Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Field Investigation and Petrography
3.2. Whole-Rock Chemical Analysis
3.3. Mineral Chemistry Analysis
3.4. Zircon U-Pb Geochronology
4. Stratigraphy of the Band-e-Zeyarat Ophiolite
Sections Sampled for Plagiogranites Suitable for Zircon U-Pb Geochronological Dating
5. Petrography of the Magmatic Rocks
6. Geochemistry of the Magmatic Rocks
6.1. Intrusive Complex
6.2. Sheeted Dyke Complex, Volcanic Sequence, and Individual Dykes
6.2.1. Type-I Volcanic and Subvolcanic Rocks
6.2.2. Type-II Volcanic and Subvolcanic Rocks
7. Mineral Chemistry
7.1. Mineral Chemistry
7.1.1. Olivine
7.1.2. Plagioclase
7.1.3. Clinopyroxene
8. Zircon U-Pb Dating
9. Discussion
9.1. Melt Petrogenesis
9.1.1. Type-I
9.1.2. Subtype-IIa
9.1.3. Subtype-IIb
9.1.4. Subtype-IIc
9.1.5. Subtype-IId
9.2. Tectono-Magmatic Setting of Formation of the Band-e-Zeyarat Ophiolite and Geodynamic Implications
10. Conclusions
- The Band-e-Zeyarat ophiolite consists of (from bottom to top): ultramafic cumulates, layered gabbros, isotropic gabbros, as well as a sheeted dyke complex and a volcanic series including mainly basalts and minor andesites and rhyolites.
- Whole rock chemical compositions of basaltic rocks show both N-MORB and E-MORB affinities.
- The compositions of rock-forming minerals (i.e., olivine, plagioclase, and clinopyroxene) also point out a general MORB-type affinity of both gabbros and basalts.
- LA-ICP-MS zircon U-Pb dating showed the age of the Band-e-Zeyarat gabbros at ~122–129 Ma.
- Band-e-Zeyarat N-MORBs formed from partial melting of a depleted sub-oceanic mantle peridotite in the spinel-facies.
- Band-e-Zeyarat E-MORBs formed from partial melting of a depleted sub-oceanic mantle peridotite that was metasomatized by OIB-type (plume-type) components. They show different LREE, Th, Nb, TiO2, and Ta contents, which point out different partial melting conditions, in terms of partial melting degrees and melting depths.
- We suggest that the Band-e-Zeyarat ophiolite represents a chemical composite upper oceanic crust, which records an Early Cretaceous plume–ridge interaction in the Makran Neo-Tethys.
- The plume activity that affected the Makran sector of the Neo-Tethys can be framed into the plume activities observed worldwide during the Cretaceous.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maruyama, S.; Liou, J.G.; Terabayashi, M. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 1996, 38. [Google Scholar] [CrossRef]
- Shervais, J.W. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. G3 Geochem. Geophys. Geosyst. 2001, 2, 45. [Google Scholar] [CrossRef]
- Dilek, Y. Ophiolite concept and its evolution. In Ophiolite Concept and the Evolution of Geological Thought; Dilek, Y., Newcomb, S., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2003; Volume 373, pp. 1–16. [Google Scholar]
- Kusky, T.M.; Windley, B.F.; Safonova, I.; Wakita, K.; Wakabayashi, J.; Polat, A.; Santosh, M. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res. 2013, 24, 501–547. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolites and their origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile element fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Furnes, H.; de Wit, M.; Dilek, Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci. Front. 2014, 5, 571–603. [Google Scholar] [CrossRef] [Green Version]
- Saccani, E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front. 2015, 6, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Stöcklin, J. Structural history and tectonics of Iran; a review. AAPG Bull. 1968, 52, 1229–1258. [Google Scholar]
- Kopp, C.; Fruehn, J.; Flueh, E.R.; Reichert, C.; Kukowski, N.; Bialas, J.; Klaeschen, D. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics 2000, 329, 171–191. [Google Scholar] [CrossRef]
