deposits of the Central Andes; Skinner, B.J., Ed.; Society Economic Geologists Special Publication: Littleton, CO, USA, 1999; Volume 7, pp. 27–59. [Google Scholar]
- Okrugin, V.M.; Andreeva, E.D.; Yablokova, D.A.; Okrugina, A.M.; Chubarov, V.M.; Ananiev, V.V. The new data on the ores of the Aginskoye gold-telluride deposit (Central Kamchatka). In “Volcanism and Its Associated Processes” Conference; Petropavlovsk-Kamchatsky: Kamchatka Krai, Russia, 2014; pp. 335–341. (In Russian) [Google Scholar]
- Takahashi, R.; Matsueda, H.; Okrugin, V. Epithermal gold and silver mineralization at the Rodnikovoe deposit related to the hydrothermal activity in the Mutnovsko-Asachinskaya geothermal area, Southern Kamchatka, Russia. In Proceedings of the International Symposium on Gold and Hydrothermal Systems, Fukuoka, Japan, 4 November 2001; pp. 51–57. [Google Scholar]
- Mehrabi, B.; Siani, M.G. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan Province. J. Geol. Soc. India 2012, 80, 563–578. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Henley, R.W. Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to precious metal mineralization. Econ. Geol. 1985, 80, 1640–1668. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry andepithermal Cu-Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, C.A.; Dreisner, T.; Steffánson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Bruha, D.I.; Noble, D.C. Hypogenequartz-alunite±pyrite alteration formed by moderately saline, ascendant hydrothermal solutions. Geol. Soc. Am. Abstr. Programs 1983, 15, 325. [Google Scholar]
- Jensen, M.L.; Ashley, R.P.; Albers, J.P. Primary and secondary sulfates at Goldfield, Nevada. Econ. Geol. 1971, 66, 618–626. [Google Scholar] [CrossRef]
- Kovalenker, V.A.; Plotinskaya, O.Y.; Prokofev, V.Y.; Gertman, Y.L.; Koneev, R.I.; Pomortsev, V.V. Mineralogy, geochemistry, and genesis of gold-sulfide-selenide-telluride ores from the Kairagach deposit (Uzbekistan). Geol. Ore Depos. 2003, 45, 171–200. [Google Scholar]
- Mishin, L.F.; Berdnikov, N.V. Nature of high-alumina secondary quartzite by data of thermobarogeochemistry and isotopic analysis of oxygen and hydrogen. Russ. J. Pac. Geol. 2001, 20, 123–139. (In Russian) [Google Scholar]
- Nash, J.T. Fluid inclusion studies of vein, pipe, and replacement deposits, northwestern San Juan Mountains, Colorado. Econ. Geol. 1975, 70, 1448–1462. [Google Scholar] [CrossRef]
- Sahlstrom, F. The Mt Carlton High-Sulfidation Epithermal Deposit, NE Australia: Geologic Character, Genesis and Implications for Exploration. PhD. Thesis, James Cook University, Singapore, 2018. [Google Scholar]
- Mancano, D.P.; Campbell, A.R. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit. Geochim. Cosmochim. Acta 1995, 59, 3909–3916. [Google Scholar] [CrossRef]
- Lapukhov, A.S.; Borovikov, A.A.; Guzman, B.V.; Miroshnichenko, L.V.; Rasvorotneva, L.I. Hieratite in hydrothermally altered volcanic rocks of Danchenkovskoye deposit (the Urup Island). Zap. RMO 2012, 141, 52–59. (In Russian) [Google Scholar]
