Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices
Abstract
:1. Introduction
2. Study Area
3. Material and Analytical Methods
4. Soil Pollution Assessment
5. Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Chrastný, V.; Vaněk, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef]
- Vaněk, A.; Chrastný, V.; Komárek, M.; Penížek, V.; Teper, L.; Cabala, J.; Drábek, O. Geochemical position of thallium in soils from a smelter-impacted area. J. Geochem. Explor. 2013, 124, 176–182. [Google Scholar] [CrossRef]
- Kalinovic, T.S.; Serbula, S.M.; Radojevic, A.A.; Kalinovic, J.V.; Steharnik, M.M.; Petrovic, J.V. Elder, linden and pine biomonitoring ability of pollution emitted from the copper smelter and the tailings ponds. Geoderma 2016, 262, 266–275. [Google Scholar] [CrossRef]
- Ghayoraneh, M.; Qishlaqi, A. Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran. J. Geochem. Explor. 2017, 180, 1–14. [Google Scholar] [CrossRef]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Ogbeibu, A.E.; Omoigberale, M.O.; Ezenwa, I.M.; Eziza, J.O.; Igwe, J.O. Using pollution load index and geoaccumulation index for the assessment of heavy metal pollution and sediment quality of the Benin River, Nigeria. Nat. Environ. 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Diatta, J.B.; Chudzinska, E.; Wirth, S. Assessment of heavy metal contamination of soils impacted by a zinc smelter activity. J. Elementol. 2008, 13, 5–16. [Google Scholar]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Nouri, M.; Haddioui, A. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco. Ekológia 2016, 35, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Obiora, S.C.; Chukwu, A.; Davies, T.C. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. J. Afr. Earth Sci. 2016, 116, 182–189. [Google Scholar] [CrossRef]
- Xue, S.; Shi, L.; Wu, C.; Wu, H.; Qin, Y.; Pan, W.; Hartley, W.; Cui, M. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ. Res. 2017, 156, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Xiao, T.; Bao, Z.; Lippold, H.; Luo, X.; Yin, M.; Ren, J.; Chen, Y.; Linghu, W. Geochemical dispersal of thallium and accompanying metals in sediment profiles from a smelter-impacted area in South China. Appl. Geochem. 2018, 88, 239–246. [Google Scholar] [CrossRef]
- Wu, J.; Long, J.; Liu, L.; Li, J.; Liao, H.; Zhang, M.; Zhao, C.; Wu, Q. Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in Southwest China. Int. J. Environ. Res. Public Health 2018, 15, 1838. [Google Scholar] [CrossRef] [Green Version]
- Wiggenhauser, M.; Bigalke, M.; Imseng, M.; Müller, M.; Keller, A.; Murphy, K.; Kreissig, K.; Rehkämper, M.; Wilcke, W.; Frossard, E. Cadmium isotope fractionation in soil-wheat systems. Environ. Sci. Technol. 2016, 50, 9223–9231. [Google Scholar] [CrossRef] [Green Version]
