Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Kasprowy Wierch (KW) Tested Area
2.1.2. Morskie Oko (MO) Tested Area
2.2. Sampling and Analysis
2.2.1. Sampling
2.2.2. Chemical Analysis
- Cleaning the collected samples by removing foreign material (dry leaves, twigs, grass, etc.);
- Drying the samples at 70 °C;
- Grinding soil samples in a ceramic mortar and sieving through a sieve with a mesh diameter of 2 mm;
- Mineralization, which is performed to completely break down soil samples into simple, solid compounds—1 g of the dried sample material was treated with a mixture of acids and aqua regia in the proportion (1:1:1 HNO3:HCl:H2O). The resulting solution was filtered and stored in sealed polyethylene containers until sent for spectrometric analysis;
- Determination of the total content of heavy metals using the inductively coupled plasma mass spectrometry (ICP-MS) method in the Bureau Veritas laboratory. The use of the Bureau Veritas methodology made it possible to accurately determine the metal content in the soil material, with the following detection limits (µg/g dm) for Cd: 0.01, Cr: 0.5, Cu: 0.01, Ni: 0.1, Pb: 0.01 and Zn: 0.1.
2.2.3. Soil Pollution Indicators
Enrichment Factor (EF)
- EF < 2: deficient to minimal enrichment;
- 2 ≤ EF < 5: moderate enrichment;
- 5 ≤ EF < 20: significant enrichment;
- 20 ≤ EF < 40: very high enrichment;
- EF ≥ 40: extremely high enrichment.
Geoaccumulation Index (Igeo)
- Igeo > 5: extremely contaminated;
- 4 < Igeo < 5: strongly to extremely contaminated;
- 3 < Igeo < 4: strongly contaminated;
- 2 < Igeo < 3: moderately to strongly contaminated;
- 1 < Igeo < 2: moderately contaminated;
- 0 < Igeo < 1: uncontaminated to moderately contaminated;
- Igeo = 0: uncontaminated.
Contamination Factor (Cf)
Degree of Contamination (Cd)
- Cd < 8: low degree of contamination;
- 8 ≤ Cd < 16: moderate degree of contamination;
- 16 ≤ Cd < 32: considerable degree of contamination;
- Cd ≥ 32: very high degree of contamination indicating serious anthropogenic pollution.
Modified Degree of Ontamination (m Cd)
- mCd < 1.5: very low degree of contamination;
- 1.5 ≤ mCd < 2: low degree of contamination;
- 2 ≤ mCd < 4: moderate degree of contamination;
- 4 ≤ mCd < 8: high degree of contamination;
- 8 ≤ mCd < 16: very high degree of contamination;
- 16 ≤mCd < 32: extremely high degree of contamination;
- mCd ≥ 32: ultra-high degree of contamination.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.T.H.; Nguyen, B.Q.; Duong, T.T.; Bui, A.T.K.; Nguyen, H.T.A.; Cao, H.T.; Mai, N.T.; Nguyen, K.M.; Pham, T.T.; Kim, K.-W. Pilot-Scale Removal of Arsenic and Heavy Metals from Mining Wastewater Using Adsorption Combined with Constructed Wetland. Minerals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- García-Lorenzo, M.L.; Crespo-Feo, E.; Esbrí, J.M.; Higueras, P.; Grau, P.; Crespo, I.; Sánchez-Donoso, R. Assessment of Potentially Toxic Elements in Technosols by Tailings Derived from Pb–Zn–Ag Mining Activities at San Quintín (Ciudad Real, Spain): Some Insights into the Importance of Integral Studies to Evaluate Metal Contamination Pollution Hazards. Minerals 2019, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA; London, UK, 2001; pp. 15–204. [Google Scholar]
- Ciepał, R. Kumulacja Metali Ciężkich i Siarki w Roślinach Wybranych Gatunków Oraz Glebie Jako Wskaźnik Stanu Skażenia Środowiska Terenów Chronionych Województw Śląskiego i Małopolskiego [Accumulation of Heavy Metals and Sulphur in Plants of Selected Species and Soil as an Indicator of the State of Environmental Contamination of Protected Areas in Silesia and Małopolska Provinces]; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 1999; pp. 9–35. [Google Scholar]
