Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes
Abstract
:1. Introduction
2. Geologic and Stratigraphic Settings
3. Materials and Methods
3.1. Palynological Screening
3.2. Bulk-Rock Geochemistry, Organic Carbon, and CaCO3 Analyses
3.3. Stable Isotope Measurements
4. Results
4.1. Palynomorphs Composition
4.2. Elemental Geochemistry
4.3. Isotope Geochemistry
5. Discussion
5.1. Palynomorph-Based Sequence Stratigraphy and Sea Level Change
5.2. Elemental Proxies, Sequences, and Sea Level
5.3. Stable Isotopes, Diagenetic Overprint, and Changes of Sea Level
5.4. Link between Sea Level and Climate Changes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conrad, C.P. The solid Earth’s influence on sea-level. Geol. Soc. Am. Bull. 2013, 125, 1027–1052. [Google Scholar] [CrossRef]
- Haq, B.U. Cretaceous eustasy revisited. Glob. Planet. Chang. 2014, 113, 44–58. [Google Scholar] [CrossRef]
- Sames, B.; Wagreich, M.; Wendler, J.E.; Haq, B.U.; Conrad, C.P.; Melinte-Dobrinescu, M.C.; Hu, X.; Wendler, I.; Wolfgring, E.; Yilmaz, I.Ö.; et al. Review: Short-term sea-level changes in a greenhouse world—A view from the Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 393–411. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Chen, H.; Lin, X.; Wang, F.; Yang, S.; Wen, Z.; Wang, Z.; Zhang, G.; Tong, X. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: Implication for global rise in sea level. Front. Earth Sci. 2017. [Google Scholar] [CrossRef]
- Bujak, J.P.; Williams, G.L. Dinoflagellate diversity through time. Mar. Micropaleontol. 1979, 4, 1–12. [Google Scholar] [CrossRef]
- MacRae, R.A.; Fensome, R.A.; Williams, G.L. Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can. J. Bot. 1996, 74, 1687–1694. [Google Scholar] [CrossRef]
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. The Geologic Time Scale, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012; 1144p. [Google Scholar]
- Prauss, M.L. The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, as reflected by marine palynology. Cretac. Res. 2006, 27, 872–886. [Google Scholar] [CrossRef]
- Tyson, R.V. Sedimentary Organic Matter-organic Facies and Palynofacies; Chapman and Hall: London, UK, 1995; p. 615. [Google Scholar]
- Skupien, P. Upper Cretaceous dinoflagellates and palaeonvironmental change of the Silesian basin (Outer Western Carpathians). Geophys. Res. Abstr. 2007, 9, 02355. [Google Scholar]
- Pearce, M.A.; Jarvis, I.; Tocher, B.A. The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from dinocyst and geochemical records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 207–234. [Google Scholar] [CrossRef]
- Olde, K.; Jarvis, I.; Uličný, D.; Pearce, M.A.; Trabucho-Alexandre, J.; Čech, S.; Gröcke, D.R.; Laurin, J.; Švábenická, L.; Tocher, B.A. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 222–243. [Google Scholar] [CrossRef] [Green Version]
- Tahoun, S.S.; Deaf, A.S.; Mansour, A. Palynological, paleoenvironmental and sequence stratigraphical analyses of a Turonian-Coniacian sequence, Beni Suef Basin, Eastern Desert, Egypt: Implication of Pediastrum rhythmic signature. Mar. Pet. Geol. 2017, 88, 871–887. [Google Scholar] [CrossRef]
- Mansour, A.; Tahoun, S.S.; Gentzis, T.; Elewa, A.M.T. The marine palynology of the Upper Cretaceous Abu Roash ‘A’ Member in the BED 2-3 borehole, Abu Gharadig Basin, Egypt. Palynology 2020, 44, 167–186. [Google Scholar] [CrossRef]
- van Wagoner, J.C.; Posamentier, H.W.; Mitchum, R.M.; Vail, P.R.; Sarg, J.F.; Loutit, T.S.; Hdenbol, J. An overview of the fundamentals of sequence stratigraphy and key definitions. In Sea-Level Changes: An Integrated Approach; Special Publication; Society of Economic and Paleontologists and Mineralogists: Tulsa, OK, USA, 1988; Volume 42, pp. 39–45. [Google Scholar]
- Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.C.; Miall, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M.E. Sequence Stratigraphy: Methodology and Nomenclature. Newsl. Stratigr. 2011, 44, 173–245. [Google Scholar] [CrossRef] [Green Version]
- Emery, D. Chapter Ten: Carbonate Systems. In Sequence Stratigraphy; Emery, D., Myers, K., Eds.; Blackwell Science: Hoboken, NJ, USA, 1996; pp. 211–237. [Google Scholar]
- Jarvis, I.; Murphy, A.M.; Gale, A.S. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change. J. Geol. Soc. Lond. 2001, 158, 685–696. [Google Scholar] [CrossRef]
- Jarvis, I.; Mabrouk, A.; Moody, R.T.J.; Murphy, A.M.; Sandman, R.I. Applications of carbon isotope and elemental (Sr/Ca, Mn) chemostratigraphy to sequence analysis: Sea-level change and the global correlation of pelagic carbonates. In Geology of East Libya; Salem, M.J., El-Hawat, A.S., Eds.; Earth Science Society of Libya: Tripoli, Libya, 2008; pp. 369–396. [Google Scholar]
- Jarvis, I.; Trabucho-Alexandre, J.; Gröcke, D.R.; Uličný, D.; Laurin, J. Stable isotope chemostratigraphy: Intercontinental correlation of organic carbon and carbonate records, and evidence of climate and sea-level change during the Turonian (Cretaceous). Depos. Rec. 2015, 1, 53–90. [Google Scholar] [CrossRef] [Green Version]
- Le Callonnec, L.; Renard, M.; De Rafélis, M.; Minoletti, F.; Beltran, C.; Du Chene, R.J. Evolution of the trace element contents (Sr and Mn) of hemipelagic carbonates from the Zumaia Paleocene section (Gipuzkoa, Spain): Implications for the knowledge of seawater chemistry during the Selandian. Bull. Société Géologique Fr. 2014, 185, 413–435. [Google Scholar] [CrossRef]
- Wagreich, M.; Koukal, V. The pelagic archive of short-term sea-level change in the Cretaceous: A review of proxies linked to orbital forcing. Geol. Soc. Lond. Spec. Publ. 2019, 498, 39–56. [Google Scholar] [CrossRef]
- Mansour, A.; Wagreich, M.; Gentzis, T.; Ocubalidet, S.; Tahoun, S.S.; Elewa, A.M.T. Depositional and organic carbon-controlled regimes during the Coniacian-Santonian event: First results from the southern Tethys (Egypt). Mar. Pet. Geol. 2020, 115, 104285. [Google Scholar] [CrossRef]
- Stoll, H.M.; Schrag, D.P. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geol. Soc. Am. Bull. 2000, 112, 308–319. [Google Scholar] [CrossRef]
- Wendler, I. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Sci. Rev. 2013, 126, 116–146. [Google Scholar] [CrossRef]
- Sabatino, N.; Meyers, S.R.; Voigt, S.; Coccioni, R.; Sprovieri, M.; Coccioni, R.; Sprovieri, M. A new high-resolution carbon-isotope stratigraphy for the Campanian (Bottaccione section): Its implications for global correlation, ocean circulation, and astrochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 489, 29–39. [Google Scholar] [CrossRef]
- Guiraud, R.; Bellion, Y. Late Carboniferous to Recent geodynamic evolution of the west Gondwanian cratonic Tethyan margins. In The Ocean Basins and Margins; Narin, A.E.M., Stehli, F.G., Eds.; The Tethys Ocean, Plenum: New York, NY, USA, 1995; Volume 8, pp. 101–124. [Google Scholar]
- El Gazzar, A.M.; Moustafa, A.R.; Bentham, P. Structural evolution of the Abu Gharadig field area, northern Western Desert, Egypt. J. Afr. Earth Sci. 2016, 124, 340–354. [Google Scholar] [CrossRef]
- Hendy, H.; Gouda, S.; Ghanem, L. Structural styles revealed by 3D seismic data in Badr El Din and Sitra Lease areas, Western Desert, Egypt. In Proceedings of the EGPC 11th Petroleum Exploration and Production Conference, Cairo, Egypt, 7–10 November 1992; pp. 20–38. [Google Scholar]
- Guiraud, R.; Bosworth, W. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics. Tectonophysics 1997, 282, 39–82. [Google Scholar] [CrossRef]
- Scotese, C.R. Modern Plate Tectonic Globe; (Modern_Ptect_766.kmz, Google Earth format); PALEOMAP Project: Evanston, IL, USA, 2014; Available online: www.globalgeology.com (accessed on 1 June 2014).