- Dinis, L.; Savard, M.M.; Gammon, P.; Bégin, C.; Vaive, J. Influence of climatic conditions and industrial emissions on spruce tree-ring Pb isotopes analyzed at ppb concentrations in the Athabasca oil sands region. Dendrochronologia 2016, 37, 96–106. [Google Scholar] [CrossRef]
- Wei, X.; Lyu, S.; Yu, Y.; Wang, Z.; Liu, H.; Pan, D.; Chen, J. Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Front. Plant Sci. 2017, 28, 1318. [Google Scholar] [CrossRef]
- Liu, J.; Wei, X.; Zhou, Y.; Tsang, D.C.W.; Bao, Z.; Yin, M.; Lippold, H.; Yuan, W.; Wang, J.; Feng, Y.; et al. Thallium contamination, health risk assessment and source apportionment in common vegetables. Sci. Total Environ. 2020, 703, 135547. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.; Sun, J.; She, J.; Yin, M.; Fang, F.; Xiao, T.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol. Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef] [PubMed]
- Durkalec, M.; Szkoda, J.; Kolacz, R.; Opalinski, S.; Nawrocka, A.; Zmudzki, J. Bioaccumulation of Lead, Cadmium and Mercury in Roe Deer and Wild Boars from areas with different levels of toxic metal pollution. Int. J. Environ. Res. 2015, 9, 205–212. [Google Scholar] [CrossRef]
- Kapusta, P.; Sobczyk, Ł. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci. Total Environ. 2015, 536, 517–526. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch. Environ. Prot. 2015, 41, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health 2018, 40, 2325–2342. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Y.; Li, H.; Guo, Z.; Zhang, R. Spatiotemporal variation and pollution assessment of Pb/Zn from smelting activities in China. Int. J. Environ. Res. Public Health 2020, 17, 1968. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, R.; Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P.; Wieczorek, J. Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. J. Geochem. Explor. 2019, 201, 13–30. [Google Scholar] [CrossRef]
- Blaser, P.; Zimmermann, S.; Luster, J.; Shotyk, W. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci. Total Environ. 2000, 249, 257–280. [Google Scholar] [CrossRef]
- Desaules, A. Critical evaluation of soil contamination assessment methods for trace metals. Sci. Total Environ. 2012, 426, 120–131. [Google Scholar] [CrossRef]
- Wu, J.; Teng, Y.; Lu, S.; Wang, Y.; Jiao, X. Evaluation of soil contamination indices in a mining area of Jiangxi, China. PLoS ONE 2014, 9, e112917. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Rachwał, M.; Kardel, K.; Magiera, T.; Bens, O. Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 2017, 295, 10–21. [Google Scholar] [CrossRef]
- Leach, D.L.; Viets, J.G.; Powell, J.W. Textures of ores from the Silesian-Cracow zinc-lead deposits, Poland: Clues to the ore-forming environment. Pol. Geol. Inst. Pap. 1996, 154, 37–50. [Google Scholar]