- Burg, J.-P.; Dolati, A.; Bernoulli, D.; Smith, J. Structural style of the Makran tertiary accretionary complex in SE Iran. In Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues; Frontiers in Earth Sciences; Al Hosani, K., Roure, F., Ellison, R., Lokier, S., Eds.; Springer: Heidelberg, Germany, 2013; pp. 239–259. [Google Scholar] [CrossRef]
- Penney, C.; Copley, A.; Oveisi, B. Subduction tractions and vertical axis rotations in the Zagros–Makran transition zone, SE Iran: The 2013 May 11 M w 6.1 Minab earthquake. Geophys. J. Int. 2015, 202, 1122–1136. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, D.; Burg, J.-P.; Bouilhol, P.; von Quadt, A. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 2015, 34, 571–593. [Google Scholar] [CrossRef] [Green Version]
- Burg, J.-P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci. Rev. 2018, 185, 1210–1231. [Google Scholar] [CrossRef]
- McCall, G.J.H.; Kidd, R.G.W. The Makran southeastern Iran: The anatomy of a convergent margin active from Cretaceous to present. In Trench-Forearc Geology: Sedimentation and Tectonics of Modern and Ancient Plate Margins; Leggett, J.K., Ed.; Geological Society of London Special Publications: London, UK, 1982; Volume 10, pp. 387–397. [Google Scholar]
- Monsef, I.; Rahgoshay, M.; Pirouz, M.; Chiaradia, M.; Grégoire, M.; Ceuleneer, G. The Eastern Makran Ophiolite (SE Iran): Evidence for a Late Cretaceous fore-arc oceanic crust. Int. Geol. Rev. 2019, 61, 1313–1339. [Google Scholar] [CrossRef]
- Sepidbar, F.; Lucci, F.; Biabangard, H.; Zaki Khedr, M.; Jiantang, P. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). Int. Geol. Rev. 2020, 1–28. [Google Scholar] [CrossRef]
- McCall, G.J.H. A summary of the geology of the Iranian Makran. In The Tectonic and Climatic Evolution of the Arabian Sea Region; Clift, P.D., Kroon, F.D., Gaedecke, C., Craig, J., Eds.; Geological Society of London Special Publications: London, UK, 2002; Volume 195, pp. 147–204. [Google Scholar]
- Moslempour, M.E.; Khalatbari-Jafari, M.; Ghaderi, M.; Yousefi, H.; Shahdadi, S. Petrology, geochemistry and tectonics of the extrusive sequence of Fannuj-Maskutan Ophiolite, southeastern Iran. J. Geol. Soc. India 2015, 85, 604–618. [Google Scholar] [CrossRef]
- Saccani, E.; Delavari, M.; Dolati, A.; Marroni, M.; Pandolfi, L.; Chiari, M.; Barbero, E. New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Res. 2018, 62, 306–327. [Google Scholar] [CrossRef]
- Barbero, E.; Delavari, M.; Dolati, A.; Saccani, E.; Marroni, M.; Catanzariti, R.; Pandolfi, L. The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran). J. Asian Earth Sci. 2020. [Google Scholar] [CrossRef]
- Ghazi, A.M.; Hassanipak, A.A.; Mahoney, J.J.; Duncon, R.A. Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary Prism, S.E. Iran. Tectonophysics 2004, 193, 175–196. [Google Scholar] [CrossRef]
- Kananian, A.; Juteau, T.; Bellon, H.; Darvishzadeh, A.; Sabzehi, M.; Whitechurch, H.; Ricou, L.-E. The ophiolite massif of Kahnuj (western Makran, southern Iran): New geological and geochronological data. Comptes Rendus Acad. Sci. Ser. IIA Earth Planet. Sci. 2001, 332, 543–552. [Google Scholar] [CrossRef]
- Esmaeili, R.; Xiao, W.; Ebrahimi, M.; Zhang, J.; Zhang, Z.; Abd El-Rahman, Y.; Han, C.; Wan, B.; Ao, S.; Song, D.; et al. Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. Int. Geol. Rev. 2019, 1–21. [Google Scholar] [CrossRef]
- Kerr, A.C. Oceanic Plateaus. In Treatise on Geochem; Elsevier: Amsterdam, The Netherlands, 2014; pp. 631–667. [Google Scholar] [CrossRef]
- Coffin, M.F.; Pringle, M.S.; Duncan, R.A. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 2002, 43, 1121–1139. [Google Scholar] [CrossRef] [Green Version]
- Kerr, A.C.; White, R.V.; Saunders, A.D. LIP Reading: Recognizing Oceanic Plateaux in the Geological Record. J. Petrol. 2000, 41, 1041–1056. [Google Scholar] [CrossRef]
- Fitton, J.G.; Godard, M. Origin and evolution of magmas on the Ontong Java Plateau. Geol. Soc. Lond. Spec. Publ. 2004, 229, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Hoernle, K.; Hauff, F.; van den Bogaard, P.; Werner, R.; Mortimer, N.; Geldmacher, J.; Garbe-Schönberg, D.; Davy, B. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus. Geochim. Cosmochim. Acta 2010, 74, 7196–7219. [Google Scholar] [CrossRef]
