Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement
Abstract
:1. Introduction
2. Geological Background
3. Ultramafic and Mafic Rocks in the Olkhon Terrane
4. Materials and Methods
5. Petrography and Mineralogy of the Olkhon Ultramafic and Mafic Rocks
6. Major- and Trace-Element Compositions of the Olkhon Ultramafic and Mafic Rocks
7. Ages of Peridotites
8. Discussion
9. Conclusions
- Numerous dispersed ophiolite fragments occur in the Lower Paleozoic Olkhon terrane (Baikal collisional belt, southern periphery of the Siberian craton) as n–n × 100 m peridotite and up to 1 km gabbro bodies. The peridotites are mostly dunite and harzburgite and less abundant orthopyroxenite, wehrlite, and clinopyroxenite, while the gabbros vary from leuco- to melagabbro according to relative proportions of clinopyroxene, olivine, and plagioclase. Clinopyroxenite and anorthosite occur as thin layers or lenses among the gabbro.
- The peridotite bodies correspond to highly depleted harzburgite-type associations typical of suprasubduction-zone ophiolites, while the geochemical signatures of gabbro provide evidence of their origin in a back-arc basin setting which existed in the southern craton margin in the Neoproterozoic [73]. The gabbros are of two geochemical types that represent, respectively, cumulative gabbro–peridotite sequences and upper isotropic gabbro of ophiolite complexes. Most of them show Ta-Nb minimums and Sr maximums in spider diagrams, as in suprasubduction ophiolitic gabbro [3,4,64].
- Mineral assemblages in the Olkhon peridotites (Ol + Opx + Chl + Chr) may result from amphibolite regional metamorphism at 500–600 °С. The related high-temperature metasomatism produced olivine–pleonast–enstatite and anorthite–garnet–fassaite mineral assemblages and garnet amphibolites.
- The obtained 465 ± 3 Ma age of zircon from the metasomatic magnetite–amphibole–chlorite rock in the Tog peridotite is coeval with that for plagioclasite veins in the Shida peridotite [23] and corresponds to the time of amphibolite regional metamorphism in the Olkhon terrane. The ophiolite age is unknown but may be Neoproterozoic to a high probability.
- Although the occurrence of peridotite and gabbro bodies corresponds to a setting of an accretionary wedge metamorphosed during collisional orogenic processes, there is evidence that a large ophiolite slab was incorporated into the orogen during the frontal collision of the Olkhon composite terrane with the Siberian craton and was broken up into small dispersed bodies during strike-slip deformations in a later oblique collision event.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coleman, R.G. Ophiolites; Springer Verlag: New York, NY, USA, 1977; 220p. [Google Scholar]
- Nicolas, A. Structure of Ophiolites and Dynamics of Oceanic Lithosphere; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; 367p. [Google Scholar]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolites and their origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P.; Moores, E.M.; Ramsden, T.W. Tectonic evolution of the Troodos ophiolite within the Tethyan framework. Tectonics 1990, 9, 811–823. [Google Scholar] [CrossRef]
- Godard, M.; Jousselin, D.; Bodinier, J.-L. Relationships between geochemistry and structure beneath a palaeo-spreading centre, a study of the mantle section in the Oman Ophiolite. Earth Planet. Sci. Lett. 2000, 180, 133–148. [Google Scholar] [CrossRef]
- Godard, M.; Dautria, J.-M.; Perrin, M. Geochemical variability of the Oman ophiolite lavas: relationship with spatial distribution and paleomagnetic directions. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef] [Green Version]
