Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical and X-ray Diffraction (XRD) Phase Analyses
3.2. Scanning Electron Microscopy (SEM)
3.3. X-ray Energy Dispersive Spectroscopy (EDS) and Calculated Oxide Formula Coefficients
- The cordierite phase I contains the highest % Al2O3 and the lowest % CaO, and Fe2O3;
- Amorphous phase III/1 contains the highest % CaO, Na2O, K2O, SiO2, TiO2, and Fe2O3;
- Amorphous phase III/2 contains the highest % MgO and the lowest % Al2O3.
3.4. Calculation of Minerals Percentages Using CQMA (Option B)
- Cordierite, Ca0.1Mg1.90Fe3+0.40Al3.60Si5.00O18/5.00SiO2 1.80Al2O3 0.20Fe2O3 1.90MgO 0.10CaO;
- Enstatite, MgSiO3/MgO SiO2.
- Cordierite, Ca0.1Mg1.90Fe3+0.40Al3.60Si5.00O18/5.00SiO2 1.80Al2O3 0.20Fe2O3 1.90MgO 0.10CaO;
- Enstatite, MgSiO3/MgO SiO2;
- Amorphous phase III/1, 10SiO2 0.25TiO2 1.74Al2O3 0.46Fe2O3 1.08MgO 0.47CaO 0.15Na2O 0.48K2O;
- Amorphous phase III/2, 10SiO2 0.56TiO2 2.66Al2O3 0.21Fe2O3 7.92MgO 0.10CaO 0.29K2O.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- -
- Variant 1, total amorphous phase10.0SiO2 0.81TiO2 0.27Na2O 1.72 K2O (calculated from variant 1);
- -
- Variants 2 and 3, amorphous phase III/110SiO2 0.25TiO2 1.74Al2O3 0.46Fe2O3 1.08MgO 0.47CaO 0.15Na2O 0.48K2O (used for calculation);
- -
- Variants 2 and 3, amorphous phase 2 (III/2)10SiO2 0.56TiO2 2.66Al2O3 0.21Fe2O3 7.92MgO 0.10CaO 0.29K2O (used for calculation).
References
- Trumbulović, L.; Aćimović, Z.; Panić, S.; Andrić, L. Synthesis and characterization of cordierite from kaolin and talc for casting application. FME Trans. 2003, 31, 43–47. [Google Scholar]
- Valášková, M. Structural characteristics of cordierites based on commercial vermiculites in relation to the natural and synthetic cordierites. Ceram. Silikáty 2016, 60, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Valášková, M.; Klika, Z.; Novosad, B.; Smetana, B. Crystallization and quantification of crystalline and non-crystalline phases in kaolin-based cordierites. Materials 2019, 12, 3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnis, A. Order-modulated structures and the thermodynamics of cordierite reaction. Nature 1980, 287, 128–131. [Google Scholar] [CrossRef]
- Tulyaganov, D.U.; Tukhtaev, M.E.; Escalante, J.I.; Ribeiro, M.J.; Labrincha, J.A. Processing of cordierite based ceramics from alkaline earth aluminosilicate glass, kaolin, alumina and magnesite. J. Eur. Ceram. Soc. 2002, 22, 1775–1782. [Google Scholar] [CrossRef]
- Gregory, A.G.; Veasey, T.J. Review: The crystallisation of cordierite glass. J. Mater Sci 1971, 6, 1312–1321. [Google Scholar] [CrossRef]
- Manchisi, J.; Matinde, E.; Rowson, N.A.; Simmons, M.J.H.; Simate, G.S.; Ndlovu, S.; Mwewa, B. Ironmaking and steelmaking slags as sustainable adsorbents for industrial effluents and wastewater treatment: A Critical review of properties, performance, challenges and opportunities. Sustainability 2020, 12, 2118. [Google Scholar] [CrossRef] [Green Version]
- Shi, C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002, 32, 459–462. [Google Scholar] [CrossRef]
- Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM-EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Wang, T.; Ishida, T.; Gu, R. A study of the influence of crystal component on the reactivity of low-calcium fly ash in alkaline conditions based on SEM-EDS. Constr. Build. Mater. 2020, 243, 118227. [Google Scholar] [CrossRef]
- Shi, C. Steel slag—Its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 2004, 16, 230–236. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, D.R. Alkali-Activated Cements and Concretes, 1st ed.; Taylor & Francis: London, UK; New York, NY, USA, 2003; ISBN 9780367863630. [Google Scholar]
- Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, J.R. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25. [Google Scholar] [CrossRef]
- Leng, Y. Material Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 978-3-527-33463-6. [Google Scholar]
- Ziel, R.; Haus, A.; Tulke, A. Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J. Membr. Sci. 2008, 323, 241–246. [Google Scholar] [CrossRef]
- Hodoroaba, V.D.; Rades, S.; Unger, W.E.S. Inspection of morphology and elemental imaging of single nanoparticles by high resolution SEM/EDX in transmission mode. Surf. Intersurf. Anal. 2014, 46. [Google Scholar] [CrossRef]
- Shindo, D.; Oikawa, T. Energy dispersive X-ray spectroscopy. In Analytical Electron Microscopy for Materials Science; Springer: Tokyo, Japan, 2002. [Google Scholar] [CrossRef]
- Newburry, D.E.; Ritchie, N.W.M. is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? J. Scanning Microsc. 2012, 35. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Billinge, S.J.L.; Garnier, E. Powder Diffraction Theory and Practice; RSC Publishing: Cambridge, UK, 2009; ISBN 9781847558237. [Google Scholar]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica 1967, 151–152. [Google Scholar] [CrossRef]
- Bish, L.; Post, J.E. Modern Powder Diffraction; Mineralogical Society of America: Washington, DC, USA, 1989; ISBN 0939950243. [Google Scholar]
- Young, R.A. The Ritveld Method; Oxford University Press: Oxford, UK, 1995; ISBN 0198559127. [Google Scholar]
- Kemethmüller, S.; Roosen, A.; Goetz-Neunhoeffer, F.; Neubauer, J. Quantitative analysis of crystalline and amorphous phases in glass-ceramic composites like LTCC by the Rietveld method. J. Am. Ceram. Soc. 2006, 89. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, L.; Liu, X.; De la Torre, A.G.; Cheng, X. Error analysis and correction for quantitative phase analysis based on Rietveld-internal standard method: Whether the minor phases can be ignored? Crystals 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Chancey, R.T.; Stutzman, P.; Juenger, M.; Fowler, D. Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem. Concr. Res. 2010, 40, 146–156. [Google Scholar] [CrossRef]
- García-Maté, M.; Santacruz, I.; Cuesta, A.; León-Reina, L.; Aranda, M.A.G.; Baco, I.; Morin, V.; Walenta, G.; Gartner, E.; De la Torre, A.G. Amorphous determination in calcium sulfoaluminate materials by external and internal method. Adv. Res. 2015, 27, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Madsen, I.; Scarlett, N.; Kern, A. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Zeitschrift Kristallographie 2011, 226, 944–955. [Google Scholar] [CrossRef]
- Hodgson, M.; Dudeney, A.W.L. Estimation of clay proportions in mixtures by X-Ray diffraction and computerized chemical mass balance. Clays Clay Miner. 1984, 32, 19–28. [Google Scholar] [CrossRef]
- Johnson, L.J.; Chu, C.H.; Hussey, G.A. Quantitative clay mineral analysis using simultaneous linear equations. Clays Clay Miner. 1985, 33, 107–117. [Google Scholar] [CrossRef]
- Braun, G.E. Quantitative analysis of mineral mixtures using linear programming. Clays Clay Miner. 1986, 34, 330–337. [Google Scholar] [CrossRef]
- Whiten, B. Calculation of mineral composition from chemical assays. Miner. Process. Extr. Metall. Rev. 2007, 29, 83–97. [Google Scholar] [CrossRef]
- Coelho, C.; Roqueiro, D.; Hotza, D. Rational mineralogical analysis of ceramics materials. Letters 2002, 52, 394. [Google Scholar] [CrossRef]
