A Robust Stochastic Approach to Mineral Hyperspectral Analysis for Geometallurgy
Abstract
:1. Introduction
2. Background
2.1. Laboratory and Field Based Geological Hyperspectral Analysis
2.2. Geometallurgical Hyperspectral Analysis
2.3. Spectral Variability
2.4. Spatial Context Capture
2.5. Spectral Context Capture
2.6. Dimensionality Reduction
2.7. Hyperspectral Image Clustering
3. Related Work in Classical Strategies for Geological Spectral Characterization
4. Proposed Stochastic Characterization of Metallurgical Samples
4.1. Working Hypothesis
4.2. Proposed Methodology
4.2.1. Training Pipeline
- Prepare the M metallurgical samples considering to expose their surface as much as possible.
- Acquire hyperspectral images from each metallurgical sample and to normalize them with respect to white and dark references to obtain reflectance images.
- Reduce pixel spectra dimensionality to 10 percent of their original bands number.
- Obtain an arbitrary amount of pixel patches from each image—25, 50 or 100 pixels for each patch would be a reasonable number, depending on the image and pixel size, and mineral sample grain profile.
- Apply a clustering process to all patches from every image belonging to the training set. A patch is a metaspectrum (concatenation) which codifies their energy. The clustering is applied to an amount of clusters that has been determined by a sensibility analysis based on the specific data set under study.
- Train a multilevel regression method for each characterized variable. Here, the base level is the actual patches set and the next one is composed of the patch clusters. Then, each patch has a label with the cluster it belongs to.
4.2.2. Prediction Pipeline
- Prepare the new metallurgical sample for the acquisition by exposing its surface as much as possible.
- (a) Acquire a hyperspectral image from the new sample, (b) obtain the reflectance image, (c) reduce dimensionality and (d) divide it into obtain a set of pixel patches, as many as possible, because the aim is to obtain an experimental metaspectral distribution at this stage.
- Obtain and assign the closest trained cluster for each patch using the Hausdorff distance. If some patch is close enough to more than one cluster (according to some predefined threshold), then it must be duplicated and assigned to every close cluster to augment the number of elements for the a posteriori estimation.
- Apply the regression functions (associated with the assigned closest cluster) to each patch.
- Use regression function outputs to obtain an experimental distribution for each variable of interest.
- Estimate each variable of interest using its experimental distribution. Expected value can be a reasonably good estimator for most cases, but if the experimental distribution is too complex (multi modal, for example) it could be a kind of naive estimator.
5. Proposed Core Pipeline Tools
5.1. Tool I: Preserved Energy Dimensionality Reduction
Wavelet Approach
5.2. Tool II: Hybrid Spatial Spectral Iterative Clustering
5.2.1. Clustering Method Description
Algorithm 1 The HySSIC method. | |
procedureHySSIC: | |
⊳ Where R is the HSI spatial resolution | |
⊳ In a n × n neighborhood | |
while do | |
for each cluster do | |
for each pixel in the cluster do | |
⊳Using expression (5) | |
end for | |
end for | |
end while | |
end procedure |
5.2.2. Spectral Distances
Spectral Angle Mapper Distance
Kernel-Trick Distances
(linear) | |
(polynomial) | |
(exponential) | |
(histogram intersection) | |
(wavelet) |
5.3. Hyssic Examples
5.4. Tool III: Stochastic Hierarchical Regression Model
5.4.1. Mixed Effects Statistical Modeling
5.4.2. Correlation-in-Samples Modeling
6. Experiments
6.1. Spectral Variability in White References Examples
6.1.1. Variability of Ambient Conditions
6.1.2. Inherent Variability
6.2. Geometallurgical Variables Estimation
6.2.1. Database
6.2.2. Variability of Samples in the Spectral Domain Analysis
6.2.3. Experiment Scenarios
6.2.4. Configuration and Results
7. Discussion and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALGES | Advanced Laboratory for Geostatistical Supercomputing |
AMTC | Advanced Mining Technology Center |
CONSCAL | calcium carbonate consumption |
HySSIC | hybrid spectral spatial iterative clustering |
HSI | hyperspectral image |
LMM | linear mixed model |
MAE | mean absolute error |
MSI | multispectral image |
NIR | near infrared |
RGB | red-green-blue |
RECCU | recovered soluble copper |
RECMO | molybdenum recovery |
RMSE | root mean square error |
SLIC | simple linear iterative clustering |
SWIR | short wave infra red |
VNIR | visible and near infrared |
WI | bond working index |
References
- van der Meer, F. Near-infrared laboratory spectroscopy of mineral chemistry: A review. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 71–78. [Google Scholar] [CrossRef]
- Popelka-Filcoff, R.S.; Mauger, A.; Lenehan, C.E.; Walshe, K.; Pring, A. HyLogger™ near-infrared spectral analysis: A non-destructive mineral analysis of Aboriginal Australian objects. Anal. Methods 2014, 6, 1309–1316. [Google Scholar] [CrossRef]
- Martini, B.A.; Bellian, J.; Katz, D.; Fonteneau, L.C.; Carey, R.; Guisinger, M.; Nordeng, S.H. Continuous mineralogical characterization of the bakken-three forks formations: New geological insights from hyperspectral core imaging. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference 2020, URTeC 2020, Denver, CO, USA, 22–24 July 2019. [Google Scholar] [CrossRef]
- Martini, B.A.; Harris, A.C.; Carey, R.; Goodey, N.; Honey, F.; Tufilli, N. Automated Hyperspectral Core Imaging-A Revolutionary New Tool for Exploration, Mining and Research. Proc. Explor. 2017, 17, 911–922. [Google Scholar]
- Plaue, J.W.; Klunder, G.L.; Hutcheon, I.D.; Czerwinski, K.R. Near infrared reflectance spectroscopy as a process signature in uranium oxides. J. Radioanal. Nucl. Chem. 2013, 296, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Analytical Spectral Devices, Inc. ASD Technical Guide, 3rd ed.; ASD Inc.: Boulder, CO, USA, 1999. [Google Scholar]
- Malvern Panalytical. ASD LabSpec: NIRS Spectrometers and Spectrophotometers. 2020. Available online: https://www.malvernpanalytical.com/en/products/product-range/asd-range/labspec-range/ (accessed on 4 November 2020).
