Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review
Abstract
:1. Introduction
2. Geological Background
3. Secondary Sulfate Mineralogy from the Apuan Alps
3.1. Alum-(K)
3.2. Alunogen
3.3. Anhydrite
3.4. Copiapite Group Minerals
3.5. Coquimbite
3.6. Epsomite
3.7. Fibroferrite
3.8. Giacovazzoite
3.9. Goldichite
3.10. Gypsum
3.11. Halotrichite Group Minerals
3.12. Jarosite Subgroup Minerals
3.13. Khademite
3.14. Krausite
3.15. Magnanelliite
3.16. Melanterite
3.17. Rhomboclase
3.18. Römerite
3.19. Scordariite and other Metavoltine-Related Minerals
3.20. Volaschioite
3.21. Voltaite
3.22. Wilcoxite
3.23. Other Sulfate-Bearing Phases
4. Field Observations
4.1. The Fornovolasco Mine
4.2. The Monte Arsiccio Mine
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Achiardi, A. Mineralogia della Toscana; Tipografia Nistri: Pisa, Italy, 1872; Volume 1, p. 276. [Google Scholar]
- Biagioni, C.; Bonaccorsi, E.; Orlandi, P. Volaschioite, Fe3+4(SO4)O2(OH)6·2H2O, a new mineral species from Fornovolasco, Apuan Alps, Tuscany, Italy. Can. Miner. 2011, 49, 605–614. [Google Scholar] [CrossRef]
- Mauro, D.; Biagioni, C.; Bonaccorsi, E.; Hålenius, U.; Pasero, M.; Skogby, H.; Zaccarini, F.; Sejkora, J.; Plášil, J.; Kampf, A.R.; et al. Bohuslavite, Fe3+4(PO4)3(SO4)(OH)(H2O)10·nH2O, a new hydrated iron phosphate-sulfate. Eur. J. Miner. 2019, 31, 1033–1046. [Google Scholar] [CrossRef]
- Biagioni, C.; Bindi, L.; Mauro, D.; Pasero, M. Crystal-chemistry of sulfates from the Apuan Alps (Tuscany, Italy). IV. Giacovazzoite, K5Fe3+3O(SO4)6(H2O)9·H2O, the natural analogue of the β-Maus’s Salt and its dehydration product. Phys. Chem. Miner. 2020, 47, 7. [Google Scholar] [CrossRef]
- Biagioni, C.; Bindi, L.; Mauro, D.; Hålenius, U. Crystal chemistry of sulfates from the Apuan Alps (Tuscany, Italy). V. Scordariite, K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11: A new metavoltine-related mineral. Minerals 2019, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Biagioni, C.; Bindi, L.; Kampf, A.R. Crystal chemistry of sulfates from the Apuan Alps (Tuscany, Italy). VII. Magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, a new sulfate from the Monte Arsiccio mine. Minerals 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- George, L.L.; Biagioni, C.; D’Orazio, M.; Cook, N.J. Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on the formation of Tl-rich sulfosalt melt. Ore Geol. Rev. 2018, 102, 59–105. [Google Scholar] [CrossRef]
- Biagioni, C.; D’Orazio, M.; Vezzoni, S.; Dini, A.; Orlandi, P. Mobilization of Tl-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology 2013, 41, 747–750. [Google Scholar] [CrossRef]
- D’Orazio, M.; Biagioni, C.; Dini, A.; Vezzoni, S. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: Constraints for their origin and environmental concerns. Miner. Depos. 2017, 52, 687–707. [Google Scholar] [CrossRef]
- Lattanzi, P.; Benvenuti, M.; Costagliola, P.; Tanelli, G. An overview on recent research on the metallogeny of Tuscany, with special reference to the Apuan Alps. Mem. Soc. Geol. Ital. 1994, 48, 613–625. [Google Scholar]
- Giannecchini, R. Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat. Hazards Earth Syst. Sci. 2006, 186, 357–364. [Google Scholar] [CrossRef]
- Perotti, M.; Petrini, R.; D’Orazio, M.; Ghezzi, L.; Giannecchini, R.; Vezzoni, S. Thallium and other potentially toxic elements in the Baccatoio stream catchment (northern Tuscany, Italy) receiving drainages from abandoned mines. Mine Water Environ. 2018, 37, 431–441. [Google Scholar] [CrossRef]