- Szuwarzynski, M. Ore bodies in the Silesian-Cracow Zn-Pb ore district, Poland. Pol. Geol. Inst. Pap. 1996, 154, 9–24. [Google Scholar]
- Górecka, E. Mineral sequence development in the Zn-Pb deposits of the Silesian-Cracow area, Poland. Pol. Geol. Inst. Pap. 1996, 154, 37–50. [Google Scholar]
- Molenda, D. Mining of Lead and Silver in the Silesia-Cracow Region Up to the Middle of the 16th Century; Ossolineum: Wrocław, Poland, 1963. [Google Scholar]
- Panek, S. The History of Lead and Zinc Ore Mining in Jaworzno-Trzebinia-Chrzanow. Unpublished work, Jaworzno. 1995. [Google Scholar]
- Cabala, J.; Sutkowska, K. Past exploitation and processing of Zn-Pb ore influence on the industrial soil minerals composition. Olkusz and Jaworzno district. Pr. Nauk. Inst Górnictwa Polit Wrocł Studia Mater. 2006, 117, 13–22. [Google Scholar]
- Sutkowska, K.; Teper, L. Anthropogenic forms of urban post-mining landscape by example of Jaworzno. Prz. Górn. 2012, 68, 70–77. [Google Scholar]
- Teper, E. Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environ. Monit. Assess. 2009, 154, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Aleksander-Kwaterczak, U.; Helios-Rybicka, E. Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. J. Soils Sediments 2009, 9, 13. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Ciszewski, D.; Szarek-Gwiazda, E.; Kwandrans, J.; Wilk-Woźniak, E.; Waloszek, A. The influence of historical activity of the Zn-Pb ore mine in Chrzanów on the aquatic environment quality of the Matylda valley. Górnictwo Geol. 2010, 5, 21–30. [Google Scholar]
- Chlopecka, A.; Bacon, J.R.; Wilson, M.J.; Kay, J. Forms of Cadmium, Lead and Zinc in contaminated soils from Southwest Poland. J. Environ. Qual. 1996, 25, 69–79. [Google Scholar] [CrossRef]
- Cabala, J.; Teper, L. Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in southern Poland. Water Air Soil Pollut. 2007, 178, 351–362. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Vaněk, A.; Czech, T.; Baran, A. Effect of historical zinc processing on soil: A case study in Southern Poland. In Proceedings of the 3rd World Congress on New Technologies (NewTech’17), Rome, Italy, 6–8 June 2017; p. 110. [Google Scholar] [CrossRef]
- Vaněk, A.; Chrastný, V.; Teper, L.; Cabala, J.; Penížek, V.; Komárek, M. Distribution of thallium and accompanying metals in tree rings of Scots pine (Pinus sylvestris L.) from a smelter-affected area. J. Geochem. Explor. 2011, 108, 73–80. [Google Scholar] [CrossRef]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Augustyniak, M.; Orzechowska, H.; Kędziorski, A.; Sawczyn, T.; Doleżych, B. DNA damage in grasshoppers’ larvae—Comet assay in environmental approach. Chemosphere 2014, 96, 180–187. [Google Scholar] [CrossRef]