- Migaszewski, Z.; Gałuszka, A. Geochemia Środowiska [Geochemistry of the Environment]; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2016; pp. 84–289. [Google Scholar]
- Bergbäck, B.; Johansson, K.; Mohlander, U. Urban metal flows—A case study of Stockholm. Water Air Soil Pollut. 2001, 1, 3–24. [Google Scholar] [CrossRef]
- Sörme, L.; Bergbäck, B.; Lohm, U. Goods in the antroposphere as a metal emission source. Water Air Soil Pollut. 2001, 1, 213–227. [Google Scholar] [CrossRef]
- Lehndorf, E.; Schwark, L. Accumulation histories of major and trace elements on pine needles in the Cologne Conurbation as function of air Quality. Atmos. Environ. 2008, 42, 833–845. [Google Scholar] [CrossRef]
- Steinnes, E.; Friedland, A.J. Metal contamination of natural surface soils from long-range atmospheric transport: Existing and missing knowledge. Environ. Rev. 2006, 14, 169–186. [Google Scholar] [CrossRef]
- Kubica, B.; Mietelski, J.W.; Gołaś, J.; Skiba, S.; Tomankiewicz, E.; Gaca, P.; Jasińska, M.; Tuteja-Krysa, M. Concentration of 137Cs, 40K, 238Pu and 239 + 240Pu radionuclides and some heavy metals in soil samples from the two main valleys from Tatra National Park. Pol. J. Environ. Stud. 2002, 11, 537–545. [Google Scholar]
- Kubica, B.; Kwiatek, W.M.; Stobiński, M.; Skiba, S.; Skiba, M.; Gołaś, J.; Kubica, M.; Tuleja-Krysa, M.; Wrona, A.; Misiak, R. Concentration of 137Cs, 40K radionuclides and some heavy metals in soil samples from Chochołowska Valley from Tatra National Park. Pol. J. Environ. Stud. 2007, 16, 735–741. [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J.; Ciarkowska, K. Heavy metals in selected non-forest soils from the Tatra National Park. Chem. Inżynieria Ekol. 2002, 9, 1433–1438. [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J. Content diversity of Zb, Pb and Cd in Lithic Leptosols of the Tatra National Park (Poland). Oecologia Mont. 2004, 13, 1–5. [Google Scholar]
- Wieczorek, J.; Zadrożny, P. Content of Cd, pPb and Zn in Podzols Tatra National Park. Proc. ECOpole 2013, 7, 421–426. [Google Scholar] [CrossRef]
- Barančoková, M.; Barančok, P.; Mišovičová, D. Heavy metal loading of the Belianske Tatry Mts. Ekológia Bratisl. 2009, 28, 255–268. [Google Scholar] [CrossRef]
- Skiba, S.; Drewnik, M.; Prędki, R.; Szmuc, R. Zawartość metali ciężkich w glebach Bieszczadzkiego Parku Narodowego [Heavy metals content in the soils of the Bieszczady National Park]. Rocz. Bieszcz. 1995, 4, 111–116. [Google Scholar]
- Skiba, S.; Michalik, M. Heavy metals in soils and sulphate minerals on rock surfaces as indicator of pollution of the environment (on the example of the Bieszczady Mts., Eastern Carpathians). Pol. J. Soil Sci. 2000, 33, 57–66. [Google Scholar]
- Kubica, B.; Szarlowicz, K.; Stobinski, M.; Skiba, S.; Reczynski, W.; Gołaś, J. Concentrations of 137Cs and 40K radionuclides and some heavy metals in soil samples from the eastern part of the Main Ridge of the Flysch Carpathians. J. Radioanal. Nucl. Chem. 2014, 299, 1313–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verifi cation and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Bac-Moszaszwili, M.; Burchart, J.; Głazek, J.; Iwanow, A.; Jaroszewski, W.; Kotański, Z.; Lefeld, J.; Mastella, L.; Ziomkowski, W.; Roniewicz, P.; et al. Mapa Geologiczna Tatr Polskich [Geological Map of the Polish Tatras]; 1:30 000; Wydawnictwo Geologiczne: Warszawa, Poland, 1979. [Google Scholar]
- Piotrowska, K.; Kotański, Z.; Gawęda, A.; Piotrowski, J.; Rączkowski, W. Szczegółowa Mapa Geologiczna Polski. Arkusz Tatry Zachodnie [Detailed Geological Map of Poland. The Western Tatras sheet]; NAG, PGI-NRI: Warsaw, Poland, 2008.