- Arribas, A., Jr.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; McKee, E.H.; Tosdal, R.M. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold-alunite deposit, Spain. Econ. Geol. 1995, 90, 795–822. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth; Simmons, S.F., Graham, I.J., Eds.; Society Economic Geologists Special Publication: Johnson Printing, Littleton, CO, USA, 2003; Volume 10, pp. 315–343. [Google Scholar]
- Prokof’ev, V.Y.; Ali, A.A.; Volkov, A.V.; Savva, N.E.; Kolova, E.E.; Sidorov, A.A. geochemical peculiarities of ore forming fluidof the juliette Au–Ag epithermal deposit (Northeastern Russia). Dokl. Earth Sci. 2015, 460, 87–91. [Google Scholar] [CrossRef]
- Cooke, D.R.; Simmons, S.F. Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 221–244. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
Sample | Texture | Morphology | Minerals Included in Quartz or Filling Cracks and Cavities |
---|---|---|---|
3053_a | Filling of cavities | Segregation | Fe-hydroxide, Fe-antimonite/tellurite, sulfosalts, Au-Fe(Sb,As,Te) oxide |
3053_b | Filling of cavities | Segregation | Sulfosalts, maletoyvayamite, tellurium |
3058_a | Interspersed | Inclusions | Pyrite |
3058_b | Interspersed | Inclusions | Pyrite |
3058_c | Interspersed | Inclusions | Bismuthinite, maletoyvayamite, Sb(Bi,Te,As,Se) oxide, sulfosalts |
No | S | Cu | As | Se | Sb | Te | Au | Total | Formula |
---|---|---|---|---|---|---|---|---|---|
1 | 21.49 | 42.37 | 5.84 | 8.46 | 20.75 | 99.28 | Cu11.82(Te2.86 Sb1.22)4.08(S11.80Se1.30)13.10 | ||
2 | 21.43 | 40.28 | 2.30 | 8.76 | 6.40 | 21.38 | 100.56 | Cu11.05(Te2.92Sb0.92 As0.54)4.38(S11.65 Se1.93)13.58 | |
3 | 6.34 | 6.24 | 50.5 | 37.80 | 100.88 | Au2.89Te5.95(S2.97Se1.19)4.16 | |||
4 | 6.35 | 5.60 | 50.47 | 37.76 | 100.19 | Au2.91Te6.00(S3.01Se1.08)4.09 | |||
5 | 3.38 | 11.03 | 49.89 | 36.16 | 100.46 | Au2.91Te6.20(Se2.22S1.67)3.89 | |||
6 | 6.97 | 92.99 | 99.95 | Te0.89Se0.11 | |||||
7 | 25.81 | 42.65 | 6.15 | 7.50 | 17.88 | 0.73 | 100.72 | Cu4.09(Sb0.89As0.50 Se0.48Te0.04)1.91(S4.90Se0.10)5.00 | |
8 | 20.59 | 42.59 | 1.02 | 7.74 | 12.34 | 15.75 | 100.03 | Cu11.79(Te2.17 Sb1.78As0.24)4.19(S11.30Se1.73)13.02 | |
9 | 32.8 | 66.68 | 99.49 | Te0.56Se0.44 | |||||
10 | 2.95 | 12.15 | 48.75 | 36.40 | 100.26 | Au2.96Te6.11(Se2.46S1.47)3.93 | |||
11 | 19.71 | 40.94 | 9.99 | 8.85 | 20.00 | 99.49 | Cu11.57(Te2.82Sb1.31)4.13(S11.04Se2.27)13.31 | ||
12 | 26.94 | 45.54 | 16.52 | 10.42 | 2.34 | 101.76 | Cu2.97(As0.91Sb0.08)0.99(S3.49Se0.55)4.04 |
No. | Au | Cu | Ag | Bi | Sb | Te | As | Se | S | Total | Formula |
1 | 62.41 | 8.46 | 2.89 | 10.89 | 14.16 | 98.81 | (Bi1.54Sb0.36Te0.12)2.01(S2.28Se0.71)2.99 | ||||
2 | 65.07 | 5.19 | 3.20 | 11.36 | 13.45 | 98.27 | (Bi1.65Sb0.23Te0.13)2.01(S2.23Se0.76)2.99 | ||||
3 | 72.54 | 14.13 | 11.34 | 98.01 | Bi1.97S2.01Se1.02 | ||||||
4 | 47.11 | 2.86 | 15.93 | 1.07 | 31.32 | 98.29 | Cu3.01(As0.86Sb0.10)0.96(S3.97Se0.06)4.03 | ||||