- Hantar, G. North Western Desert. In The Gelogy of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; Chapter 15; pp. 293–319. [Google Scholar]
- Abdel-Kireem, M.R.; Schrank, E.; Samir, A.M.; Ibrahimi, M.I.A. Cretaceous palaeoecology, palaeogeography. and palaeoclimatology of the northern Western Desert, Egypt. J. Afr. Earth Sci. 1996, 22, 93–112. [Google Scholar] [CrossRef]
- Wood, G.D.; Gabriel, A.M.; Lawson, J.C. Palynological techniques—Processing and microscopy. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; American Association of Stratigraphic Palynologist Foundation: Dallas, TX, USA, 1996; Volume 1, pp. 29–50. [Google Scholar]
- Müller, G.; Gastner, M. The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrb. Mineral. Mon. 1971, 10, 466–469. [Google Scholar]
- Spötl, C.; Vennemann, T. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. Mass Spectrom. 2003, 17, 1004–1006. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.B.; Kaufman, A.J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 1999, 161, 37–57. [Google Scholar] [CrossRef]
- Bradford, M.R.; Wall, D.A. The distribution of recent organic walled dinoflagellate cysts in the Persian Gulf of Oman and northwestern Arabian Sea. Palaeonto. Abteilung B-Palaophytol. 1984, 192, 16–84. [Google Scholar]
- Brinkhuis, H. Late Eocene to early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy): Biostratigraphy and paleoenvironmental interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 107, 121–163. [Google Scholar] [CrossRef]
- Götz, A.E.; Feist-Burkhardt, S.; Ruckwied, K. Palynofacies and sea-level changes in the upper Cretaceous of the Vocontian Basin, Southeast France. Cretac. Res. 2008, 29, 1047–1057. [Google Scholar] [CrossRef]
- Helenes, J.; De-Guerra, C.; Vásquez, J. Palynology and chronostratigraphy of the upper Cretaceous in the subsurface of the Barinas area, western Venezuela. Am. Assoc. Pet. Geol. Bull. 1998, 82, 1308–1328. [Google Scholar]
- Deaf, A.S.; Tahoun, S.S. Integrated palynological, organic geochemical, and sequence stratigraphic analyses of the middle to upper Cenomanian hydrocarbon reservoir/source Abu Roash “G” Member: A depositional model in northwestern Egypt. Mar. Pet. Geol. 2018, 92, 372–402. [Google Scholar] [CrossRef]
- Zippi, P.A. Freshwater algae from the Mattagami Formation (Albian), Ontario: Paleoecology, botanical affinities, and systematic taxonomy. Micropaleontology 1998, 44, 1–78. [Google Scholar] [CrossRef]
- Brenac, P.; Richards, K. Pediastrum as a guide fossil in sequence stratigraphy. In Proceedings of the IX International Palynological Congress, Houston, TX, USA, 23–28 June 1996; Goodman, D.K., Clarke, R.T., Eds.; American Association of Stratigraphic Palynologists Foundation: Houston, TX, USA, 2001; pp. 239–241. [Google Scholar]
- Schlanger, S.O. Strontium storage and release during deposition and diagenesis of marine carbonates release to sea-level variations. In Physical and Chemical Weathering in Geochemical Cycles; Lerman, A., Meybeck, M., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1988; pp. 323–339. [Google Scholar]