- Bagheri, S.; Stampfli, G.M. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics 2008, 451, 123–155. [Google Scholar] [CrossRef]
- Zanchetta, S.; Berra, F.; Zanchi, A.; Bergomi, M.; Caridroit, M.; Nicora, A.; Heidarzadeh, G. The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: Constraints on the Cimmerian orogeny. Gondwana Res. 2013, 24, 1237–1266. [Google Scholar] [CrossRef]
- Mohammadi, A.; Burg, J.-P.; Winkler, W.; Ruh, J.; von Quadt, A. Detrital zircon and provenance analysis of Late Cretaceous–Miocene onshore Iranian Makran strata: Implications for the tectonic setting. Geol. Soc. Am. Bull. 2016, 128, 1481–1499. [Google Scholar] [CrossRef]
- Pirnia, T.; Saccani, E.; Torabi, G.; Chiari, M.; Gorican, S.; Barbero, E. Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geosci. Front. 2020, 11, 57–81. [Google Scholar] [CrossRef]
- Eftekhar-Nezhad, J.; Arshadi, S.; Mahdavi, M.A.; Morgan, K.H.; McCall, G.J.H.; Huber, H. Fannuj Quadrangle Map 1:250,000 Scale; Ministry of Mines and Metal, Geological Survey of Iran: Tehran, Iran, 1979. [Google Scholar]
- Samimi Namin, M. Geological Map of Taherui 1:250,000 Scale; Ministry of Mines and Metal, Geological Survey of Iran: Tehran, Iran, 1982. [Google Scholar]
- Samimi Namin, M. Geological Map of Minab 1:250,000 Scale; Ministry of Mines and Metal, Geological Survey of Iran: Tehran, Iran, 1983. [Google Scholar]
- Riaz, M.S.; Bin, S.; Naeem, S.; Kai, W.; Xie, Z.; Gilani, S.M.M.; Ashraf, U. Over 100 years of faults interaction, stress accumulation, and creeping implications, on Chaman Fault System, Pakistan. Int. J. Earth Sci. 2019, 108, 1351–1359. [Google Scholar] [CrossRef]
- Dercourt, J.; Zonenshian, L.P.; Ricou, L.E.; Kazmin, V.G.; LePichon, X.; Knipper, A.L.; Grandjacquet, C.; Sbortshikov, M.; Geyssant, J.; Lepvrier, C.; et al. Geological evolution of the Tethys Belt from the Atlantic to the Pamir since the Lias. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Ricou, L.E. Tethys reconstructed: Plates continental fragments and their boundaris since 260Ma from Central America to South-eastern Asia. Geodin. Acta 1994, 7, 169–218. [Google Scholar] [CrossRef]
- Glennie, K.W.; Hughes Clarke, M.W.; Boeuf, M.G.A.; Pilaar, W.F.H.; Reinhardt, B.M. Inter-relationship of Makran-Oman Mountains belts of convergence. Geol. Soc. Lond. Spec. Publ. 1990, 49, 773–786. [Google Scholar] [CrossRef]
- Barrier, E.; Vrielynck, B.; Brouillet, J.F.; Brunet, M.F. Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene; Atlas of 20 Maps (scale: 1:15,000,000); Ccgm/Cgmw: Paris, France, 2018. [Google Scholar]
- Penney, C.; Tavakoli, F.; Saadat, A.; Nankali, H.R.; Sedighi, M.; Khorrami, F.; Sobouti, F.; Rafi, Z.; Copley, A.; Jackson, J.; et al. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophys. J. Int. 2017, 209, 1800–1830. [Google Scholar] [CrossRef]
- Motaghi, K.; Shabanian, E.; Nozad-Khalil, T. Deep structure of the western coast of the Makran subduction zone, SE Iran. Tectonophysics 2020, 776, 228314. [Google Scholar] [CrossRef]
- Dolati, A. Stratigraphy, Structure Geology and Low-Temperature Thermochronology across the Makran Accretionary Wedge in Iran. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2010; p. 165. [Google Scholar]
- McCall, G.J.H. Explanatory text of the Minab Quadrangle Map 1:250,000 scale, No. J13; Geological Survey of Iran: Tehran, Iran, 1985; p. 530. [Google Scholar]
- McCall, G.J.H. The geotectonic history of the Makran and adjacent areas of southern Iran. J. Asian Earth Sci. 1997, 15, 517–531. [Google Scholar] [CrossRef]
- Platt, J.P.; Leggett, J.K.; Young, J.; Raza, H.; Alam, S. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology 1985, 13, 507. [Google Scholar] [CrossRef]