5 | 35.10 | 47.38 | 14.80 | 2.03 | 99.31 | Au2.89Te6.03(Se3.04S1.03)4.07 | |||||
6 | 55.87 | 47.07 | 14.67 | 2.14 | 99.75 | Au2.95Te5.97(Se3.01S1.08)4.09 | |||||
7 | 71.84 | 26.49 | 98.33 | Ag2.00Se1.00 |
Quartz Generation | T °C Homogenization, (n *) | T °C Eutectic | T °C Ice Melting | NaCl, wt.% | KCl, wt.% | Total Salinity, wt.% | Pressure **, Bar |
---|---|---|---|---|---|---|---|
Pyrite-Quartz Association | |||||||
Early (Q1) | 290–288 (5) | −25 (−38–−35) | −0.5–−0.4 | 0.6 | 0.3 | 0.9 | 70–68 |
270–260 (6) | −24–−23 | −0.6–−0.4 | 0.6 | 0.3 | 0.9 | 50–43 | |
295 (2) | 25 (−38–−35) | −0.5–−0.4 | 0.6 | 0.3 | 0.9 | 76 | |
245 (4) | −24.5 | −0.5 | 0.6 | 0.3 | 0.9 | 32 | |
264–268 (3) | −26–−25 | −2 | 2.5 | 0.8 | 3.3 | 49 | |
Late | 260–240 (4) | −38 | −0.1 | 0.1 | 0.1 | 0.2 | 43 |
(Q2–4) | 200 (2) | −38–−35 | −0.1 | 0.1 | 0.1 | 0.2 | 13 |
Maletoyvayamite-Quartz Association | |||||||
Early (Q1) | 255–245 (4) | −38–−35 | −2.5–−2 | 3.3 | 1.0 | 4.3 | 39–32 |
250–245 (2) | −38–−35 | −2.4–−2.2 | 3.3 | 1.0 | 4.3 | 36–32 | |
Late | 228–210 (6) | −38 | −0.7–−0.5 | 1.0 | 0.5 | 1.5 | 23–16 |
(Q2–4) | 220–135 (3) | −38 | −0.6–−0.3 | 0.9 | 0.3 | 1.2 | 20–4 |
District | Measured | Selected Ore Representative | References | ||
---|---|---|---|---|---|
T °C | Salinity | T °C | Salinity | ||
Red Mountain, BC, Canada | 215–265 (?) | 1.6 | 240 | 1.6 | [69] |
Summitville, CO | 231–276 (?) | 7–21 | [65] | ||
Goldfield, NV | 150–325 (?) | 5–18 | [65,66] | ||
Julcani, Peru | 161–275 (?) | 5–24 | [65] | ||
Mt Carlton, NE Australia | 163–264 (57) | 0–1.6 | 222 | [70] | |
Lepanto, Philippines | 166–285 | 0.2–4.5 | [71] | ||
Kairagach, Uzbekistan | 120–300 | <12 | [67] | ||
Agan, Russia | 88–184 (6) | 0.2–2.6 | 136 | [27] | |
Danchenkovskoe, Russia | 297–336 | 1–4 | [72] | ||
Belaya Gora, Russia | ≈100 | <1 | [68] | ||
Shelekhovskoe, Russia | 180–250 | 3–8 | |||
Maletoyvayam * Russia | 295–245 (23) | 0.9–3.3 | 270 | 2 | This study |
Maletoyvayam ** | 255–245(6) | 4.3 | 250 | 4.3 | This study |
Maletoyvayam *** | 228–135(9) | 1.3 | 180 | 1.3 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorov, E.G.; Borovikov, A.A.; Tolstykh, N.D.; Bukhanova, D.S.; Palyanova, G.A.; Chubarov, V.M. Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation. Minerals 2020, 10, 1093. https://doi.org/10.3390/min10121093
Sidorov EG, Borovikov AA, Tolstykh ND, Bukhanova DS, Palyanova GA, Chubarov VM. Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation. Minerals. 2020; 10(12):1093. https://doi.org/10.3390/min10121093
Chicago/Turabian StyleSidorov, Evgeny G., Andrey A. Borovikov, Nadezhda D. Tolstykh, Daria S. Bukhanova, Galina A. Palyanova, and Valery M. Chubarov. 2020. "Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation" Minerals 10, no. 12: 1093. https://doi.org/10.3390/min10121093
APA StyleSidorov, E. G., Borovikov, A. A., Tolstykh, N. D., Bukhanova, D. S., Palyanova, G. A., & Chubarov, V. M. (2020). Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation. Minerals, 10(12), 1093. https://doi.org/10.3390/min10121093