- Li, L.; Keller, G.; Adatte, T.; Stinnesbeck, W. Late Cretaceous sea level changes in Tunisia: A multidisciplinary approach. J. Geol. Soc. Lond. 2000, 157, 447–458. [Google Scholar] [CrossRef]
- Ruf, M.; Link, E.; Prossb, J.; Aigner, T. Integrated sequence stratigraphy: Facies, stable isotope and palynofacies analysis in a deeper epicontinental carbonate ramp (Late Jurassic, SW Germany). Sediment. Geol. 2005, 175, 391–414. [Google Scholar] [CrossRef]
- Marshall, J.D. Climatic and oceanographic isotope signals from the carbonate rock record and their preservation. Geol. Mag. 1992, 129, 143–160. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Gale, A.S.; Corfield, R.M. Carbon and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag. 1994, 131, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, I.; Gale, A.S.; Jenkyns, H.C.; Pearce, M.A. Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol. Mag. 2006, 143, 561–608. [Google Scholar] [CrossRef] [Green Version]
- Arthur, M.A.; Anderson, T.F.; Kaplan, I.R.; Veizer, J.; Land, L.S. Stable Isotopes in Sedimentary Geology; Society of Economic and Paleontologists and Mineralogists: Tulsa, OK, USA, 1983. [Google Scholar]
- Shackleton, N.J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 1987, 6, 183–190. [Google Scholar] [CrossRef]
- Föllmi, K. Early Cretaceous life, climate and anoxia. Cretac. Res. 2012, 35, 230–257. [Google Scholar] [CrossRef]
- Linnert, C.; Robinson, S.A.; Lees, J.A.; Bown, P.A.; Pérez-Rodriguez, I.; Petrizzo, M.R.; Falzoni, F.; Littler, K.; Arz, J.A.; Russell, E.E. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 2014, 5, 4194. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Roemmich, D.; Domingues, C.M.; Willis, J.K.; White, N.J.; Gilson, J.E.; Stammer, D.; Köhl, A.; Chambers, D.P.; Landerer, F.W.; et al. Ocean temperature and salinity contributions to global and regional sea-level change. In Understanding Sea-Level Rise and Variability, 1st ed.; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S., Eds.; Wiley-Blackwell: Chichester, UK, 2010; pp. 143–176. [Google Scholar]
- Alley, R.B.; Anandakrishnan, S.; Christianson, K.; Horgan, H.J.; Muto, A.; Parizek, B.R.; Pollard, D.; Walker, R.T. Oceanic forcing of ice sheet retreat: West Antarctica. Annu. Rev. Earth Planet. Sci. 2015, 43, 207–231. [Google Scholar] [CrossRef]
- Prauss, M.L. Marine palynology of the Oceanic Anoxic Event 3 (OAE3, Coniacian-Santonian) at Tarfaya, Morocco, NW Africa—Transition from preservation to production-controlled accumulation of marine organic carbon. Cretac. Res. 2015, 53, 19–37. [Google Scholar] [CrossRef]
Samples | Dinocyst% of Total Palynomorphs | Dinocyst Groups of Total Dinocyst % | Dinocyst Diversity | MFTLs (%) | FWA (%) | Sporomorphs (%) | PMI | |||
---|---|---|---|---|---|---|---|---|---|---|