- Lippard, S.J.; Shelton, A.W.; Gass, I.G. The Ophiolite of Northern Oman; Blackwell Scientific Publications: Oxford, UK, 1986; 178p. [Google Scholar]
- Nicolas, A.; Boudier, F.; Ildefonse, B. Evidence from the Oman ophiolite for active mantle upwelling beneath a fast-spreading ridge. Nature 1994, 370, 51–53. [Google Scholar] [CrossRef]
- Searle, M.; Cox, J. Tectonic setting, origin, and obduction of the Oman Ophiolite. Geol. Soc. Am. Bull. 1999, 111, 104–122. [Google Scholar] [CrossRef]
- Thy, P.; Esbensen, K.H. Seafloor spreading and the ophiolitic sequences of the Troodos Complex: A principal component analysis of lava and dike compositions. J. Geophys. Res. 1993, 98, 799–11805. [Google Scholar] [CrossRef]
- Umino, S. Geology of the Semail Ophiolite, northern Oman Mountains. J. Geol. 1995, 104, 321–349. [Google Scholar]
- Pedersen, R.B.; Furnes, H. Geology, magmatic affinity and geotectonic environment of some Caledonian ophiolites in Norway. J. Geodyn. 1991, 13, 183–203. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Furnes, H.; Safonova, I. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geosci. Front. 2019, 10, 1255–1284. [Google Scholar] [CrossRef]
- Konnikov, E.G.; Gibsher, A.S.; Izokh, A.E.; Sklyarov, E.V.; Khain, E.V. Late Proterozoic evolution of the Paleo-Asian Ocean: New radiological, geological, and geochemical data. Russ. Geol. Geophys. 1994, 45, 152–169. [Google Scholar]
- Fedorovsky, V.S.; Donskaya, T.V.; Gladkochub, D.P.; Fedorovsky, V.S.; Donskaya, T.V.; Gladkochub, D.P.; Khromykh, S.V.; Mazukabzov, A.M.; Mekhonoshin, A.S.; Sklyarov, E.V.; et al. The Olkhon collision system (Baikal region). In Structural and Tectonic Correlation across the Central Asia Orogenic Collage; North-Eastern Segment; Guidebook and Abstract Volume of the Siberian Workshop IGCP-480; Sklyarov, E.V., Ed.; Institute of the Earth’s crust SB RAS: Irkutsk, Russia, 2005; pp. 5–76. [Google Scholar]
- Fedorovsky, V.S.; Sklyarov, E.V. The Ol’khon geodynamic research site (Baikal): High-resolution aerospace data and geological maps of new generations. Geodyn. Tectonophys. 2010, 1, 331–418, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Donskaya, T.V.; Gladkochub, D.P.; Fedorovsky, V.S.; Sklyarov, E.V.; Cho, M.; Sergeev, S.A.; Demonterova, E.I.; Mazukabzov, A.M.; Lepekhina, E.N.; Cheong, W.; et al. Pre-collisional (N0.5 Ga) complexes of the Olkhon terrane (southern Siberia) as an echo of events in the Central Asian Orogenic Belt. Gondwana Res. 2017, 42, 243–263. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Lavrenchuk, A.V.; Fedorovskiy, V.S.; Gladkochub, D.P.; Donskaya, T.V.; Kotov, A.B.; Mazukabzov, A.M.; Starikova, A.E. Regional contact metamorphism and auto-metamorphism of the Olkhon terrane (Western Pribaikalia). Petrology 2020, 28, 50–71. [Google Scholar] [CrossRef]
- Grudinin, M.I.; Menshagin, Y.V. Early Precambrian Ultramafic-Mafic Rocks; Nauka: Novosibirsk, Russia, 1987; 150p. (In Russian) [Google Scholar]
- Pavlenko, E.F. Features of the structural position of hyperbasites in Priolkhon’ye (Western Pribaikalia). Sov. Geol. Geophys. 1983, 24, 8–14. [Google Scholar]
- Mekhonoshin, A.S.; Vladimirov, A.G.; Vladimirov, V.G.; Volkova, N.I.; Kolotilina, T.B.; Mikheev, E.I.; Travin, A.V.; Yudin, D.S.; Khlestov, V.V.; Khromykh, S.V. Restitic ultramafic rocks in the Early Caledonian collisional system of western Cisbaikalia. Russ. Geol. Geophys. 2013, 54, 1219–1235. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Mekhonoshin, A.S.; Khromykh, S.V.; Mikheev, E.I.; Travin, A.V.; Volkova, N.I.; Kolotilina, T.B.; Davydenko, Y.A.; Borodina, E.V.; Khlestov, V.V. Mechanisms of mantle-crust interaction at deep levels of collision orogens (case of the Olkhon region, West Pribaikalie). Geodyn. Tectonophys. 2017, 8, 223–268. [Google Scholar] [CrossRef] [Green Version]
