Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process
Abstract
:1. Introduction
2. Geological Setting
3. Tourmaline Occurrences
3.1. Type 1 Tourmaline
3.2. Type 2 Tourmaline
4. Sampling and Analytical Methods
4.1. Electron Microprobe Analysis
4.2. Laser Ablation-ICPMS Analysis
5. Results
5.1. Major Element Compositions
5.2. Trace and Rare Earth Element Compositions
6. Discussion
6.1. Origin of Type 1 and Type 2 Tourmaline
6.2. Records of Magmatic Hydrothermal Evolution
6.3. Constraints on the Fluid Provenance
6.4. Redox State and Implications for Gold Precipitation
7. Conclusions
- (1)
- Two types of tourmaline are recognized in the Laodou deposit. Type 1 tourmaline occurs as quartz-tourmaline nodules within the quartz diorite porphyry, whereas type 2 tourmaline occurs as quartz-sulfide-tourmaline veins in auriferous lodes.
- (2)
- Both tourmaline types fall into the alkali group and are classified under the schorl-dravite solid solution series. The substitutions of FeMg–1, FeAl–1, AlO((Fe, Mg)(OH)) –1, and X-site vacancy Ca–1 are inferred by the variations of their major element compositions.
- (3)
- Type 1 tourmaline samples are magmatic tourmaline, and were produced by the late crystallization process of the quartz diorite porphyry; type 2 tourmaline samples coexist with Au-bearing arsenopyrite and are crystallized from ore-forming fluids. Their REE compositions record the related magmatic-hydrothermal evolution.
- (4)
- The Co/Ni ratios of the coexisting type 2 tourmaline and arsenopyrite are close to that of the host quartz diorite porphyry, indicating a magma origin of the ore-forming fluids.
- (5)
- The elevated concentrations of Fe3+, V, and Cr in type 2 tourmaline fingerprint the increase of the oxygen fugacity in the ore-forming fluids, which is a trigger of gold precipitation.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williamson, B.J.; Spratt, J.; Adams, J.T.; Tindle, A.G.; Stanley, C.J. Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: An example from fault breccias at Roche, SW England. J. Petrol. 2000, 41, 1439–1453. [Google Scholar] [CrossRef] [Green Version]
- Sushchevskaya, T.; Ignatiev, A.; Velivetskaya, T. Magmatic Nature of Mineralizing Fluids in the Solnechnoye Sn Deposit (Russia) Deduced from Isotopic (H, O) Compositions of Tourmaline. Resour. Geol. 2011, 61, 407–413. [Google Scholar] [CrossRef]
- Codeço, M.S.; Weis, P.; Trumbull, R.B.; Pinto, F.; Lecumberri-Sanchez, P.; Wilke, F.D.H. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chem. Geol. 2017, 468, 1–16. [Google Scholar] [CrossRef]
- Yavuz, F.; Iskenderoglu, A.; Jiang, S.Y. Tourmaline compositions from the Salikvan porphyry Cu-Mo deposit and vicinity, northeastern Turkey. Can. Mineral. 1999, 37, 1007–1023. [Google Scholar]
- Dill, H.G.; Garrido, M.M.; Melcher, F.; Gomez, M.C.; Luna, L.I. Depth-related variation of tourmaline in the breccia pipe of the San Jorge porphyry copper deposit, Mendoza, Argentina. Ore Geol. Rev. 2012, 48, 271–277. [Google Scholar] [CrossRef]
- Garda, G.M.; Trumbull, R.B.; Beljavskis, P.; Wiedenbeck, M. Boron isotope composition of tourmalinite and vein tourmalines associated with gold mineralization, Serra do Itaberaba Group, central Ribeira Belt, SE Brazil. Chem. Geol. 2009, 264, 207–220. [Google Scholar] [CrossRef]
- Trumbull, R.B.; Garda, G.M.; Xavier, R.P.; Cavalcanti, J.A.D.; Codeço, M.S. Tourmaline in the Passagem de Mariana gold deposit (Brazil) revisited: Major-element, trace-element and B-isotope constraints on metallogenesis. Miner. Depos. 2019, 54, 395–414. [Google Scholar] [CrossRef]
- Daver, L.; Jébrak, M.; Beaudoin, G.; Trumbull, R.B. Three-stage formation of greenstone-hosted orogenic gold deposits in the Val-d’Or mining district, Abitibi, Canada: Evidence from pyrite and tourmaline. Ore Geol. Rev. 2020, 120, 103449. [Google Scholar] [CrossRef]
- Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.; Barnes, R.G. Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ. Geol. 1993, 88, 505–541. [Google Scholar] [CrossRef]
- Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G. Trace elements in tourmalines from massive sulfides deposits and tourmalinites; geochemical controls and exploration applications. Econ. Geol. 1996, 91, 657–675. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R. Boron isotope systematics of tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia, Canada. Chem. Geol. 1999, 158, 131–144. [Google Scholar] [CrossRef]
- Tornos, F.; Wiedenbeck, M.; Velasco, F. The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: Implications for a magmatic-hydrothermal origin. Miner. Depos. 2011, 47, 483–499. [Google Scholar] [CrossRef]
- Xavier, R.P.; Wiedenbeck, M.; Trumbull, R.B.; Dreher, A.M.; Monteiro, L.V.S.; Rhede, D.; De Araujo, C.E.G.; Torresi, I. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology 2008, 36, 743–746. [Google Scholar] [CrossRef]
- Kelly, C.J.; Davis, W.J.; Potter, E.G.; Corriveau, L. Geochemistry of hydrothermal tourmaline from IOCG occurrences in the Great Bear magmatic zone: Implications for fluid source(s) and fluid composition evolution. Ore Geol. Rev. 2020, 118, 103329. [Google Scholar] [CrossRef]
- Dutrow, B.L.; Henry, D.J. Tourmaline: A geologic DVD. Elements 2011, 7, 301–306. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-supergroup minerals. Am. Miner. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- van Hinsberg, V.J.; Henry, D.J.; Dutrow, B.L. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements 2011, 7, 327–332. [Google Scholar] [CrossRef]
- Dutrow, B.L.; Henry, D.J. Tourmaline compositions and textures: Reflections of the fluid phase. J. Geosci. 2018, 63, 99–110. [Google Scholar] [CrossRef]
- Slack, J.F.; Trumbull, R.B. Tourmaline as a recorder of ore-forming processes. Elements 2011, 7, 321–326. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jiang, S.Y.; Zhao, K.D.; Dai, B.Z.; Yang, T. Tourmaline as a recorder of magmatic–hydrothermal evolution: An in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China. Contrib. Mineral. Petrol. 2015, 170, 1–21. [Google Scholar] [CrossRef]
- Hu, D.L.; Jiang, S.Y. In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution. Ore Geol. Rev. 2020, 122, 103502. [Google Scholar] [CrossRef]
- Kröner, A.; Zhang, G.W.; Sun, Y. Granulites in the Tongbai area, Qinling belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics 1993, 12, 245–255. [Google Scholar] [CrossRef]
- Zhang, G.W. Qinling Orogenic Belt and Continental Dynamics; Science Press: Beijing, China, 2001; 855p. (In Chinese) [Google Scholar]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Meng, Q.R.; Zhang, G.W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Zhang, G.W.; Guo, A.L.; Yao, A.P. Western Qinling—Songpan continental tectonic node in China’s continental tectonics. Earth Sci. Front. 2004, 11, 23–32, (In Chinese with English Abstract). [Google Scholar]
- Zhu, L.M.; Zhang, G.W.; Yang, T.; Wang, F.; Gong, H.J. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the Western Qinling metallogenic belt, China. Geol. J. 2013, 48, 310–334. [Google Scholar] [CrossRef]
- Sun, W.D.; Li, S.G.; Chen, Y.D.; Li, Y.J. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie Orogenic belt. J. Geol. 2002, 110, 457–468. [Google Scholar] [CrossRef]
- Qin, J.F.; Lai, S.C.; Grapes, R.; Diwu, C.R.; Ju, Y.J.; Li, Y.F. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos 2009, 112, 259–276. [Google Scholar] [CrossRef]
- Luo, B.J.; Zhang, H.F.; Lü, X.B. U–Pb zircon dating, geochemical and Sr–Nd–Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: Petrogenesis and tectonic implications. Contrib. Mineral. Petrol. 2012, 164, 551–569. [Google Scholar] [CrossRef]
- Jin, X.Y.; Li, J.W.; Sui, J.X.; Wen, G.; Zhang, J.Y. Geochronological and geochemical constraints on the genesis and tectonic setting of Dewulu intrusive complex in Xiahe-Hezuo district of Western Qinling Orogen. J. Earth Sci. Environ. 2013, 35, 20–38, (In Chinese with English Abstract). [Google Scholar]
- Kou, X.H.; Zhang, K.X.; Lin, Q.X.; Zhu, Y.H.; Chen, F.N.; Luo, G.M.; Xu, Y.D. The distribution of Permian sedimentary sequences in the adjacent area of Qinling-Qilian-Kunlun, central China. Earth Sci. J. China Univ. Geosci. 2007, 32, 681–690, (In Chinese with English Abstract). [Google Scholar]