Peridinioid | Chorate Gon. | Other Gony. | Shanon Index | No. of Species | ||||||
1570 | 47.1 | 48.9 | 21.7 | 29.4 | 3.63 | 48 | 29.4 | 4.41 | 12.25 | 486 |
1576 | 61.7 | 46.3 | 10.6 | 43.1 | 3.56 | 50 | 25.9 | 0.99 | 7.46 | 1022 |
1582 | 62.3 | 46.7 | 10.4 | 43 | 3.81 | 59 | 13.9 | 2.33 | 13.95 | 500 |
1588 | 38.6 | 34.4 | 14 | 51.6 | 3.6 | 47 | 32.6 | 19.92 | 7.20 | 265 |
1594 | 46.4 | 18.8 | 16.8 | 64.4 | 3.43 | 40 | 31.4 | 17.73 | 4.09 | 351 |
1600 | 65.7 | 27.1 | 19.3 | 53.6 | 3.6 | 47 | 29.2 | 1.39 | 2.32 | 2311 |
1606 | 52.7 | 39.5 | 10.1 | 50.5 | 3.53 | 42 | 30.2 | 2.44 | 12.68 | 544 |
1612 | 55.6 | 24.4 | 26.1 | 49.6 | 3.65 | 47 | 35.9 | 0 | 6.08 | 1436 |
1618 | 54.8 | 35.4 | 6.2 | 58.4 | 3.48 | 44 | 31.3 | 1.92 | 6.73 | 1000 |
1624 | 66.8 | 29.9 | 9.7 | 60.4 | 3.57 | 45 | 23.1 | 1.38 | 3.23 | 1882 |
1630 | 62.4 | 13.6 | 17.1 | 69.3 | 3.43 | 43 | 32.3 | 1.77 | 1.77 | 2422 |
1636 | 66.8 | 15.8 | 13.8 | 70.4 | 3.73 | 53 | 30.1 | 0.44 | 0.89 | 5575 |
1642 | 54.9 | 27.1 | 16.1 | 56.8 | 3.68 | 47 | 33.3 | 4.69 | 2.82 | 1159 |
1648 | 69.6 | 33.6 | 13.8 | 52.6 | 3.9 | 61 | 26.3 | 1.38 | 0.46 | 4260 |
1654 | 44.9 | 29.2 | 15.6 | 55.2 | 3.79 | 55 | 22.7 | 16.91 | 9.66 | 271 |
1660 | 49.8 | 20.9 | 20 | 59.1 | 3.5 | 42 | 44.2 | 1.38 | 1.84 | 2625 |
1666 | 46.9 | 21.4 | 9.2 | 69.4 | 3.32 | 38 | 12.6 | 25.12 | 7.73 | 202 |
1672 | 60.8 | 25.2 | 28.7 | 46.1 | 3.56 | 44 | 27.6 | 2.16 | 3.88 | 1553 |
1678 | 60.9 | 22.4 | 24.8 | 52.8 | 3.57 | 45 | 23.8 | 1.98 | 6.93 | 968 |
1684 | 64.7 | 25.8 | 22 | 52.3 | 3.67 | 49 | 25 | 0.49 | 4.41 | 1764 |
1690 | 64.5 | 26 | 13 | 61 | 3.16 | 27 | 25 | 2.42 | 4.03 | 1289 |
1696 | 60.6 | 26.6 | 24.2 | 49.2 | 3.7 | 50 | 34.9 | 0.49 | 2.96 | 2450 |
1702 | 58.2 | 39.3 | 20.5 | 40.2 | 3.61 | 48 | 24.1 | 3.85 | 10.6 | 574 |
1708 | 71.9 | 44.3 | 15.7 | 40 | 3.72 | 53 | 15.8 | 3.94 | 5.91 | 871 |
1714 | 66.0 | 22 | 23.4 | 54.6 | 3.62 | 48 | 23.6 | 8.96 | 0.47 | 914 |
1720 | 64.5 | 28.6 | 18.1 | 53.4 | 3.71 | 55 | 29.1 | 5.42 | 0.98 | 1357 |
1726 | 59.2 | 20.5 | 23 | 56.6 | 3.55 | 44 | 31.1 | 3.88 | 1.5 | 1625 |
1732 | 61.2 | 23.8 | 15.1 | 61.1 | 3.6 | 46 | 33.5 | 2.91 | 1.5 | 1970 |
1738 | 65.2 | 25.2 | 13.9 | 60.9 | 3.54 | 46 | 28.4 | 1.99 | 2.5 | 1920 |
1744 | 51.0 | 21.6 | 3.9 | 74.5 | 3.22 | 35 | 43 | 1.5 | 2.5 | 2133 |
1750 | 28.4 | 1.5 | 1 | 97.5 | 1.48 | 6 | 68.7 | 2.99 | 0 | 2167 |
Depth (M) | TOC (wt.%) | CaCO3 (wt.%) | Al (wt.%) | Si (wt.%) | Sr/Ca | Ba (ppm) | Zr (ppm) | Mn (wt.%) | Zn (ppm) | Si/Al | Ti/Al | Zr/Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1570 | 0.28 | 73.8 | 1.43 | 4.36 | 23.1 | 400 | 123 | 0.024 | 39 | 3.05 | 0.14 | 86 |
1576 | 0.39 | 60.4 | 1.88 | 8.18 | 24.5 | 570 | 181 | 0.025 | 52 | 4.35 | 0.15 | 96.3 |
1582 | 0.27 | 62.9 | 2.01 | 7.58 | 23.8 | 680 | 156 | 0.026 | 44 | 3.77 | 0.13 | 77.6 |
1588 | 0.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1594 | 0.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1600 | 0.3 | 75.4 | 1 | 4.1 | 25.1 | 240 | 105 | 0.03 | 27 | 4.1 | 0.17 | 105 |