- Gladkochub, D.P.; Donskaya, T.V.; Fedorovskiy, V.S.; Mazukabzov, A.M.; Sklyarov, E.V.; Lavrenchuk, A.V.; Lepekhina, E.N. Fragment of an Early Paleozoic (~500 Ma) island arc in the structure of the Olkhon terrane (Central Asian Orogenic Belt). Doklady Earth Sci. 2014, 457, 905–909. [Google Scholar] [CrossRef]
- Lavrenchuk, A.V.; Sklyarov, E.V.; Izokh, A.E.; Kotov, A.B.; Sal’nikova, E.B.; Fedorovskii, V.S.; Mazukabzov, A.M. Compositions of gabbro intrusions in the Krestovsky Zone (Western Baikal Region): A record of plume-suprasubduction mantle interaction. Russ. Geol. Geophys. 2017, 58, 1139–1153. [Google Scholar] [CrossRef]
- Lavrenchuk, A.V.; Sklyarov, E.V.; Izokh, A.E.; Kotov, A.B.; Vasyukova, E.A.; Fedorovskiy, V.S.; Gladkochub, D.P.; Donskaya, T.V.; Mazukabzov, A.M. The Birkhin volcanic-plutonic complex (Olkhon terrane, Western Baikal region): Petrological criteria of co-magmatism. Petrology 2019, 27, 291–306. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Fedorovsky, V.S.; Kotov, A.B.; Lavrenchuk, A.V.; Mazukabzov, A.M.; Levitsky, V.I.; Salnikova, E.B.; Starikova, A.E.; Yakovleva, S.Z.; Anisimova, I.V.; et al. Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Ol’khon collisional system. Russ. Geol. Geophys. 2009, 50, 1091–1106. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Fedorovskiy, V.S. Aerospace Geological Map of the Southwestern Olkhon Area (Baikal Region); Krestovsky–Shirokaya Zone; Olkhon Geodynamic Research Site; A1 TIS Group: Moscow, Russia, 2012. [Google Scholar]
- Fedorovskiy, V.S.; Sklyarov, E.V.; Mazukabzov, A.M.; Gladkochub, D.P.; Donskaya, T.V.; Lavrenchuk, A.V.; Izokkh, A.E.; Agatova, A.R.; Kotov, A.B. Aerospace Geological Map of the Northeastern Olkhon Area (Baikal Region); Nutgei and Orgoita-Zmeinaya Pad’ Zone; Olkhon Geodynamic Research Site; A1 TIS Group: Moscow, Russia, 2011. [Google Scholar]
- Fedorovskiy, V.S. (Ed.) Aerospace Geological Map of the Southwestern Chernorud and Tomota Zones, Olkhon Area (Baikal Region); Olkhon Geodynamic Research Site; A1 TIS Group: Moscow, Russia, 2012. [Google Scholar]
- Fedorovskiy, V.S. (Ed.) Aerospace Geological Map of the Northeastern Chernorud and Tomota Zones, Olkhon Area (Baikal Region); Olkhon Geodynamic Research Site; Copymaster Center: Moscow, Russia, 2013. [Google Scholar]
- Fedorovskiy, V.S.; Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Donskaya, T.V.; Lavrenchuk, A.V.; Starikova, A.E.; Dobretsov, N.L.; Kotov, A.B.; Tevelev, A.V. Aerospace Geological Map of the Olkhon Area (Baikal Region, Russia); Copymaster Center: Moscow, Russia, 2017. [Google Scholar]
- Sklyarov, E.V.; Fedorovskiy, V.S. (Eds.) Aerospace Geological Map of the Anga-Begul Interfluve (Baikal Region); Pravaya Anga Zone; Olkhon Geodynamic Research Site; Copymaster Center: Moscow, Russia, 2013. [Google Scholar]
- Eskin, A.S.; Ez, V.V.; Grabkin, O.V.; Letnikov, F.A.; Melnikov, A.I.; Morozov, Y.A.; Shkandriy, B.O. Correlation of Magmatic Processes in Precambrian Metamorphic Complexes of the Baikal Region; Nauka: Novosibirsk, Russia, 1979; 117p. (In Russian) [Google Scholar]
- Sklyarov, E.V.; Fedorovskii, V.S.; Gladkochub, D.P.; Vladimirov, A.G. Synmetamorphic basic dikes as indicators of collision structure collapse in the western Baikal region. Doklady Earth Sci. 2001, 381, 1028–1033. [Google Scholar]