- Ciriotti, M.E.; Fascio, L.; Pasero, M. Italian Type Minerals; Edizioni PLUS: Pisa, Italy, 2009; p. 360. [Google Scholar]
- Palache, C.; Berman, H.; Frondel, C. System of Mineralogy, 7th ed.; John, Wiley and Sons: New York, NY, USA, 1952. [Google Scholar]
- Biagioni, C.; Mauro, D.; Pasero, M.; Bonaccorsi, E.; Lepore, G.O.; Zaccarini, F.; Skogby, H. Crystal chemistry of sulfates from the Apuan Alps (Tuscany, Italy). VI. Thallium-bearing alum-(K) and voltaite from the Fornovolasco mining complex. Am. Miner. 2020, 105, 1088–1098. [Google Scholar] [CrossRef]
- Ballirano, P. Thermal behaviour of alum-(K) KAl(SO4)2·12H2O from in situ laboratory high-temperature powder X-ray diffraction data: Thermal expansion and modelling of the sulfate orientational disorder. Miner. Mag. 2015, 79, 157–170. [Google Scholar] [CrossRef]
- Nyburg, S.C.; Steed, J.W.; Aleksovska, S.; Petrusevski, V.M. Structure of the alums. I. On the sulfate group disorder in the α-alums. Acta Cryst. 2000, B56, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Mauro, D. Crystal-Chemistry of the Secondary Minerals of Thallium-Rich Pyrite Ores from the Apuan Alps (Tuscany, Italy). Ph.D. Thesis, University of Pisa, Pisa, Italy, 2020. [Google Scholar]
- Bariand, P.; Cesbron, F.; Berthelon, J.-P. Les sulfates de fer de Saghand près de Yazd (Iran). Mem. Hors-Série Soc. Geol. Fr. 1977, 8, 77–85. [Google Scholar]
- Menchetti, S.; Sabelli, C. Alunogen: Its structure and twinning. Tschermaks Min. Petr. Mitt. 1974, 21, 164–178. [Google Scholar] [CrossRef]
- Fang, J.H.; Robinson, P.D. Alunogen, Al2(H2O)12(SO4)3·5H2O: Its atomic arrangement and water content. Am. Miner. 1976, 61, 311–317. [Google Scholar]
- Foshag, W.F. Krausite, a new sulfate from California. Am. Miner. 1931, 16, 352–360. [Google Scholar]
- Jambor, J.L.; Nordstrom, K.D.; Alpers, C.N. Metal-sulfates salts from sulfide minerals oxidation. In. Sulfate minerals—Crystallography, geochemistry and environmental significance. Rev. Miner. Geochem. 2000, 40, 305–340. [Google Scholar] [CrossRef]
- Fanfani, L.; Nunzi, A.; Zanazzi, P.F.; Zanzari, A.R. The copiapite problem: The crystal structure of a ferrian copiapite. Am. Miner. 1973, 58, 314–322. [Google Scholar]
- Majzlan, J.; Kiefer, B. An X-ray and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD,OH)2(D2O,H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20. Can. Miner. 2006, 44, 1227–1237. [Google Scholar] [CrossRef]
- Majzlan, J.; Michallik, R. The crystal structures, solid solutions and infrared spectra of copiapite-group minerals. Miner. Mag. 2007, 71, 553–569. [Google Scholar] [CrossRef]
- Biagioni, C.; Orlandi, P.; Bonini, M. Fornovolasco. Storia e minerali delle miniere di ferro presso Vergemoli (Alpi Apuane). Riv. Miner. Ital. 2008, 32, 230–252. [Google Scholar]
- Mauro, D.; Biagioni, C.; Pasero, M.; Skogby, H. Crystal-chemistry of sulfates from the Apuan Alps (Tuscany, Italy). III. Mg-rich sulfate assemblages from the Fornovolasco mining complex. Atti Soc. Tosc. Sci. Nat. Mem. 2019, 126, 33–44. [Google Scholar]
- Biagioni, C. Minerali della Provincia di Lucca; Associazione Micro-Mineralogica Italiana: Cremona, Italy, 2009; 352p. [Google Scholar]
- Mauro, D.; Biagioni, C.; Pasero, M.; Skogby, H.; Zaccarini, F. Redefinition of coquimbite, AlFe3+3(SO4)6(H2O)12·6H2O. Miner. Mag. 2020, 84, 275–282. [Google Scholar] [CrossRef]
- Ventruti, G.; Della Ventura, G.; Bellatreccia, F.; Lacalamita, M.; Schingaro, E. Hydrogen bond system and vibrational spectroscopy of the iron sulfate fibroferrite, Fe(OH)SO4·5H2O. Eur. J. Miner. 2016, 28, 943–952. [Google Scholar] [CrossRef]