- Burg, J.-P.; Bernoulli, D.; Smit, J.; Dolati, A.; Bahroudi, A. A giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 2008, 20, 188–193. [Google Scholar] [CrossRef]
- Delavari, M.; Dolati, A.; Marroni, M.; Pandolfi, L.; Saccani, E. Association of MORB and SSZ ophiolites along the shear zone between Coloured Mélange and Bajgan Complexes (North Maran, Iran): Evidence from the Sorkhband area. Ofioliti 2016, 41, 21–34. [Google Scholar] [CrossRef]
- Hunziker, D. Magmatic and Metamorphic History of the North Makran Ophiolites and Blueschists (SE Iran): Influence of Fe3+/Fe2+ Ratios in Blueschist Facies Minerals on Geothermobarometric calculations. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2014; p. 364. [Google Scholar]
- Desmons, J.; Beccaluva, L. Mid-Ocean ridge and island-arc affinities in ophiolites from Iran: Palaeographic implications. Chem. Geol. 1983, 39, 39–63. [Google Scholar] [CrossRef]
- McCall, G.J.H. Mélanges of the Makran, southeastern Iran. In Ophiolitic and Related Mélanges; McCall, G.J.H., Ed.; Benchmark Papers in Geology 66; Hutchinson Ross Publishing Company: Stroudsburg, PA, USA, 1983; pp. 292–299. [Google Scholar]
- Dorani, M.; Arvin, M.; Oberhänsli, R.; Dargahi, S.P.-T. evolution of metapelites from the Bajgan complex in the Makran accretionary prism, south eastern Iran. Geochemistry 2017, 77, 459–475. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Wernicke, B.P. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 2016, 35, 586–621. [Google Scholar] [CrossRef] [Green Version]
- Delaloye, M.; Desmons, J. Ophiolites and mélange terranes in Iran: A geochronological study and its paleotectonic implications. Tectonophysics 1980, 68, 83–111. [Google Scholar] [CrossRef]
- Omrani, H.; Moazzen, M.; Oberhänsli, R.; Moslempour, M.E. Iranshahr blueschist: Subduction of the inner Makran oceanic crust. J. Metamorph. Geol. 2017, 35, 373–392. [Google Scholar] [CrossRef]
- Esmaeili, R.; Xiao, W.; Griffin, W.L.; Moghadam, H.S.; Zhang, Z.; Ebrahimi, M.; Zhang, J.; Wan, B.; Ao, S.; Bhandari, S. Reconstructing the Source and Growth of the Makran Accretionary Complex: Constraints From Detrital Zircon U-Pb Geochronology. Tectonics 2020, 39. [Google Scholar] [CrossRef]
- Lachance, G.R.; Trail, R.J. Practical solution to the matrix problem in X-ray analysis. Can. Spectrosc. 1966, 11, 43–48. [Google Scholar]
- Govindaraju, K. 1994 compilation of working values and sample description for 383 geostandards. Geostand. Newsl. 1994, 18, 1–58. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stochiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. 238U/235U systematics in terrestrial Uranium-bearing minerals. Science 2012, 335, 1610–1614. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E. The application of laser ablation inductively coupled plasma mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.G.; Jackson, S.E.; Griffin, W. Data reduction software for LAICPMS. In Laser ablation ICPMS in the Earth Sciences: Principles and Applications; Sylvester, P., Ed.; Short Course Series; Mineralogical Association of Canada: Québec, QC, Canada, 2001; Volume 29, pp. 239–243. [Google Scholar]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Stakes, D.S.; Taylor, H.P. Oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. Geol. Soc. Lond. Spec. Publ. 2003, 218, 315–351. [Google Scholar] [CrossRef]
- Rollinson, H. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 2009, 112, 603–614. [Google Scholar] [CrossRef]
- Beccaluva, L.; Di Girolamo, P.; Macciotta, G.; Morra, V. Magma affinities and fractionation trends in ophiolites. Ofioliti 1983, 8, 307–324. [Google Scholar]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Short Course Notes; Bailes, A.H., Christiansen, E.H., Galley, A.G., Jenner, G.A., Keith, J.D., Kerrich, R., Lentz, D.R., Lesher, C.M., Lucas, S.B., Ludden, J.N., Eds.; Geological Association of Canada: Saint John, NL, Canada, 1996; Volume 12, pp. 79–113. [Google Scholar]