- Sklyarov, E.V.; Fedorovskii, V.S. Magma mingling: Tectonic and geodynamic implications. Geotectonics 2006, 40, 120–134. [Google Scholar] [CrossRef]
- Makrygina, V.A.; Antipin, V.S. Geochemistry and Petrology of Metamorphic and Igneous Rocks of the Olkhon Area, Baikal Region; Geo Publishers: Novosibirsk, Russia, 2018; 248p. (In Russian) [Google Scholar]
- Mekhonoshin, A.S.; Kolotilina, T.B. Bazarnaya Guba (Olkhon Gates); Field Excursion Guide; Ottisk: Irkutsk, Russia, 2019; 36p. (In Russian) [Google Scholar]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Short Course Series; Sylvester, P., Ed.; Mineralogical Association of Canada: Vancouver, BC, Canada, 2008; Volume 40, pp. 307–311. [Google Scholar]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Ludwing, K. User’s Manual for Isoplot 3.00; A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spine1 in progressive metamorphism: A preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Dick, H.J.N.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Juteau, T.; Berger, E.; Canna, M. Serpentinized, Residual Mantle Peridotites from the M.A.R. Median Valley, ODP Hole 670A (21 100N, 45 020W): Primary Mineralogy and Geothermometry. In Proceedings of the Ocean Drilling Program, Scientific Results 1990; Covering Leg 113 of the cruises of the Drilling Vessel JOIDES Resolution, Valparaiso, Chile, to East Cove, Falkland Islands, Sites 689–697, 25 December 1986–11 March 1987; Edwards Brothers Incorporated: Ann Arbor, MI, USA, 1987; pp. 27–45. [Google Scholar]
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Mariana fore-arc, Leg 125. In Proceedings of the Ocean Drilling Program, Scientific Results 1992; Covering Legs 127 and 128 of the cruises of the Drilling Vessel JOIDES Resolution Leg 127: Tokyo, Japan, to Pusan, South Korea, Sites 794–797, 19 June 1989–20 August 1989 Leg 128: Pusan, South Korea, to Pusan, South Korea, Sites 794, 798–799, 20 August 1989–15 October 1989; Edwards Brothers Incorporated: Ann Arbor, MI, USA, 1989; pp. 445–485. [Google Scholar]
- Ohara, Y.; Ishii, T. Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. Isl. Arc 1998, 7, 541–558. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, J.M.; Kerestedjian, T.; Proenza, J.A.; Gervilla, F. Metamorphism on chromite ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geologica Acta 2009, 7, 413–429. [Google Scholar]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Evans, B.W. Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci. 1977, 5, 397–447. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Griffin, W.L. Genesis of coronas in Anorthosites of the Upper Jotun Nappe, Indre Sogn, Norway. J. Petrol. 1971, 12, 219–243. [Google Scholar] [CrossRef]
- Helmy, H.; Yoshikawa, M.; Shibata, T.; Arai, S. Tamura, A. Corona structure from arc mafic-ultramafic cumulates: The role and chemical characteristics of late-magmatic hydrous liquids. J. Mineral. Petrol. Sci. 2008, 103, 333. [Google Scholar] [CrossRef] [Green Version]
- Gallien, F.; Mogessie, A.; Hauzenberger, C.A.; Bjerg, E.; Delpino, S.; Castro De Machuca, B. On the origin of multi-layer coronas between olivine and plagioclase at the gabbro–granulite transition, Valle Fértil–La Huerta Ranges, San Juan Province, Argentina. J. Metamorph. Geol. 2012, 30, 281–302. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Vysotsky, S.V. Different-depth gabbro-ultrabasite associations in the Sikhote-Alin ophiolites (Russian Far East). Russ. Geol. Geophys. 2016, 57, 181–198. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publication and Blackwell Scientific Publications: Oxford, UK, 1989; Volume 42, pp. 313–346. [Google Scholar]