- Dmowski, K.; Rossa, M.; Kowalska, J.; Krasnodębska-Ostręga, B. Thallium in spawn, juveniles, and adult common toads (Bufo bufo) living in the vicinity of a zinc-mining complex, Poland. Environ. Monit. Assess. 2015, 187, 4141. [Google Scholar] [CrossRef] [Green Version]
- Kurek, S.; Sobczyński, P.; Szuwarzyński, M.; Wojnar, E. The characteristics of the Chrzanow region deposits. Pol. Geol. Inst. Pap. 1977, 45, 45–71. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution controls sediment logical approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Wiss. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qiao, Q.; Piper, D.; Huang, B. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut. 2011, 159, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Index of geo-accumulation in sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Detailed Geochemical Map of Upper Silesia. Sheet: Sławków, Olkusz, Nowa Góra, Myślachowice, Chrzanów, Dabrowa Górnicza, Strzemieszyce, Jaworzno and Libiąż; Pasieczna, A., Ed.; Polish Geological Institute: Warszawa, Poland, 2008. [Google Scholar]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Upper Silesia 1:200,000; Publications of the Polish Geological Institute: Warszawa, Poland, 1995. [Google Scholar]
- Salminen, R. (Ed.) Geochemical Atlas of Europe 2005 Part 1 and 2; Geol. Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Sutherland, R.A.; Tolosa, C.A.; Tack, F.M.G.; Verloo, M.G. Characterization of Selected Element Concentrations and Enrichment Ratios in Background and Anthropogenically Impacted Roadside Areas. Arch. Environ. Contam. Toxicol. 2000, 38, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Jena, V.; Matic, N.; Kapralova, V.; Solanki, J.S. Assessment of geo-accumulation index of heavy metal and source of contamination by multivariate factor analysis. Int. J. Hazard. Mater. 2014, 2, 18–22. [Google Scholar]
- Szuszkiewicz, M.; Łukasik, A.; Magiera, T.; Mendakiewicz, M. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles Diversification and its interpretation: A new approach. Environ. Pollut. 2016, 214, 464–477. [Google Scholar] [CrossRef]
- Szuszkiewicz, M.; Petrovsky, E.; Łukasik, A.; Gruba, P.; Grison, H.; Szuszkiewicz, M.M. Technogenic contamination or geogenic enrichment in Regosols and Leptosols? Magnetic and geochemical imprints on topsoil horizons. Geoderma 2021, 381, 114685. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warszawa, Poland, 1999. [Google Scholar]
- Romero-Baena, A.J.; González, I.; Galán, E. Soil pollution by mining activities in Andalusia (South Spain)—The role of mineralogy and geochemistry in three case studies. J. Soils Sediments 2018, 18, 2231–2247. [Google Scholar] [CrossRef]