- Piotrowska, K.; Michalik, M.; Rączkowski, W.; Iwanow, A.; Wójcik, A.; Derkacz, M.; Wasiluk, R. Szczegółowa Mapa Geologiczna Poslki. Arkusz Tatry Wysokie [Detailed Geological Map of Poland. The High Tatras sheet]; NAG, PIG-PIB: Warszawa, Poland, 2013.
- Kotarba, A.; Kaszowski, L.; Krzemień, K. High-Mountain Denudational System in the Polish Tatra Mountains: Geographical Studies; Ossolineum: Wrocław, Poland, 1987; pp. 1–106. [Google Scholar]
- Klimaszewski, M. Rzeźba Tatr Polskich 1988 [Geomorphologic Relief in the Polish Part of Tatras]; Wydawnictwo PWN: Warszawa, Poland, 1988; pp. 1–707. [Google Scholar]
- Hreško, J.; Boltizar, M.; Bugar, G. The present-day development of landforms and landcover in alpine environment—Tatra Mts (Slovakia). Studia Geomorphol. Carpatho-Balc. 2005, 39, 23–48. [Google Scholar]
- Niedźwiedź, T. Sytuacje Synoptyczne i ich Wpływ na Zróżnicowanie Przestrzenne Wybranych Elementów Klimatu w Dorzeczu Górnej WISŁY [Synoptic Situations and Their Impact on the Spatial Variability of Selected Climate Elements in the Upper Vistula Basin, a Habilitation Dissertation at the Jagiellonian University]; Jagiellonian University: Kazimierz, Poland, 1981; Volume 58, 165p. [Google Scholar]
- Niedźwiedź, T. Climate of the Tatra Mountains. Mt. Res. Dev. 1992, 12, 131–146. [Google Scholar] [CrossRef]
- Drewnik, M. Geomorfologiczne Uwarunkowania Rozwoju Pokrywy Glebowej w Obszarach Górskich na Przykładzie Tatr [Geomorphological Conditions of the Development of the Soil Cover in Mountain Areas on the Example of the Tatra Mountains]; Wydawnictwo UJ: Kraków, Poland, 2008. [Google Scholar]
- Balon, J.; Jodłowski, M.; Krąż, P. The Tatra mountains: Physico-geographical regions. In Atlas of The Tatr Mountains—Abiotic Nature; Dąbrowska, K., Guzik, M., Eds.; plate I.4; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Żmudzka, E.; Nejedlik, P.; Mikulova, K. Temperature, thermal indices. In Atlas of The Tatr Mountains—Abiotic Nature; Dąbrowska, K., Guzik, M., Eds.; plate III.2; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Ustrnul, Z.; Walawender, E.; Czekierda, D.; Štasny, P.; Lapin, M.; Mikulova, K. Precipitation and snow cover. In Atlas of the Tatr Mountains—Abiotic Nature; Dąbrowska, K., Guzik, M., Eds.; plate III.3; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Skiba, S.; Koreň, M.; Drewnik, M.; Kukla, J. Soils. In Atlas of The Tatr Mountains—Abiotic Nature; Dąbrowska, K., Guzik, M., Eds.; plate V; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Gajec, M.; Król, A.; Kukulska-Zając, E.; Mostowska-Stąsiek, J. Pobieranie próbek gleby w kontekście prowadzenia oceny zanieczyszczenia powierzchni ziemi [Soil sampling in the context of soil pollution assessment]. Nafta-Gaz 2018, 3, 215–225. [Google Scholar] [CrossRef]
- Namieśnik, J.; Łukasiak, J.; Jamrógiewicz, Z. Pobieranie Próbek Środowiskowych do Analizy [Collecting of Environmental Samples for Analysis]; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1995; pp. 67–96. [Google Scholar]
- Ridgway, J.; Shimmield, G. Estuaries as Repositories of Historical Contamination and Their Impact on Shelf Seas. Estuar. Coast. Shelf Sci. 2002, 55, 903–928. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005; pp. 140–347. [Google Scholar]
- De Vos, W.; Tarvainen, T. (Eds.) Geochemical Atlas of Europe, Part 2. Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications. electronic version. Available online: http://weppi.gtk.fi/publ/foregsatlas/part2.php (accessed on 8 August 2020).