- Berman, M.; Kiiveri, H.; Lagerstrom, R.; Ernst, A.; Dunne, R.; Huntington, J.F. ICE: A statistical approach to identifying endmembers in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2085–2095. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. Signal Process. Mag. IEEE 2002, 19, 44–57. [Google Scholar]
- Bian, X.; Li, S.; Shao, X.; Liu, P. Variable space boosting partial least squares for multivariate calibration of near-infrared spectroscopy. Chemom. Intell. Lab. Syst. 2016, 158, 174–179. [Google Scholar] [CrossRef]
- Karaca, A.C.; Erturk, A.; Gullu, M.; Elmas, M.; Erturk, S. Plastic waste sorting using infrared hyperspectral imaging system. In Proceedings of the 2013 21st Signal Processing and Communications Applications Conference (SIU 2013), Haspolat, Turkey, 24–26 April 2013; pp. 1–4. [Google Scholar]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag. 2011, 31, 2217–2227. [Google Scholar]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. The utilization of hyperspectral imaging for impurities detection in secondary plastics. Open Waste Manag. J. 2010, 3, 56–70. [Google Scholar]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar]
- Sun, D.W. Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Cambridge, MA, USA, 2010. [Google Scholar]
- Gowen, A.; O’Donnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar]
- Boggs, J.L.; Tsegaye, T.; Coleman, T.L.; Reddy, K.; Fahsi, A. Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: A step toward precision agriculture. J. Sustain. Agric. 2003, 22, 5–16. [Google Scholar]
- Xu, P.; Liu, J.; Xue, L.; Zhang, J.; Qiu, B. Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data. Sensors 2017, 17, 1322. [Google Scholar] [CrossRef] [Green Version]
- Berné, O.; Helens, A.; Pilleri, P.; Joblin, C. Non-negative matrix factorization pansharpening of hyperspectral data: An application to mid-infrared astronomy. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Hege, E.K.; O’Connell, D.; Johnson, W.; Basty, S.; Dereniak, E.L. Hyperspectral imaging for astronomy and space surviellance. In Optical Science and Technology, SPIE’s 48th Annual Meeting; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; pp. 380–391. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015; Chapter 8. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. Geosci. Remote Sens. IEEE Trans. 2004, 42, 1778–1790. [Google Scholar]
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. Geosci. Remote Sens. IEEE Trans. 2003, 41, 1378–1387. [Google Scholar]
- Malvern Panalytical. ASD Terraspec: Portable and Handheld Mineral NIR Analyzers. 2020. Available online: https://www.malvernpanalytical.com/en/products/product-range/asd-range/terraspec-range (accessed on 15 November 2020).
- El Sobky, M.A.; Madani, A.A.; Surour, A.A. Spectral characterization of the Batuga granite pluton, South Eastern Desert, Egypt: Influence of lithological and mineralogical variation on ASD Terraspec data. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Zhou, X.; Jara, C.; Bardoux, M.; Plasencia, C. Multi-Scale integrated application of Spectral Geology and Remote Sensing for Mineral Exploration. Proc. Explor. 2017, 17, 899–910. [Google Scholar]
- Specim. Hyperspectral Imaging Cameras and Systems. 2020. Available online: https://www.specim.fi (accessed on 14 November 2020).