Sample Point | Coordinates | Sample Number | Depth [cm] | pH | TC [%] | TOC [%] | TS [%] | HM Content [mg·kg−1] | ||
---|---|---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | ||||||||
D1 | 50°14′19.2″ N 19°14′30″ E | a | 0–2 | 6.40 | 10.08 | 9.83 | 0.11 | 3329 ± 84 | 1674 ± 30 | 37.58 ± 3.27 |
b | 2–25 | 7.04 | 3.29 | 2.78 | 0.03 | 3319 ± 79 | 1877 ± 39 | 32.40 ± 1.63 | ||
D2 | 50°14′58.5″ N 19°14′18.7″ E | a | 0–2 | 4.26 | 20.92 | 20.92 | 0.14 | 701 ± 17 | 341 ± 6 | 11.75 ± 0.56 |
b | 2–9 | 5.26 | 9.88 | 9.88 | 0.08 | 907 ± 8 | 353 ± 3 | 14.72 ± 0.36 | ||
c | 9–19 | 6.23 | 1.35 | 1.35 | 0.01 | 482 ± 48 | 97 ± 10 | 4.54 ± 0.46 | ||
d | 19–26 | 7.24 | 0.21 | 0.20 | 0.00 | 277 ± 30 | 55 ± 8 | 2.14 ± 0.27 | ||
D3 | 50°15′7.2″ N 19°14′25″ E | a | 0–3 | 6.04 | 22.01 | 21.22 | 0.13 | 1438 ± 66 | 234 ± 12 | 7.46 ± 0.51 |
b | 3–11 | 6.65 | 9.89 | 7.38 | 0.04 | 1291 ± 14 | 329 ± 0.2 | 11.29 ± 0.05 | ||
c | 11–22 | 7.03 | 2.06 | 1.72 | 0.01 | 1170 ± 21 | 248 ± 0.3 | 6.99 ± 0.07 | ||
D4 | 50°15′7.1″ N 19°14′33″ E | a | 0–2 | 6.41 | 8.55 | 8.50 | 0.07 | 1113 ± 12 | 275 ± 3 | 9.59 ± 0.45 |
b | 2–14 | 6.71 | 7.14 | 6.28 | 0.07 | 1037 ± 16 | 269 ± 8 | 9.50 ± 0.13 | ||
c | 14–34 | 6.91 | 1.41 | 1.39 | 0.01 | 937 ± 23 | 227 ± 6 | 8.11 ± 0.3 | ||
D5 | 50°15′18.2″ N 19°14′25.6″ E | a | 0–2 | 5.55 | 23.12 | 23.12 | 0.17 | 926 ± 32 | 283 ± 11 | 10.46 ± 0.47 |
b | 2–14 | 6.06 | 7.16 | 7.16 | 0.07 | 797 ± 18 | 267 ± 2 | 10.45 ± 0.04 | ||
c | 14–19 | 5.96 | 0.20 | 0.20 | 0.00 | 68 ± 8 | 18 ± 2 | 0.31 ± 0.01 | ||
W1 | 50°13’36.1” N 19°16’48.3” E | a | 0–2 | 6.74 | 5.76 | 5.76 | 0.06 | 2975 ± 45 | 440 ± 2 | 26.83 ± 0.23 |
b | 2–18 | 6.97 | 3.40 | 3.40 | 0.04 | 3077 ± 54 | 456 ± 1 | 27.66 ± 0.13 | ||
W2 | 50°13’36.2” N 19°16’58.1” E | a | 0–2 | 6.93 | 11.57 | 11.08 | 0.10 | 1861 ± 4 | 673 ± 8 | 14.45 ± 0.25 |
b | 2–17 | 7.36 | 6.24 | 5.07 | 0.05 | 1831 ± 9 | 711 ± 6 | 11.86 ± 0.19 | ||
W3 | 50°13’28.6” N 19°16’58.7” E | a | 0–2 | 6.34 | 9.22 | 9.22 | 0.07 | 2455 ± 34 | 885 ± 13 | 17.93 ± 0.14 |
b | 2–12 | 6.67 | 7.47 | 7.47 | 0.07 | 2761 ± 34 | 1035 ± 18 | 21.44 ± 0.34 | ||
c | 12–24 | 6.69 | 0.68 | 0.68 | 0.01 | 1388 ± 2 | 658 ± 14 | 3.30 ± 0.01 | ||
W4 | 50°13’27.7” N 19°16’44.5” E | a | 0–2 | 6.74 | 13.89 | 13.84 | 0.12 | 1956 ± 3 | 329 ± 19 | 13.70 ± 1.06 |
b | 2–20 | 7.08 | 7.11 | 7.10 | 0.07 | 2547 ± 9 | 502 ± 6 | 20.57 ± 0.30 | ||
c | 20–30 | 7.10 | 2.03 | 2.03 | 0.02 | 2771 ± 27 | 328 ± 3 | 12.59 ± 0.31 | ||
W5 | 50°13’27.8” N 19°16’35.4” E | a | 0–2 | 7.05 | 3.49 | 3.49 | 0.04 | 1063 ± 9 | 403 ± 2 | 7.42 ± 0.05 |
b | 2–18 | 7.24 | 3.65 | 3.65 | 0.04 | 1052 ± 6 | 400 ± 14 | 7.32 ± 0.30 | ||
c | 18–28 | 7.60 | 0.83 | 0.82 | 0.01 | 1124 ± 48 | 207 ± 8 | 4.39 ± 0.21 | ||
W6 | 50°13’9” N 19°16’11” E | a | 0–3 | 6.21 | 2.04 | 2.04 | 0.02 | 630 ± 15 | 290 ± 4 | 6.28 ± 0.29 |