1606 | 0.29 | 75.9 | 0.97 | 5.34 | 22.2 | 280 | 146 | 0.03 | 35 | 5.51 | 0.16 | 150.5 |
1612 | NA | 75.7 | 0.96 | 5.92 | 20.2 | 320 | 160 | 0.029 | 39 | 6.17 | 0.13 | 166.7 |
1618 | 0.346 | 72.8 | 1.06 | 7.19 | 21.2 | 230 | 126 | 0.031 | 31 | 6.78 | 0.15 | 118.9 |
1624 | 0.28 | 69.4 | 1.39 | 6.41 | 21.9 | 190 | 128 | 0.026 | 37 | 4.61 | 0.14 | 92.1 |
1630 | 0.19 | 77.3 | 1.31 | 3.58 | 19.7 | 300 | 69 | 0.028 | 49 | 2.73 | 0.09 | 52.7 |
1636 | 0.18 | 76.4 | 1.33 | 4.15 | 20.1 | 296 | 70 | 0.028 | 43 | 3.12 | 0.1 | 52.6 |
1642 | 0.15 | 79.3 | 1.45 | 3.47 | 22.4 | 273 | 81 | 0.023 | 36 | 2.39 | 0.09 | 55.9 |
1648 | NA | 77.2 | 1.56 | 3.91 | 24.6 | 260 | 87 | 0.022 | 31 | 2.51 | 0.1 | 55.8 |
1660 | 0.16 | 61.1 | 1.92 | 8.87 | 23.6 | 390 | 157 | 0.028 | 52 | 4.62 | 0.13 | 81.8 |
1666 | 0.2 | 55.5 | 2.41 | 11 | 31.7 | 310 | 106 | 0.035 | 41 | 4.56 | 0.15 | 44 |
1672 | 0.29 | 72.7 | 1.66 | 4.43 | 28.9 | 390 | 105 | 0.027 | 50 | 2.67 | 0.11 | 63.3 |
1678 | 0.26 | 68.8 | 2.07 | 6.52 | 26.3 | 230 | 118 | 0.024 | 43 | 3.15 | 0.1 | 57 |
1684 | 0.26 | 64.4 | 2.08 | 7.19 | 27.5 | 250 | 116 | 0.028 | 47 | 3.46 | 0.13 | 55.8 |
1690 | 0.36 | 63.9 | 2.04 | 7.44 | 26.1 | 320 | 113 | 0.029 | 45 | 3.65 | 0.13 | 55.4 |
1696 | 0.35 | 63.1 | 2 | 6.83 | 24.8 | 540 | 109 | 0.029 | 44 | 3.42 | 0.13 | 54.5 |
1708 | 0.4 | 46.8 | 2.39 | 9.69 | 33.1 | 260 | 112 | 0.034 | 54 | 4.05 | 0.14 | 46.9 |
1714 | 0.29 | 69.3 | 1.57 | 4.7 | 22.2 | 310 | 51 | 0.026 | 28 | 2.99 | 0.14 | 32.5 |
1720 | NA | 61.1 | 2.01 | 7.22 | 28.8 | 160 | 107 | 0.027 | 40 | 3.59 | 0.14 | 53.2 |
1726 | 0.25 | 67.5 | 2.03 | 5.45 | 23.4 | 160 | 73 | 0.025 | 39 | 2.68 | 0.1 | 36 |
1732 | 0.25 | 69.2 | 1.65 | 4.82 | 23.5 | 650 | 88 | 0.023 | 49 | 2.92 | 0.12 | 53.3 |
1738 | 0.26 | 54.3 | 2.46 | 7.73 | 27.7 | 410 | 93 | 0.024 | 47 | 3.14 | 0.1 | 37.8 |
1744 | 0.27 | 86.2 | 0.33 | <DL | 28.6 | 604 | 35 | 0.022 | 40 | <DL | 1.3 | 106.1 |
1746 | 0.29 | 86.9 | 0.35 | <DL | 29.1 | 610 | 31 | 0.022 | 38 | <DL | 1.52 | 88.6 |
1750 | 0.32 | 87.4 | 0.42 | <DL | 27.6 | 6770 | 53 | 0.02 | 42 | <DL | 0.94 | 126.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, A.; Gentzis, T.; Wagreich, M.; Tahoun, S.S.; Elewa, A.M.T. Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes. Minerals 2020, 10, 1099. https://doi.org/10.3390/min10121099
Mansour A, Gentzis T, Wagreich M, Tahoun SS, Elewa AMT. Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes. Minerals. 2020; 10(12):1099. https://doi.org/10.3390/min10121099
Chicago/Turabian StyleMansour, Ahmed, Thomas Gentzis, Michael Wagreich, Sameh S. Tahoun, and Ashraf M.T. Elewa. 2020. "Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes" Minerals 10, no. 12: 1099. https://doi.org/10.3390/min10121099
APA StyleMansour, A., Gentzis, T., Wagreich, M., Tahoun, S. S., & Elewa, A. M. T. (2020). Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes. Minerals, 10(12), 1099. https://doi.org/10.3390/min10121099