- Sui, J.X.; Li, J.W.; Jin, X.Y.; Vasconcelos, P.; Zhu, R. 40Ar/39Ar and U-Pb constraints on the age of the Zaozigou gold deposit, Xiahe-Hezuo district, West Qinling orogen, China: Relation to early Triassic reduced intrusions emplaced during slab rollback. Ore Geol. Rev. 2018, 101, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.C.; Qiu, K.F.; Nassif, M.T.; Geng, J.Z.; Sai, S.X.; Duo, D.W.; Huang, Y.Q.; Wang, J. Early orogenic gold mineralization event in the West Qinling related to closure of the Paleo-Tethys Ocean—Constraints from the Ludousou gold deposit, central China. Ore Geol. Rev. 2020, 117, 103217. [Google Scholar] [CrossRef]
- Guo, X.Q.; Yan, Z.; Wang, Z.Q.; Wang, T.; Hou, K.J.; Fu, C.L.; Li, J.L. Middle Triassic arc magmatism along the northeastern margin of the Tibet: U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China. J. Geol. Soc. 2012, 169, 327–336. [Google Scholar] [CrossRef]
- Zhang, C.L.; Wang, T.; Wang, X.X. Origin and tectonic setting of the early Mesozoic granitoids in Qinling orogenic belt, China. Geol. J. China Univ. 2008, 14, 304–316, (In Chinese with English Abstract). [Google Scholar]
- Sui, J.X.; Li, J.W.; Hofstra, A.H.; Obrien, H.; Lahaye, Y.; Yan, D.R.; Li, Z.K.; Jin, X.Y. Genesis of the Zaozigou gold deposit, West Qinling orogen, China: Constraints from sulfide trace element and stable isotope geochemistry. Ore Geol. Rev. 2020, 122, 103477. [Google Scholar] [CrossRef]
- Wang, J.P.; Liu, Z.J.; Liu, J.J.; Zeng, X.T.; Wang, K.X.; Liu, B.Z.; Wang, H.; Liu, C.H.; Zhang, F.F. Trace element compositions of pyrite from the Shuangwang gold breccias, Western Qinling Orogen, China: Implications for deep ore prediction. J. Earth Sci. 2018, 29, 564–572. [Google Scholar] [CrossRef]
- Jin, X.Y.; Li, J.W.; Hofstra, A.H.; Sui, J.X. Magmatic-hydrothermal origin of the early Triassic Laodou lode gold deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for gold metallogeny. Miner. Depos. 2017, 52, 883–902. [Google Scholar] [CrossRef]
- Sui, J.X.; Li, J.W.; Wen, G.; Jin, X.Y. The Dewulu Reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geol. Rev. 2016, 80, 1230–1244. [Google Scholar] [CrossRef]
- Zhang, D.X.; Shu, Z.X.; Cao, H.; Lu, A.H. Indosinian magmatism and tectonic setting of Xiahe-Hezuo area, western Qinling Mountains—Implications from the Dewulu quartz diorite and Laodou quartz diorite porphyry. Geol. China 2015, 42, 1257–1273, (In Chinese with English Abstract). [Google Scholar]
- Jin, X.Y. Genesis of the Laodou Gold Deposit, Xiahe-Hezuo Area, West Qinling Orogen: Constraints from the Geochemistry and Isotopic Geochronology. Master’s Thesis, China University of Geosciences, Wuhan, China, 2013. [Google Scholar]
- Wang, F. Discussion of the metallogenic geological conditions and ore genesis of the Laodou gold deposit in Gansu Province. Gansu Metall. 2004, 26, 16–18, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.B. Study on geological characteristics and metallogenic mechanism of the Laodou gold deposit in Gansu province, China. Gansu Metall. 2011, 33, 56–60, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.P.; Li, X.W.; Ning, W.B.; Kusky, T.; Wang, L.; Polat, A.; Deng, H. Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton. GSA Bull. 2019, 131, 1943–1964. [Google Scholar] [CrossRef]
- Ning, W.B.; Wang, J.P.; Xiao, D.; Li, F.F.; Huang, B.; Fu, D. Electron probe microanalysis of monazite and its applications to U-Th-Pb dating of geological samples. J. Earth Sci. 2019, 30, 952–963. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Xiao, S.Q.; Zhao, L.S.; Günther, D.; Li, M.; Zhang, W.; Zong, K.Q. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim. Acta Part B At. Spectrosc. 2012, 78, 50–57. [Google Scholar] [CrossRef]
- Hu, Z.C.; Gao, S.; Liu, Y.S.; Hu, S.H.; Chen, H.H.; Yuan, H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom. 2008, 23, 1093–1101. [Google Scholar] [CrossRef]
- Chen, C.F.; Liu, X.G.; Hu, Z.C.; Zong, K.Q.; Liu, Y.S. In situ analysis of the major and trace element compositions of hydrous silicate minerals by LA-ICP-MS. Earth Sci. J. China Univ. Geosci. 2014, 39, 525–536, (In Chinese with English Abstract). [Google Scholar]