b | 3–11 | 6.40 | 1.65 | 1.65 | 0.02 | 583 ± 17 | 275 ± 5 | 4.34 ± 0.01 | ||
W7 | 50°13’8” N 19°15’56” E | a | 0–3 | 6.99 | 6.33 | 6.11 | 0.07 | 1063 ± 11 | 289 ± 1 | 5.81 ± 0.14 |
b | 3–19 | 7.00 | 3.79 | 3.70 | 0.05 | 1169 ± 1 | 307 ± 2 | 7.09 ± 0.02 | ||
c | 19–26 | 7.20 | 1.45 | 1.17 | 0.01 | 639 ± 1 | 118 ± 1 | 2.34 ± 0.01 | ||
W8 | 50°13’15” N 19°15’56” E | a | 0–4 | 6.47 | 3.44 | 3.44 | 0.04 | 1003 ± 3 | 242 ± 1 | 4.38 ± 0.03 |
b | 4–20 | 6.50 | 2.78 | 2.78 | 0.03 | 1080 ± 7 | 298 ± 1 | 6.05 ± 0.02 | ||
W9 | 50°13’15” N 19°16’10” E | a | 0–3 | 6.01 | 1.59 | 1.59 | 0.02 | 480 ± 9 | 146 ± 5 | 3.90 ± 0.04 |
b | 3–13 | 6.12 | 1.60 | 1.60 | 0.02 | 497 ± 2 | 169 ± 1 | 3.95 ± 0.01 | ||
W10 | 50°13’25” N 19°15’59” E | a | 0–3 | 6.53 | 2.34 | 2.34 | 0.02 | 652 ± 7 | 207 ± 2 | 3.71 ± 0.01 |
b | 3–17 | 6.56 | 2.31 | 2.31 | 0.03 | 727 ± 3 | 219 ± 1 | 4.20 ± 0.02 |
Sample Point | Weighted Arithmetic Mean (mg·kg−1 Dry Weight) | Statistical Parameters | ||||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Zn | Pb | Cd | |||
D1 | 3320 | 1861 | 32.82 | content | min. | 68 | 18 | 0.31 |
D2 | 558 | 173 | 7.19 | max. | 3329 | 1877 | 37.58 | |
D3 | 1251 | 275 | 8.62 | weighted arithmetic mean | 1351 | 550 | 13.01 | |
D4 | 982 | 244 | 8.69 | median | 937 | 269 | 9.59 | |
D5 | 619 | 203 | 7.73 | standard deviation | 910 | 535 | 9.83 | |
coefficient of variation [%] | 77 | 123 | 83.29 | |||||
W1 | 3066 | 454 | 27.57 | |||||
W2 | 1159 | 492 | 7.04 | |||||
W3 | 1032 | 361 | 4.14 | |||||
W4 | 2582 | 432 | 17.45 | Zn | Pb | Cd | ||
W5 | 1054 | 340 | 7.34 | content | min. | 480 | 118 | 2.34 |
W6 | 595 | 279 | 4.87 | max. | 3077 | 1035 | 27.66 | |
W7 | 1014 | 254 | 5.66 | weighted arithmetic mean | 1549 | 410 | 10.43 | |
W8 | 1149 | 331 | 4.43 | median | 1102 | 317 | 6.68 | |
W9 | 287 | 87 | 2.29 | standard deviation | 849 | 232 | 7.53 | |
W10 | 714 | 217 | 4.11 | coefficient of variation [%] | 1102 | 317 | 6.68 | |
baseline CB values | ||||||||
Zn | Pb | Cd | ||||||
1 | 552 | 61 | 3.41 | carbonate bedrock for Dlugoszyn area | ||||
2 | 86 | 81 | 1.22 | carbonate bedrock for Wilkoszyn area | ||||
3 | 104 | 44 | 1.30 | median for topsoil for S Poland [59] | ||||
4 | 200 | 84 | 2 | median for topsoil in Cracow-Silesia region [60] | ||||
5 | 48 | 15 | 0.15 | median for topsoil in Europe [61] |
Mineral Name | D Area | W Area |
---|---|---|
[%] | ||
Quartz | 84.0 | 79.5 |
Dolomite | 4.5 | 3.0 |
Goethite | 0.5 | 11.5 |
Microcline | 3.0 | 2.5 |
Orthoclase | 3.0 | 1.0 |
Albite | 2.5 | 2.5 |
Kaolinite | 2.0 | - |
Calcite | 0.5 | - |
Sample Point | Cf | Cdeg | PLI | Igeo | ||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Zn | Pb | Cd | |||
D1 | 6.0 | 30.6 | 9.6 | 46.2 | 12.1 | 2.0 | 4.3 | 2.7 |
D2 | 1.0 | 2.8 | 2.1 | 6.0 | 1.8 | −0.6 | 0.9 | 0.5 |
D3 | 2.3 | 4.5 | 2.5 | 9.3 | 3.0 | 0.6 | 1.6 | 0.8 |