- Klika, Z.; Kolomazník, I.; Matýsek, D.; Kliková, C. Critical evaluation of a new method for quantitative determination of minerals in solid samples. Cryst. Res. Technol. 2016, 51, 249–264. [Google Scholar] [CrossRef]
- Hillier, S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner. 2000, 35, 291–302. [Google Scholar] [CrossRef]
- Balasone, G.; Franco, E.; Mattia, C.A.; Puliti, R. Indialite in xenolithic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features. Am. Mineral. 2004, 89, 1–6. [Google Scholar] [CrossRef]
SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | Total |
---|---|---|---|---|---|---|---|---|---|
52.95 | 0.81 | 25.27 | 4.44 | 0.05 | 13.26 | 0.70 | 0.21 | 2.09 | 99.78 |
Oxides | Molecular Weight (g/mol) | Cordierite I | Amorphous Phase III/2 | Amorphous Phase III/1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ci,cord | ci,enst | |||||||||||
(mol%) | (mol%) | (mol%) | ||||||||||
SiO2 | 60.1 | 57.7 | 1.1 | 10.0 | 55.55 | 46.0 | 3.7 | 10.0 | 50.00 | 68.39 | 1.83 | 10.0 |
TiO2 | 79.9 | 2.57 | 0.3 | 0.56 | 1.71 | 0.24 | 0.25 | |||||
Al2O3 | 101.9 | 17.7 | 0.82 | 3.10 | 20.00 | 12.1 | 3.2 | 2.66 | 11.90 | 0.98 | 1.74 | |
Fe2O3 | 159.7 | 1.73 | 0.30 | 0.30 | 2.22 | 0.2 | 0.21 | 3.14 | 0.37 | 0.46 | ||
MgO | 40.31 | 20.8 | 0.41 | 3.60 | 21.1 | 36.4 | 7.7 | 7.92 | 50.00 | 7.38 | 0.92 | 1.08 |
CaO | 56.08 | 0.87 | 0.90 | 0.15 | 1.11 | 0.6 | 0.10 | 3.20 | 0.27 | 0.47 | ||
Na2O | 61.98 | 1.02 | 0.10 | 0.15 | ||||||||
K2O | 94.02 | 1.09 | 0.19 | 0.19 | 1.33 | 0.3 | 0.29 | 3.24 | 0.33 | 0.48 | ||
Total | 100.0 | 99.98 | 99.9 | 100.0 |
Phases | Oxide Formula Coefficient (OFC) |
---|---|
Cordierite I | 10SiO2 3.10Al2O3 0.30Fe2O3 3.60MgO 0.15CaO 0.19K2O |
Amorphous phase III/1 | 10.0SiO2 0.25TiO2 1.74Al2O3 0.46Fe2O3 1.08MgO 0.47CaO 0.15Na2O 0.48K2O |
Amorphous phase III/2 | 10SiO2 0.56TiO2 2.66Al2O3 0.21Fe2O3 7.92MgO 0.10CaO 0.29K2O |
Phases | XRD | CQMA (Option B) | ||
---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | ||
Cordierite I | 95.0 | 82.3 | 64.43 | 70.4 |
Enstatite II/or ei | 5.0 | 6.7 | 6.02 | n.d. |
Amorphous phase III/1 | n.d | 10.7 | 22.70 | 14.7 |
Amorphous phase III/2 | n.d. | n.d. | 7.35 | 14.9 |
Total | 100.0 | 99.7 | 100.5 | 100.0 |
P1 | 19.0 | 12.3 | 10.6 | - |
P2 | n.d | 8.3 | 3.1 | - |
Oxide Elements | XRF | CQMA (Option A) | ||
---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | ||
SiO2 | 52.95 | 52.96 | 52.85 | 52.93 |
TiO2 | 0.81 | 0.81 | 0.71 | 0.80 |
Al2O3 | 25.27 | 25.26 | 25.22 | 25.29 |
Fe2O3 | 4.44 | 4.39 | 5.28 | 4.43 |
MgO | 13.26 | 13.24 | 13.41 | 13.27 |
CaO | 0.70 | 0.77 | 0.63 | 1.97 |
Na2O | 0.21 | 0.21 | 0.21 | 0.14 |
K2O | 2.06 | 2.04 | 2.19 | 2.08 |
Total | 99.75 | 99.70 | 100.50 | 99.93 |
Sum Diff2 | <0.01 | 0.77 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klika, Z.; Valášková, M.; Bartoňová, L.; Maierová, P. Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals 2020, 10, 1122. https://doi.org/10.3390/min10121122
Klika Z, Valášková M, Bartoňová L, Maierová P. Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals. 2020; 10(12):1122. https://doi.org/10.3390/min10121122
Chicago/Turabian StyleKlika, Zdeněk, Marta Valášková, Lucie Bartoňová, and Petra Maierová. 2020. "Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic" Minerals 10, no. 12: 1122. https://doi.org/10.3390/min10121122
APA StyleKlika, Z., Valášková, M., Bartoňová, L., & Maierová, P. (2020). Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals, 10(12), 1122. https://doi.org/10.3390/min10121122