- Hawthorne, F.C.; Henry, D.J. Classification of the minerals of the tourmaline group. Eur. J. Mineral. 1999, 11, 201–216. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Palmer, M.R.; Yeats, C.J. Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia. Chem. Geol. 2002, 188, 229–247. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral- An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Perugini, D.; Poli, G. Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy): An example of diffusion limited aggregation growth in a magmatic system. Contrib. Mineral. Petrol. 2007, 153, 493–508. [Google Scholar] [CrossRef]
- Longfellow, K.M.; Swanson, S.E. Skeletal tourmaline, undercooling, and crystallization history of the Stone Mountain granite, Georgia, USA. Can. Mineral. 2011, 49, 341–357. [Google Scholar] [CrossRef]
- Samson, I.M.; Sinclair, W.D. Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicules in the Seagull Batholith, Yukon Territory. Can. Mineral. 1992, 30, 937–954. [Google Scholar]
- Trumbull, R.B.; Krienitz, M.S.; Gottesmann, B.; Wiedenbeck, M. Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: The Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib. Mineral. Petrol. 2008, 155, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rozendaal, A.; Bruwer, L. Tourmaline nodules: Indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa. J. Afr. Earth Sci. 1995, 21, 141–155. [Google Scholar] [CrossRef]
- Taylor, B.E.; Slack, J.F. Tourmalines from Appalachian-Caledonian massive sulfide deposits; textural, chemical, and isotopic relationships. Econ. Geol. 1984, 79, 1703–1726. [Google Scholar] [CrossRef]
- van Hinsberg, V.J. Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. Can. Mineral. 2011, 49, 153–163. [Google Scholar] [CrossRef]
- Shibata, S.N.; Tanaka, T.; Yamamoto, K. Crystal structure control of the dissolution of rare earth elements in water-mineral interactions. Geochem. J. 2006, 40, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Bau, M.; Möller, P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral. Petrol. 1992, 45, 231–246. [Google Scholar] [CrossRef]
- Klemme, S.; Marschall, H.R.; Jacob, D.E.; Prowatke, S.; Ludwig, T. Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. Can. Mineral. 2011, 49, 165–176. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Meria, D.; Silcock, D.; Wade, B. Arsenopyrite-Pyrite Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and Trace Elements. Econ. Geol. 2013, 108, 1273–1283. [Google Scholar] [CrossRef]
- Cabral, A.R.; Koglin, N. Hydrothermal fluid source constrained by Co/Ni ratios in coexisting arsenopyrite and tourmaline: The auriferous lode of Passagem, Quadrilátero Ferrífero of Minas Gerais, Brazil. Mineral. Petrol. 2012, 104, 137–145. [Google Scholar] [CrossRef]
- Slack, J.F. Tourmaline associations with hydrothermal ore deposits. Rev. Mineral. 2002, 33, 559–644. [Google Scholar]
- Henry, D.J.; Sun, H.T.; Slack, J.F.; Dutrow, B.L. Tourmaline in meta-evaporites and highly magnesian rocks: Perspectives from Namibian tourmalinites. Eur. J. Mineral. 2008, 20, 889–904. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Leeman, W.P.; Canil, D.; Li, Z.X. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J. Petrol. 2005, 46, 2313–2336. [Google Scholar]
- Wanty, R.B.; Goldhaber, M.B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta 1992, 56, 1471–1483. [Google Scholar] [CrossRef]
- Liu, X.D.; Lu, X.C.; Wang, R.C.; Zhou, H.Q.; Xu, S.J. Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations. Geochim. Cosmochim. Acta 2011, 75, 185–194. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Cline, J.S. Characteristics and models for Carlin-type gold deposits. Rev. Econ. Geol. 2000, 13, 163–220. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Sui, J. Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process. Minerals 2020, 10, 647. https://doi.org/10.3390/min10080647
Jin X, Sui J. Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process. Minerals. 2020; 10(8):647. https://doi.org/10.3390/min10080647
Chicago/Turabian StyleJin, Xiaoye, and Jixiang Sui. 2020. "Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process" Minerals 10, no. 8: 647. https://doi.org/10.3390/min10080647
APA StyleJin, X., & Sui, J. (2020). Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process. Minerals, 10(8), 647. https://doi.org/10.3390/min10080647