D4 | 1.8 | 4.0 | 2.5 | 8.3 | 2.6 | 0.2 | 1.4 | 0.8 |
D5 | 1.1 | 3.3 | 2.3 | 6.7 | 2.0 | −0.4 | 1.2 | 0.6 |
W1 | 35.8 | 5.6 | 22.6 | 64.0 | 16.5 | 4.6 | 1.9 | 3.9 |
W2 | 13.5 | 6.1 | 5.8 | 25.4 | 7.8 | 3.2 | 2.0 | 1.9 |
W3 | 12.0 | 4.5 | 3.4 | 19.9 | 5.7 | 3.0 | 1.6 | 1.2 |
W4 | 30.1 | 5.3 | 14.3 | 49.8 | 13.2 | 4.3 | 1.8 | 3.3 |
W5 | 12.3 | 4.9 | 6.0 | 23.2 | 7.1 | 3.0 | 1.7 | 2.0 |
W6 | 6.9 | 3.4 | 4.0 | 14.4 | 4.6 | 2.2 | 1.2 | 1.4 |
W7 | 11.8 | 3.1 | 4.6 | 19.6 | 5.6 | 3.0 | 1.1 | 1.6 |
W8 | 13.4 | 4.1 | 3.6 | 21.1 | 5.8 | 3.2 | 1.4 | 1.3 |
W9 | 3.3 | 1.1 | 1.9 | 6.3 | 1.9 | 1.2 | −0.5 | 0.3 |
W10 | 8.3 | 2.7 | 3.4 | 14.4 | 4.2 | 2.5 | 0.8 | 1.2 |
Pollution Index | Classes of Soil Quality | Studied Area | |||||
---|---|---|---|---|---|---|---|
D | W | ||||||
Zn | Pb | Cd | Zn | Pb | Cd | ||
Cf [%] | very high contamination | 0 | 20 | 20 | 90 | 10 | 20 |
considerable contamination | 20 | 60 | 0 | 10 | 70 | 70 | |
moderate contamination | 80 | 20 | 80 | 0 | 20 | 10 | |
low contamination | 0 | 0 | 0 | 0 | 0 | 0 | |
Cdeg [%] | very high contamination | 20 | 30 | ||||
considerable contamination | 0 | 60 | |||||
moderate contamination | 80 | 10 | |||||
low contamination | 0 | 0 | |||||
PLI [%] | extremely high pollution | 20 | 70 | ||||
very high pollution | 0 | 20 | |||||
high pollution | 20 | 0 | |||||
moderate to high pollution | 40 | 0 | |||||
moderate pollution | 20 | 10 | |||||
unpolluted | 0 | 0 | |||||
Igeo [%] | Class 6 extremely polluted | 0 | 0 | 0 | 0 | 0 | 0 |
Class 5 highly to extremely polluted | 0 | 20 | 0 | 20 | 0 | 0 | |
Class 4 heavy polluted | 0 | 0 | 0 | 50 | 0 | 0 | |
Class 3 moderately to heavily polluted | 20 | 0 | 20 | 20 | 10 | 30 | |
Class 2 moderately polluted | 0 | 60 | 0 | 10 | 70 | 60 | |
Class 1 unpolluted to moderately polluted | 40 | 20 | 80 | 0 | 10 | 10 | |
Class 0 unpolluted | 40 | 0 | 0 | 0 | 10 | 0 |
Sample Point | Cf | Cdeg | PLI | Igeo | ||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Zn | Pb | Cd | |||
D1 | 31.9 | 42.3 | 25.2 | 99.5 | 32.4 | 4.4 | 4.8 | 4.1 |
D2 | 5.4 | 3.9 | 5.5 | 14.8 | 4.9 | 1.8 | 1.4 | 1.9 |
D3 | 12.0 | 6.3 | 6.6 | 24.9 | 7.9 | 3.0 | 2.1 | 2.1 |
D4 | 9.4 | 5.6 | 6.7 | 21.7 | 7.1 | 2.7 | 1.9 | 2.2 |
D5 | 5.9 | 4.6 | 5.9 | 16.5 | 5.5 | 2.0 | 1.6 | 2.0 |
W1 | 29.5 | 10.3 | 21.2 | 61.0 | 18.6 | 4.3 | 2.8 | 3.8 |
W2 | 11.1 | 11.2 | 5.4 | 27.7 | 8.8 | 2.9 | 2.9 | 1.9 |
W3 | 9.9 | 8.2 | 3.2 | 21.3 | 6.4 | 2.7 | 2.5 | 1.1 |
W4 | 24.8 | 9.8 | 13.4 | 48.1 | 14.8 | 4.0 | 2.7 | 3.2 |
W5 | 10.1 | 9.1 | 5.6 | 24.9 | 8.0 | 2.8 | 2.6 | 1.9 |
W6 | 5.7 | 6.3 | 3.7 | 15.8 | 5.1 | 1.9 | 2.1 | 1.3 |
W7 | 9.7 | 5.8 | 4.4 | 19.9 | 6.3 | 2.7 | 1.9 | 1.5 |
W8 | 11.0 | 7.5 | 3.4 | 22.0 | 6.6 | 2.9 | 2.3 | 1.2 |
W9 | 2.8 | 2.0 | 1.8 | 6.5 | 2.1 | 0.9 | 0.4 | 0.2 |
W10 | 6.9 | 4.9 | 3.2 | 15.0 | 4.7 | 2.2 | 1.7 | 1.1 |