- Turekian, K.K.; Wedepohl, D.H. Distribution of the elements in some major units of the earth_s crust. Bull. Geol. Soc. Am. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmocheimica Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 1984; pp. 55–225. [Google Scholar]
- Migaszewski, Z.; Gałuszka, A. Podstawy Geochemii środowiska [Fundamentals of Environmental Geochemistry]; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2007; pp. 11–158. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Abrahim, G.; Parker, R. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Aukland, New Zealand. Envron. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef]
- Stobiński, M.; Kubica, B.; Misiak, R.; Kwiatek, W.M.; Gołaś, J.; Reczyński, W.; Hajduk, R.; Dutkiewicz, E.; Bartyzel, M.; Fleischer, P.; et al. Przestrzenny Rozkład Zawartości Zn Oraz Cr w Próbkach Gleby Pobranej w Tatrach Wysokich [The Spatial Distribution of Zn and Cr Content in the Soil Samples Collected in the High Tatras]; REPORT 2012/C 2008; Instytut Fizyki Jądrowej: Kraków, Poland, 2008; pp. 1–12. [Google Scholar]
- Bing, H.; Wu, Y.; Zhou, J. Vegetation and cold trapping modulating elevation-dependent distribution of trace metals in soils of a High Mountain in Eastern Tibetan Plateau. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Niemyska-Łukaszuk, J.; Miechówka, A.; Zadrożny, P. Całkowita zawartość ołowiu w profilach rankerów Tatrzańskiego Parku Narodowego [Total lead content in the profiles of rankers of the Tatra National Park]. Zesz. Probl. Postępów Nauk Rol. 1999, 467, 429–437. [Google Scholar]
- Skwaryło-Bednarz, B. Ogólna zawartość wybranych metali ciężkich w glebach leśnych Roztoczańskiego Parku Narodowego (RPN) [General content of selected heavy metals in the forest soils of Roztocze National Park (RNP)]. Acta Agrophysica 2006, 8, 727–733. [Google Scholar]
- Paukszto, A.; Mirosławski, J. Using stinging nettle (Urtica dioica L.) to assess the influence of long term emission upon pollution with metals of the Tatra National Park area (Poland). Atmos. Pollut. Res. 2019, 10, 73–79. [Google Scholar] [CrossRef]
Test Area | Sample No. | Altitude (m asl) | Geographical Coordinates | Geological Structure [21,22] | Physico-Geographical Mesoregion [19] |
---|---|---|---|---|---|
KW | 1 | 1100 | 49°15.572′ N 19°59.322′ E | Boulders, gravel, sand, and silts of stones and river terraces 0.5–3.0 m high, e.g., rivers (Holocene) | Reglowe Tatras |
2 | 1200 | 49°15.424′ N 19°59.645′ E | Dolomites, limestones, siltstones, and breccia (Lower Triassic) | Reglowe Tatras | |
3 | 1300 | 49°15.254′ N 19°59.681′ E | Dolomites, limestones, siltstones, and breccia (Lower Triassic) | Reglowe Tatras | |