- Parlak, O.; Bağcı, U.; Rızaoğlu, T.; Ionescu, C.; Önal, G.; Höck, V.; Kozlu, H. Petrology of ultramafic to mafic cumulate rocks from the Göksun (Kahramanmaraş) ophiolite, southeast Turkey. Geosci. Front. 2020, 11, 109–128. [Google Scholar] [CrossRef]
- Burns, L.E. The Border Ranges ultramafic and mafic complex, south-central Alaska: Cumulate fractionates of island-arc volcanics. Can. J. Earth Sci. 1985, 22, 1020–1038. [Google Scholar] [CrossRef]
- Hébert, R.; Laurent, R. Mineral chemistry of the plutonic section of the Troodos ophiolite: New constraints for genesis of arc-related ophiolites. In Troodos Ophiolite Symposium; Malpas, J., Moores, E., Panayiotou, A., Xenophontos, C., Eds.; Ministry agric. natural resources, geol. survey dep, Nicosia: Nicosia, Cyprus, 1990; pp. 149–163. [Google Scholar]
- Sisson, T.W.; Grove, T.L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 1993, 113, 143–166. [Google Scholar] [CrossRef]
- Ross, K.; Elthon, D. Cumulates from strongly depleted mid-ocean-ridge basalt. Nature 1993, 365, 826–829. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of Pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Beccaluva, L.; Macciotta, G.; Piccardo, G.B.; Zeda, O. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem. Geol. 1989, 77, 165–182. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative models of trace element behaviour in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific: Harlow, UK, 1993; p. 352. [Google Scholar]
- Saccani, E.; Azimzadeh, Z.; Dilek, Y.; Jahangiri, A. Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos 2013, 162–163, 264–278. [Google Scholar] [CrossRef]
- Saccani, E.; Photiades, A.; Padoa, E. Geochemistry, petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks from the Koziakas Mélange (Western Thessaly, Greece). Ofioliti 2003, 28, 43–57. [Google Scholar]
- Bortolotti, V.; Chiari, M.; Kodra, A.; Marcucci, M.; Mustafa, F.; Principi, G.; Saccani, E. New evidence for Triassic MORB magmatism in the northern Mirdita Zone ophiolites (Albania). Ofioliti 2004, 29, 243–246. [Google Scholar]
- Chiari, M.; Djeric, N.; Garfagnoli, F.; Hrvatovic, H.; Krstiç, M.; Levi, N.; Malasoma, A.; Marroni, M.; Menna, F.; Nirta, G.; et al. The geology of the Zlatibor-Maljen area (Western Serbia): A geotraverse across the Dinaric-Hellenic collisional belt. Ofioliti 2011, 36, 139–166. [Google Scholar]
- Le Roex, A.P.; Dick, H.J.B.; Erlank, A.J.; Reid, A.M.; Frey, F.A.; Hart, S.R. Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Indian Ridge Between the Bouvet Triple Junction and 11 Degrees East. J. Petrol. 1983, 24, 267–318. [Google Scholar] [CrossRef]
- Saccani, E.; Allahyari, K.; Rahimzadeh, B. Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean. Tectonophysics 2014, 621, 132–147. [Google Scholar] [CrossRef]
- Hanan, B.B.; Blichert-Toft, J.; Kingsley, R.; Schilling, J.-G. Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? Geochem. Geophys. Geosyst. 2000, 1. [Google Scholar] [CrossRef]
- Chauvet, F.; Lapierre, H.; Maury, R.C.; Bosch, D.; Basile, C.; Cotten, J.; Brunet, P.; Campillo, S. Triassic alkaline magmatism of the Hawasina Nappes: Post-breakup melting of the Oman lithospheric mantle modified by the Permian Neotethyan Plume. Lithos 2011, 122, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Kinzler, R.J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. J. Geophys. Res. 1997, 102, 853–874. [Google Scholar] [CrossRef]
- Thirlwall, M.F.; Upton, B.G.J.; Jenkins, C. Interaction between Continental Lithosphere and the Iceland Plume–Sr-Nd-Pb Isotope Geochemistry of Tertiary Basalts, NE Greenland. J. Petrol. 1994, 35, 839–879. [Google Scholar] [CrossRef]
- Saccani, E.; Allahyari, K.; Beccaluva, L.; Bianchini, G. Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Res. 2013, 24, 392–411. [Google Scholar] [CrossRef]
- Workman, R.K.; Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 2005, 231, 53–72. [Google Scholar] [CrossRef]