Sample Point | Cf | Cdeg | PLI | Igeo | ||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Zn | Pb | Cd | |||
D1 | 16.6 | 22.1 | 16.4 | 55.2 | 18.2 | 3.5 | 3.9 | 3.5 |
D2 | 2.8 | 2.1 | 3.6 | 8.4 | 2.7 | 0.9 | 0.5 | 1.3 |
D3 | 6.3 | 3.3 | 4.3 | 13.8 | 4.5 | 2.1 | 1.1 | 1.5 |
D4 | 4.9 | 2.9 | 4.3 | 12.2 | 4.0 | 1.7 | 1.0 | 1.5 |
D5 | 3.1 | 2.4 | 3.9 | 9.4 | 3.1 | 1.0 | 0.7 | 1.4 |
W1 | 5.4 | 13.8 | 15.3 | 34.5 | 10.5 | 3.4 | 1.9 | 3.2 |
W2 | 5.9 | 3.5 | 5.8 | 15.2 | 4.9 | 2.0 | 2.0 | 1.2 |
W3 | 4.3 | 2.1 | 5.2 | 11.5 | 3.6 | 1.8 | 1.5 | 0.5 |
W4 | 5.1 | 8.7 | 12.9 | 26.8 | 8.3 | 3.1 | 1.8 | 2.5 |
W5 | 4.8 | 3.7 | 5.3 | 13.7 | 4.5 | 1.8 | 1.7 | 1.3 |
W6 | 3.0 | 3.3 | 2.4 | 8.7 | 2.9 | 1.0 | 1.1 | 0.7 |
W7 | 5.1 | 3.0 | 2.8 | 10.9 | 3.5 | 1.8 | 1.0 | 0.9 |
W8 | 5.7 | 3.9 | 2.2 | 11.9 | 3.7 | 1.9 | 1.4 | 0.6 |
W9 | 1.4 | 1.0 | 1.1 | 3.6 | 1.2 | −0.1 | −0.5 | −0.4 |
W10 | 3.6 | 2.6 | 2.1 | 8.2 | 2.7 | 1.3 | 0.8 | 0.5 |
Sample Point | Cf | Cdeg | PLI | Igeo | ||||
---|---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Zn | Pb | Cd | |||
D1 | 69.2 | 124.0 | 218.8 | 412.0 | 123.4 | 5.5 | 6.4 | 7.2 |
D2 | 11.6 | 11.5 | 47.9 | 71.1 | 18.6 | 3.0 | 2.9 | 5.0 |
D3 | 26.1 | 18.4 | 57.4 | 101.9 | 30.2 | 4.1 | 3.6 | 5.3 |
D4 | 20.5 | 16.3 | 57.9 | 94.7 | 26.8 | 3.8 | 3.4 | 5.3 |
D5 | 12.9 | 13.5 | 51.5 | 78.0 | 20.8 | 3.1 | 3.2 | 5.1 |
W1 | 63.9 | 30.3 | 183.8 | 278.0 | 70.9 | 5.4 | 4.3 | 6.9 |
W2 | 24.2 | 32.8 | 46.9 | 103.9 | 33.4 | 4.0 | 4.5 | 5.0 |
W3 | 21.5 | 24.1 | 27.6 | 73.2 | 24.3 | 3.8 | 4.0 | 4.2 |
W4 | 53.8 | 28.8 | 116.4 | 199.0 | 56.5 | 5.2 | 4.3 | 6.3 |
W5 | 21.9 | 26.7 | 48.9 | 97.5 | 30.6 | 3.9 | 4.2 | 5.0 |
W6 | 12.4 | 18.6 | 32.5 | 63.5 | 19.6 | 3.0 | 3.6 | 4.4 |
W7 | 21.1 | 16.9 | 37.8 | 75.8 | 23.8 | 3.8 | 3.5 | 4.7 |
W8 | 23.9 | 22.0 | 29.6 | 75.5 | 25.0 | 4.0 | 3.9 | 4.3 |
W9 | 6.0 | 5.8 | 15.3 | 27.0 | 8.1 | 2.0 | 1.9 | 3.3 |
W10 | 14.9 | 14.5 | 27.4 | 56.7 | 18.1 | 3.3 | 3.3 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutkowska, K.; Teper, L.; Czech, T.; Hulok, T.; Olszak, M.; Zogala, J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals 2020, 10, 1140. https://doi.org/10.3390/min10121140
Sutkowska K, Teper L, Czech T, Hulok T, Olszak M, Zogala J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals. 2020; 10(12):1140. https://doi.org/10.3390/min10121140
Chicago/Turabian StyleSutkowska, Katarzyna, Leslaw Teper, Tomasz Czech, Tomasz Hulok, Michał Olszak, and Jan Zogala. 2020. "Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices" Minerals 10, no. 12: 1140. https://doi.org/10.3390/min10121140
APA StyleSutkowska, K., Teper, L., Czech, T., Hulok, T., Olszak, M., & Zogala, J. (2020). Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals, 10(12), 1140. https://doi.org/10.3390/min10121140