4 | 1400 | 49°15.252′ N 19°59.908′ E | Dolomites and limestones, undivided (Middle Triassic) | Reglowe Tatras | |
5 | 1550 | 49°14.497′ N 20°00.097′ E | Boulders, moraine rock debris, clayey (Pleistocene) | Western Tatras | |
6 | 1650 | 49°14.133′ N 19°59.671′ E | Porphyry granites (Carbon) | Western Tatras | |
7 | 1750 | 49°14.013′ N 19°59.446′ E | Boulders and rock debris of rubble cones (screes) (Quaternary) | Western Tatras | |
8 | 1850 | 49°13.927′ N 19°59.301′ E | Boulders and rock debris of rubble cones (screes) (Quaternary) | Western Tatras | |
MO | 9 | 1000 | 49°15.065′ N 20°05.898′ E | Boulders, gravel, sand, clayey sands and silts of cones, of fluvioglacial levels and terraces 12.0–15.0 m high, e.g., rivers (Pleistocene) | High Tatras |
10 | 1100 | 49°13.984′ N 20°05.524′ E | Granodiorites and tonalities, equal grained, grey (Carbon) | High Tatras | |
11 | 1200 | 49°13.270′ N 20°05.647′ E | Boulders, moraine rock debris, clayey (Pleistocene) | High Tatras | |
12 | 1300 | 49°12.893′ N 20°04.867′ E | Boulders, rock debris and silts of dump and alluvial cones (Pleistocene–Holocene) | High Tatras | |
13 | 1400 | 49°12.021′ N 20°04.115′ E | Boulders, rock debris and silts of dump and alluvial cones (Pleistocene–Holocene) | High Tatras |
Element | Background Values (mg·kg−1) | Average Earth’s Crust for Granitic Rocks (mg·kg−1) |
---|---|---|
Cd | 0.14 | 0.13 |
Cr | 21.5 | 13 |
Cu | 15.8 | 14 |
Ni | 21.9 | 15 |
Pb | 22.8 | 17.5 |
Zn | 54.6 | 50 |
Fe (%) | 2.50 | 2.3 |
Tested Area | Sample No. | Mean Metal Concentrations (mg·kg−1) | pH H2O | ||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | Fe (%) | |||
KW | 1 | 1.3 | 49.2 | 12.9 | 15.6 | 117.8 | 122.5 | 4.2 | 7.5 |
2 | 1.2 | 41.8 | 12.4 | 14.2 | 115.1 | 118.0 | 4.1 | 7.6 | |
3 | 1.1 | 40.5 | 10.9 | 12.5 | 113.7 | 96.8 | 3.7 | 7.7 | |
4 | 0.9 | 31.6 | 6.4 | 7.7 | 99.1 | 86.0 | 3.6 | 7.8 | |
5 | 0.7 | 31.9 | 5.6 | 6.2 | 85.4 | 79.8 | 2.9 | 5.2 | |
6 | 0.7 | 31.1 | 4.2 | 6.5 | 65.8 | 76.6 | 2.6 | 4.3 | |
7 | 0.5 | 26.0 | 4.0 | 5.5 | 54.2 | 74.1 | 2.3 | 4.9 | |
8 | 0.3 | 25.3 | 3.1 | 4.6 | 53.5 | 61.1 | 2.0 | 4.9 | |
MO | 9 | 1.3 | 32.6 | 14.8 | 5.8 | 161.1 | 125.4 | 4.9 | 4.0 |
10 | 1.0 | 31.1 | 12.2 | 5.0 | 149.8 | 105.5 | 4.4 | 3.5 | |
11 | 0.9 | 31.3 | 11.6 | 5.1 | 129.3 | 84.1 | 3.9 | 3.6 | |
12 | 0.6 | 27.9 | 10.8 | 3.1 | 118.3 | 67.5 | 3.7 | 3.4 | |
13 | 0.5 | 27.5 | 9.2 | 2.7 | 114.6 | 52.2 | 3.3 | 3.8 |
Tested Area | Sample No. | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
KW | 1 | 5.5 | 2.1 | 0.5 | 0.6 | 3.7 | 1.3 |
2 | 5.4 | 1.8 | 0.5 | 0.5 | 3.7 | 1.3 | |
3 | 5.1 | 1.9 | 0.5 | 0.5 | 4.0 | 1.2 | |
4 | 4.3 | 1.6 | 0.3 | 0.3 | 3.6 | 1.1 | |