- Kovalenko, V.I.; Girnis, A.V.; Yarmolyuk, V.V.; Naumov, V.B.; Dorofeeva, V.A. Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks. Petrology 2010, 18, 1–26. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths; Mineralogical Society of America: Washington, DC, USA, 1995; 799p. [Google Scholar]
- Boudier, F.; Nicolas, A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett. 1985, 76, 84–92. [Google Scholar] [CrossRef]
- Shervais, J.W. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochem. Geophys. Geosystems 2001, 2, 2000GC000080. [Google Scholar] [CrossRef]
- Boudier, F.; Godard, M.; Armbruster, C. Significance of gabbronorite occurrence in the crustal section of the Semail ophiolite. Mar. Geophys. Res. 2000, 21, 307–326. [Google Scholar] [CrossRef]
- Kakar, M.I.; Mahmood, K.; Khan, M.; Kasi, A.K.; Manan, R.A. Petrology and geochemistry of gabbros from the Muslim Bagh Ophiolite: Implications for their petrogenesis and tectonic setting. J. Himal. Earth Sci. 2013, 46, 19–30. [Google Scholar]
- Moghadam, H.S.; Khedr, M.Z.; Chiaradia, M.; Stern, R.J.; Bakhshizad, F.; Arai, S.; Ottley, C.J.; Tamura, A. Supra-subduction zone magmatism of the Neyriz ophiolite, Iran: Constraints from geochemistry and Sr-Nd-Pb isotopes. Int. Geol. Rev. 2014, 56, 1395–1412. [Google Scholar] [CrossRef]
- Du, W.; Jiang, C.; Xia, M.; Xia, Z.; Zhou, W.; Ling, J.; Wang, B. A newly discovered Early Paleozoic ophiolite in Dagele, Eastern Kunlun, China, and its geological significance. Geol. J. 2017, 52, 425–435. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, W.; Xia, B.; Caia, Z.; Chen, W.; Li, J.; Yin, Z. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong–Nujiang Tethys. J. Asian Earth Sci. 2017, 146, 337–351. [Google Scholar] [CrossRef]
- Zeng, X.-W.; Wang, M.; Fan, J.-J.; Li, C.; Xie, C.-M.; Liu, Y.-M.; Zhang, T. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean. Lithos 2018, 320–321, 192–206. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Kemkin, I.V.; Kruk, N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. J. Asian Earth Sci. 2016, 120, 117–138. [Google Scholar] [CrossRef]
- Shteinberg, D.S.; Chashchukhin, I.S. Serpentinization of Peridotites; Nauka: Moscow, Russia, 1977; 312p. (In Russian) [Google Scholar]
- Zorin, Y.A.; Sklyarov, E.V.; Belichenko, V.G.; Mazukabzov, A.M. Island arc–back-arc basin evolution: implications for Late Riphean–Early Paleozoic geodynamic history of the Sayan-Baikal folded area. Russ. Geol. Geophys. 2009, 50, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sklyarov, E.V.; Lavrenchuk, A.V.; Fedorovsky, V.S.; Pushkarev, E.V.; Semenova, D.V.; Starikova, A.E. Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement. Minerals 2020, 10, 305. https://doi.org/10.3390/min10040305
Sklyarov EV, Lavrenchuk AV, Fedorovsky VS, Pushkarev EV, Semenova DV, Starikova AE. Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement. Minerals. 2020; 10(4):305. https://doi.org/10.3390/min10040305
Chicago/Turabian StyleSklyarov, Eugene V., Angrey V. Lavrenchuk, Valentine S. Fedorovsky, Evgenii V. Pushkarev, Dina V. Semenova, and Anastasia E. Starikova. 2020. "Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement" Minerals 10, no. 4: 305. https://doi.org/10.3390/min10040305
APA StyleSklyarov, E. V., Lavrenchuk, A. V., Fedorovsky, V. S., Pushkarev, E. V., Semenova, D. V., & Starikova, A. E. (2020). Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement. Minerals, 10(4), 305. https://doi.org/10.3390/min10040305