- Scordari, F.; Stasi, F.; Schingaro, E.; Comunale, G. A survey of (Na,H3O+,K)5Fe3O(SO4)6·H2O compounds: Architectural principles and influence of the Na-K replacement on their structures. Crystal structure, solid-state transformation and its relationship to some analogues. Z. Krist. 1994, 209, 733–736. [Google Scholar]
- Mereiter, V.K.; Völlenkle, H. Die Kristallstruktur von β-pentakalium-[μ3-oxo-hexa-μ-sulfato-triaquatrieisen (III)]-Heptahydrat-eine monocline Modifikation des Mausschen Salzes. Acta Cryst. 1978, B34, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, A.; Gross, E.B. Goldichite, a new hydrous potassium ferric sulfate from the San Rafael Swell, Utah. Am. Miner. 1955, 40, 469–480. [Google Scholar]
- Márquez-Zavalía, M.F.; Galliski, M.A. Goldichite of fumarolic origin from the Santa Bárbara mine, Jujuy, nortwestern Argentina. Can. Miner. 1995, 33, 1059–1062. [Google Scholar]
- Russo, M.; Campostrini, I.; Demartin, F. I minerali di origine fumarolica dei Campi Flegrei: Solfatara di Pozzuoli (Napoli) e dintorni. MICRO 2017, 15, 122–192. [Google Scholar]
- Graeber, E.J.; Rosenzweig, A. The crystal structure of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2·4H2O. Am. Miner. 1971, 56, 1917–1933. [Google Scholar]
- Yang, Z.; Giester, G. Hydrogen bonding in goldichite, KFe(SO4)2·4H2O: Structure refinement. Miner. Petrol. 2018, 112, 135–142. [Google Scholar] [CrossRef]
- Bayliss, P.; Kolitsch, U.; Nickel, E.H.; Pring, A. Alunite supergroup: Recommended nomenclature. Miner. Mag. 2010, 74, 919–927. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Jambor, J.L. Jarosites and their application in hydrometallurgy. In: Sulfate minerals—Crystallography, geochemistry and environmental significance. Rev. Miner. Geochem. 2000, 40, 405–452. [Google Scholar] [CrossRef]
- Stoffregen, R.E.; Alpers, C.N.; Jambor, J.L. Alunite-jarosite crystallography, thermodynamics, and geochronology. In. Sulfate minerals—Crystallography, geochemistry and environmental significance. Rev. Miner. Geochem. 2000, 40, 453–479. [Google Scholar] [CrossRef]
- Senesi, F. Koninckite e altri fosfati della miniera del Pollone (Valdicastello Carducci, Lucca). Riv. Miner. Ital. 2000, 24, 46–48. [Google Scholar]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Miner. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Sasaki, K.; Tanaike, O.; Konno, H. Distinction of jarosite-group compounds by Raman spectroscopy. Can. Miner. 1998, 36, 1225–1235. [Google Scholar]
- Basciano, L.C.; Peterson, R.C. The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of ammoniojarosite–hydronium jarosite solid-solution series. Miner. Mag. 2007, 71, 427–441. [Google Scholar] [CrossRef]
- Basciano, L.C.; Peterson, R.C. Jarosite-hydronium jarosite solid-solution series with full iron occupancy: Mineralogy and crystal chemistry. Am. Miner. 2007, 92, 1464–1473. [Google Scholar] [CrossRef]
- Plášil, J.; Škoda, R.; Fejfarová, K.; Čejka, J.; Kasatkin, A.V.; Dušek, M.; Talla, D.; Lapčák, L.; Machovič, V.; Dini, M. Hydroniumjarosite, (H3O)+Fe3(SO4)2(OH)6, from Cerros Pintados, Chile: Single-crystal X-ray diffraction and vibrational spectroscopic study. Miner. Mag. 2014, 78, 535–547. [Google Scholar] [CrossRef]
- Chio, C.H.; Sharma, S.K.; Ming, L.-C.; Muenow, D.W. Raman spectroscopic investigation on jarosite-yavapaiite stability. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Košek, F.; Žáček, V.; Škoda, R.; Laufek, F.; Jehlička, J. New mineralogical data for khademite (orthorhombic AlSO4F·5H2O) and the story of rostite (orthorhombic AlSO4OH·5H2O) from Libušín, near Kladno, Czech Republic. J. Mol. Struct. 2019, 1175, 208–213. [Google Scholar] [CrossRef]