- Lustrino, M.; Melluso, L.; Morra, V. The transition from alkaline to tholeiitic magmas: A case study from the Orosei-Dorgali Pliocene volcanic district (NE Sardinia, Italy). Lithos 2002, 63, 83–113. [Google Scholar] [CrossRef]
- Haase, K.M.; Devey, C.W. Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, southeast Pacific: Implications for intraplate magma genesis near a spreading axis. Earth Planet. Sci. Lett. 1996, 137, 129–143. [Google Scholar] [CrossRef]
- Bortolotti, V.; Chiari, M.; Göncüoglu, M.C.; Principi, G.; Saccani, E.; Tekin, U.K.; Tassinari, R. The Jurassic–Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: Age and geochemistry. Geol. Mag. 2017, 155, 451–478. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.; O’Nions, R.K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Klemme, S.; Gunther, D.; Hametner, K.; Prowatke, S.; Zack, T. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem. Geol. 2006, 234, 251–263. [Google Scholar] [CrossRef]
- Salters, V.; Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 1999, 166, 15–30. [Google Scholar] [CrossRef]
- Ewart, A.; Griffin, W.L. Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic-Rocks. Chem. Geol. 1994, 117, 251–284. [Google Scholar] [CrossRef]
- Horn, I.; Foley, S.F.; Jackson, S.E.; Jenner, G.A. Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt. Chem. Geol. 1994, 117, 193–218. [Google Scholar] [CrossRef]
- Green, T.; Blundy, J.; Adam, J.; Yaxley, G. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 Gpa and 1080–1200 C. Lithos 2000, 53, 165–185. [Google Scholar] [CrossRef]
- Dunn, T.; Sen, C. Mineral/Matrix Partition-Coefficients for Ortho-Pyroxene, Plagioclase, and Olivine in Basaltic to Andesitic Systems-a Combined Analytical and Experimental-Study. Geochim. Cosmochim. Acta 1994, 58, 717–733. [Google Scholar] [CrossRef]
- Barbero, E.; Pandolfi, L.; Delavari, M.; Dolati, A.; Saccani, E.; Catanzariti, R.; Luciani, V.; Chiari, M.; Marroni, M. The western Durkan Complex (Makran Accretionary Prism, SE Iran): A Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style. Geosci. Front. 2020, in press. [Google Scholar]
- Rolland, Y.; Hässig, M.; Bosch, D.; Bruguier, O.; Melis, R.; Galoyan, G.; Topuz, G.; Sahakyan, L.; Avagyan, A.; Sosson, M. The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling. Geosci. Front. 2020, 11, 83–108. [Google Scholar] [CrossRef]
- Yang, G.; Dilek, Y. OIB- and P-type ophiolites along the Yarlung-Zangbo Suture Zone (YZSZ), Southern Tibet: Poly- Phase melt history and mantle sources of the Neotethyan oceanic lithosphere. Episodes 2015, 38, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.M. Global variations in abyssal peridotite compositions. Lithos 2016, 248–251, 193–219. [Google Scholar] [CrossRef]
- Saccani, E.; Dilek, Y.; Marroni, M.; Pandolfi, L. Continental margin ophiolites of Neotethys: Remnants of Ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes 2015, 38, 230–249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbero, E.; Delavari, M.; Dolati, A.; Vahedi, L.; Langone, A.; Marroni, M.; Pandolfi, L.; Zaccarini, F.; Saccani, E. Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data. Minerals 2020, 10, 1100. https://doi.org/10.3390/min10121100
Barbero E, Delavari M, Dolati A, Vahedi L, Langone A, Marroni M, Pandolfi L, Zaccarini F, Saccani E. Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data. Minerals. 2020; 10(12):1100. https://doi.org/10.3390/min10121100
Chicago/Turabian StyleBarbero, Edoardo, Morteza Delavari, Ashgar Dolati, Leila Vahedi, Antonio Langone, Michele Marroni, Luca Pandolfi, Federica Zaccarini, and Emilio Saccani. 2020. "Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data" Minerals 10, no. 12: 1100. https://doi.org/10.3390/min10121100
APA StyleBarbero, E., Delavari, M., Dolati, A., Vahedi, L., Langone, A., Marroni, M., Pandolfi, L., Zaccarini, F., & Saccani, E. (2020). Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data. Minerals, 10(12), 1100. https://doi.org/10.3390/min10121100