5 | 4.1 | 1.9 | 0.3 | 0.3 | 3.9 | 1.2 | |
6 | 5.0 | 2.1 | 0.3 | 0.4 | 3.3 | 1.4 | |
7 | 3.8 | 2.0 | 0.3 | 0.4 | 3.1 | 1.5 | |
8 | 2.7 | 2.2 | 0.3 | 0.4 | 3.5 | 1.4 | |
MO | 9 | 4.5 | 1.2 | 0.5 | 0.2 | 4.3 | 1.2 |
10 | 4.0 | 1.3 | 0.5 | 0.2 | 4.5 | 1.1 | |
11 | 3.9 | 1.4 | 0.5 | 0.2 | 4.4 | 1.0 | |
12 | 2.7 | 1.3 | 0.5 | 0.1 | 4.2 | 0.8 | |
13 | 2.7 | 1.5 | 0.5 | 0.1 | 4.6 | 0.7 | |
Average | 4.1 | 1.7 | 0.4 | 0.3 | 3.9 | 1.2 |
Tested Area | Sample No. | Geoaccumulation Index (Igeo) | |||||
---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | ||
KW | 1 | 2.63 | 0.61 | −0.88 | −1.07 | 1.78 | 0.58 |
2 | 2.58 | 0.37 | −0.94 | −1.22 | 1.75 | 0.53 | |
3 | 2.35 | 0.33 | −1.13 | −1.40 | 1.73 | 0.24 | |
4 | 2.07 | −0.03 | −1.88 | −2.10 | 1.53 | 0.07 | |
5 | 1.68 | −0.02 | −2.08 | −2.42 | 1.32 | −0.04 | |
6 | 1.80 | −0.05 | −2.49 | −2.35 | 0.94 | −0.10 | |
7 | 1.25 | −0.31 | −2.58 | −2.58 | 0.66 | −0.15 | |
8 | 0.56 | −0.35 | −2.95 | −2.84 | 0.64 | −0.42 | |
MO | 9 | 2.58 | 0.02 | −0.68 | −2.51 | 2.24 | 0.61 |
10 | 2.26 | −0.05 | −0.96 | −2.71 | 2.13 | 0.36 | |
11 | 2.02 | −0.05 | −1.04 | −2.70 | 1.92 | 0.04 | |
12 | 1.42 | −0.21 | −1.13 | −3.42 | 1.79 | −0.28 | |
13 | 1.25 | −0.23 | −1.37 | −3.63 | 1.74 | −0.65 |
Tested Area | Sample No. | Contamination Factors (Cf) | Cd | |||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | |||
KW | 1 | 9.3 | 2.3 | 0.8 | 0.7 | 5.2 | 2.2 | 20.5 |
2 | 8.9 | 1.9 | 0.8 | 0.6 | 5.0 | 2.2 | 19.5 | |
3 | 7.6 | 1.9 | 0.7 | 0.6 | 5.0 | 1.8 | 17.5 | |
4 | 6.3 | 1.5 | 0.4 | 0.4 | 4.3 | 1.6 | 14.4 | |
5 | 5.0 | 1.5 | 0.4 | 0.3 | 3.7 | 1.5 | 12.3 | |
6 | 5.0 | 1.4 | 0.3 | 0.3 | 2.9 | 1.4 | 11.3 | |
7 | 3.6 | 1.2 | 0.3 | 0.3 | 2.4 | 1.4 | 9.0 | |
8 | 2.2 | 1.2 | 0.2 | 0.2 | 2.3 | 1.1 | 7.3 | |
MO | 9 | 9.0 | 1.5 | 0.9 | 0.3 | 7.1 | 2.3 | 21.1 |
10 | 7.2 | 1.4 | 0.8 | 0.2 | 6.6 | 1.9 | 18.1 | |
11 | 6.1 | 1.5 | 0.7 | 0.2 | 5.7 | 1.5 | 15.7 | |
12 | 4.0 | 1.3 | 0.7 | 0.1 | 5.2 | 1.2 | 12.6 | |
13 | 3.6 | 1.3 | 0.6 | 0.1 | 5.0 | 1.0 | 11.5 | |
Average | 6.0 | 1.5 | 0.6 | 0.3 | 4.6 | 1.6 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniowska, J.; Krąż, P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals 2020, 10, 1120. https://doi.org/10.3390/min10121120
Korzeniowska J, Krąż P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals. 2020; 10(12):1120. https://doi.org/10.3390/min10121120
Chicago/Turabian StyleKorzeniowska, Joanna, and Paweł Krąż. 2020. "Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe)" Minerals 10, no. 12: 1120. https://doi.org/10.3390/min10121120
APA StyleKorzeniowska, J., & Krąż, P. (2020). Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals, 10(12), 1120. https://doi.org/10.3390/min10121120