- Mauro, D.; Biagioni, C.; Pasero, M.; Zaccarini, F. Crystal-chemistry of sulfates from the Apuan Alps, Tuscany, Italy. VIII. New data on khademite, Al(SO4)F(H2O)5. Miner. Mag. 2020, 84, 540–546. [Google Scholar] [CrossRef]
- Mauro, D. Studio cristallochimico di alcuni solfati di ferro della mineralizzazione a pirite tallifera di Fornovolasco (Alpi Apuane). Unpublished. Master’s Thesis, University of Pisa, Pisa, Italy, 2016. [Google Scholar]
- Graeber, E.J.; Morosin, B.; Rosenzweig, A. The crystal structure of krausite, KFe(SO4)2·H2O. Am. Miner. 1965, 50, 1929–1936. [Google Scholar]
- Effenberger, H.; Pertlik, F.; Zemann, J. Refinement of the crystal structure of krausite: A mineral with an interpolyhedral oxygen-oxygen contact shorter than the hydrogen bond. Am. Miner. 1986, 71, 202–205. [Google Scholar]
- Kampf, A.R.; Mills, S.J.; Housley, R.M.; Williams, P.A.; Dini, M.A. Alcaparrosaite, K3Ti4+Fe3+(SO4)4O(H2O)2, a new hydrophobic Ti4+ sulfate from Alcaparrosa, Chile. Miner. Mag. 2012, 76, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Targioni Tozzetti, G. Relazioni D’alcuni Viaggi Fatti in Diverse Parti Della Toscana per Osservare le Produzioni Naturali, e gli Antichi Monumenti di Essa, 2nd ed.; Stamperia Granducale: Firenze, Italy, 1773; p. 430. [Google Scholar]
- Mauro, D.; Biagioni, C.; Pasero, M. Crystal-chemistry of sulfates from Apuan Alps (Tuscany, Italy). I. Crystal structure and hydrogen bond system of melanterite, Fe(H2O)6(SO4)·H2O. Period. Miner. 2018, 87, 89–96. [Google Scholar]
- Mauro, D.; Biagioni, C.; Pasero, M.; Zaccarini, F. Crystal-chemistry of sulfates from Apuan Alps (Tuscany, Italy). II. Crystal structure and hydrogen bonding system of römerite, Fe2+Fe3+2(SO4)4(H2O)14. Atti Soc. Tosc. Sci. Nat. Mem. 2018, 125, 5–11. [Google Scholar]
- Oleinikov, B.V.; Shvartsev, S.L. Contemporary sulfate formation in the zone of oxidation of pyrrhotite-chalcopyrite hydrothermal ores, northwestern Siberian Platform. Geol. Geofiz. 1968, 6, 15–25. [Google Scholar]
- Giacovazzo, C.; Scordari, F.; Todisco, A.; Menchetti, S. Crystal structure model for metavoltine from Sierra Gorda. Tschermaks Miner. Petrogr. Mitt. 1976, 23, 155–166. [Google Scholar] [CrossRef]
- Giacovazzo, C.; Scordari, F.; Menchetti, S. Hydrous potassium and ferric iron sulphate (Maus’s Salt). Acta Cryst. 1975, B31, 2171–2173. [Google Scholar] [CrossRef]
- Mills, S.J.; Kampf, A.R.; McDonald, A.M.; Bindi, L.; Christy, A.G.; Kolitsch, U.; Favreau, G. The crystal structure of parnauite: A copper arsenate-sulfate with translational disorder of structural rods. Eur. J. Miner. 2013, 25, 693–704. [Google Scholar] [CrossRef]
- Walter Lévy, L.; Quéméneur, E. Étude de l’hydrolise du sulfate ferrique de 25 à 200°. Bull. Soc. Chim. Fr. 1966, 6, 1947–1954. [Google Scholar]
- Fojt, B. On the problem of glockerite as a secondary mineral of ore deposits. Scr. Fac. Sci. Nat. Ujep Brun. Geol. I 1975, 5, 5–20. [Google Scholar]
- Bigham, J.M.; Nordstrom, D.K. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Sulfate Minerals—Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K Nordstrom ed.). Rev. Miner. Geochem. 2000, 40, 351–403. [Google Scholar] [CrossRef]
- Manilici, V.; Giusca, D.; Stiopol, V. Studiul zacamintului de la Baia Sprie (Reg. Baia Mare). Mem. Com. Geol. 1965, 7, 1–113. [Google Scholar]
- Götz, A.; Mihalka, S.; Ionita, I.; Toth, Z. Monsmeditul—Un nuo mineral de taliu de la Baia Sprie. Rev. Miner. 1968, 19, 154–159. [Google Scholar]
- Zemann, J. What is monsmedite? Rom. J. Miner. 1993, 76, 97–98. [Google Scholar]
- Johan, Z.; Udubasa, G.; Zemann, J. “Monsmedite”, a discredited potassium thallium sulphate mineral from Baia Sprie and its identity with voltaite: The state of the art. N. Jahr. Miner. Abh. 2009, 186, 63–66. [Google Scholar] [CrossRef]
- Kovács-Pálffy, P.; Muske, J.; Földvári, M.; Kónya, P.; Homonnay, Z.; Ntaflos, T.; Papp, G.; Király, E.; Sajó, I.; Szilágyi, V.; et al. Detailed study of “monsmedite” specimens from the original (1963) find, Baia Sprie, Baia Mare Ore District (Romania). Carpath. J. Earth Environ. Sci. 2011, 6, 321–330. [Google Scholar]
- Mereiter, K. Die Kristallstruktur des Voltaits, K2Fe2+5Fe3+3Al[SO4]12·18H2O. Tschermaks Miner. Petrogr. Mitt. 1972, 18, 185–202. [Google Scholar] [CrossRef]
- Orlandi, P.; Dini, A. Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis 2004, 29, 11–24. [Google Scholar]
- Peacor, D.R.; Rouse, R.C.; Coskren, T.D.; Essene, E.J. Destinezite (“diadochite”), Fe2(PO4)(SO4)(OH)·6H2O: Its crystal structure and role as a soil mineral at Alum Cave Bluff, Tennessee. Clays Clay Miner. 1999, 47, 1–11. [Google Scholar] [CrossRef]
- Bandy, M.C. Mineralogy of three sulphate deposits of Northern Chile. Am. Miner 1938, 23, 669–760. [Google Scholar]
- Jerz, J.K.; Rimstidt, J.D. Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact. Am. Miner. 2003, 88, 1919–1932. [Google Scholar] [CrossRef]
- Jambor, J.L. Mineralogy of sulfide-rich tailings and their oxidation products. Environ. Geochem. Sulfide Mine-Wastes 1994, 22, 59–102. [Google Scholar]
- Jamieson, H.E.; Robinson, C.; Alpers, C.N.; McCleskey, R.B.; Nordstrom, D.K.; Peterson, R.C. Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chem. Geol. 2005, 215, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Vezzoni, S.; Pieruccioni, D.; Galanti, Y.; Biagioni, C.; Dini, A. Permian hydrothermal alteration preserved in polymetamorphic basement and constraints for ore-genesis (Alpi Apuane, Italy). Geosciences 2020, 10, 399. [Google Scholar] [CrossRef]
- Lacalamita, M.; Schingaro, E.; Mesto, E.; Zaccarini, F.; Biagioni, C. Crystal-chemistry of micas belonging to the yangzhumingite-fluorophlogopite and phlogopite-fluorophlogopite series from the Apuan Alps (northern Tuscany, Italy). Phys. Chem. Miner. 2020, 47, 54. [Google Scholar] [CrossRef]
Mineral | BdV | CdR | For | MA | Pol |
---|---|---|---|---|---|
Alum-(K) | × | × | |||
Alunogen | × | × | |||
Anhydrite | × | ||||
Copiapite group | × | × | × | × | × |
Coquimbite | × | × | |||
Epsomite | × | × | |||
Fibroferrite | × | ||||
Giacovazzoite | × | ||||
Goldichite | × | ||||
Gypsum | × | × | × | × | |
Halotrichite | × | × | × | ||
Jarosite subgroup | × | × | × | × | |
Khademite | × | ||||
Krausite | × | × | |||
Magnanelliite | × | ||||
Melanterite | × | × | × | × | × |
Pickeringite | × | ||||
Rhomboclase | × | ||||
Römerite | × | × | |||
Scordariite | × | ||||
Volaschioite | × | ||||
Voltaite | × | × | |||
Wilcoxite | × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biagioni, C.; Mauro, D.; Pasero, M. Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review. Minerals 2020, 10, 1092. https://doi.org/10.3390/min10121092
Biagioni C, Mauro D, Pasero M. Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review. Minerals. 2020; 10(12):1092. https://doi.org/10.3390/min10121092
Chicago/Turabian StyleBiagioni, Cristian, Daniela Mauro, and Marco Pasero. 2020. "Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review" Minerals 10, no. 12: 1092. https://doi.org/10.3390/min10121092
APA StyleBiagioni, C., Mauro, D., & Pasero, M. (2020). Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review. Minerals, 10(12), 1092. https://doi.org/10.3390/min10121092