- Horstrand, P.; Guerra, R.; Rodríguez, A.; Díaz, M.; López, S.; López, J.F. A UAV Platform Based on a Hyperspectral Sensor for Image Capturing and On-Board Processing. IEEE Access 2019, 7, 66919–66938. [Google Scholar] [CrossRef]
- Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.T.; Jussila, J.; Salo, H.; et al. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection. Sensors 2018, 18, 441. [Google Scholar] [CrossRef] [Green Version]
- Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sens. 2014, 6, 6549–6565. [Google Scholar] [CrossRef] [Green Version]
- Kuula, J.; Pölönen, I.; Puupponen, H.H.; Selander, T.; Reinikainen, T.; Kalenius, T.; Saari, H. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details. In Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI; Carapezza, E.M., Ed.; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8359, pp. 83590P-1–83590P-11. [Google Scholar] [CrossRef]
- Angel, Y.; Turner, D.; Parkes, S.; Malbeteau, Y.; Lucieer, A.; McCabe, M.F. Automated Georectification and Mosaicking of UAV-Based Hyperspectral Imagery from Push-Broom Sensors. Remote Sens. 2019, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I. Pushbroom hyperspectral imaging from an unmanned aircraft system (UAS)—Geometric processing workflow and accuracy assessment. ISPRS Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Xue, L. Application of IDL and ENVI Redevelopment in Hyperspectral Image Preprocessing. In Computer and Computing Technologies in Agriculture IV; Li, D., Liu, Y., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 403–409. [Google Scholar]
- Neal, L.C.; Wilkinson, J.J.; Mason, P.J.; Chang, Z. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. J. Geochem. Explor. 2018, 184, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Percival, J.B.; Bosman, S.A.; Potter, E.G.; Peter, J.M.; Laudadio, A.B.; Abraham, A.C.; Shiley, D.A.; Sherry, C. Customized spectral libraries for effective mineral exploration: Mining national mineral collections. Clays Clay Miner. 2018, 66, 297–314. [Google Scholar] [CrossRef]
- Schneider, S.; Murphy, R.J.; Melkumyan, A. Evaluating the performance of a new classifier—The GP-OAD: A comparison with existing methods for classifying rock type and mineralogy from hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 98, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef] [Green Version]
- Lishchuk, V.; Koch, P.H.; Ghorbani, Y.; Butcher, A.R. Towards integrated geometallurgical approach: Critical review of current practices and future trends. Miner. Eng. 2020, 145, 106072. [Google Scholar] [CrossRef]
- Bergh, L.G.; Yianatos, J.B. The long way toward multivariate predictive control of flotation processes. J. Process Control 2011, 21, 226–234. [Google Scholar] [CrossRef]
- Perez, C.A.; Estévez, P.A.; Vera, P.A.; Castillo, L.E.; Aravena, C.M.; Schulz, D.A.; Medina, L.E. Ore grade estimation by feature selection and voting using boundary detection in digital image analysis. Int. J. Miner. Process. 2011, 101, 28–36. [Google Scholar] [CrossRef]
- Howarth, D.F.; Rowlands, J.C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 1987, 20, 57–85. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Wang, S.; Hou, B. Context-Based Hierarchical Unequal Merging for SAR Image Segmentation. Geosci. Remote Sens. IEEE Trans. 2013, 51, 995–1009. [Google Scholar] [CrossRef]
- Giraud, R.; Berthoumieu, Y. Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Mirmehdi, M. Handbook of Texture Analysis; Imperial College Press: London, UK, 2008. [Google Scholar]
- Haggerty, S.E. The ore minerals and their intergrowths. Geochim. Cosmochim. Acta 1983, 47, 992–993. [Google Scholar] [CrossRef]
- Hunt, G.R.; Vincent, R.K. The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. J. Geophys. Res. 1968, 73, 6039–6046. [Google Scholar] [CrossRef]
- Myers, T.L.; Brauer, C.S.; Su, Y.F.; Blake, T.A.; Tonkyn, R.G.; Ertel, A.B.; Johnson, T.J.; Richardson, R.L. Quantitative reflectance spectra of solid powders as a function of particle size. Appl. Opt. 2015, 54, 4863. [Google Scholar] [CrossRef] [PubMed]
- Le Bras, A.; Erard, S. Reflectance spectra of regolith analogs in the mid-infrared: Effects of grain size. Planet. Space Sci. 2003, 51, 281–294. [Google Scholar] [CrossRef]
- Cooper, B.L.; Salisbury, J.W.; Killen, R.M.; Potter, A.E. Midinfrared spectral features of rocks and their powders. J. Geophys. Res. E Planets 2002, 107. [Google Scholar] [CrossRef]
- Xie, F.; Fan, Y.; Zhou, M. Dimensionality reduction by weighted connections between neighborhoods. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef]
- Nair, P.; Chaudhury, K.N. Fast High-Dimensional Bilateral and Nonlocal Means Filtering. IEEE Trans. Image Process. 2019, 28, 1470–1481. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods—A review. arXiv 2019, arXiv:1904.06554. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Chang, T.; Kuo, C.C. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 1993, 2, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.K.; Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef] [Green Version]
- Lobos, R.; Silva, J.F.; Ortiz, J.M.; Díaz, G.; Egaña, A. Analysis and classification of natural rock textures based on new transform-based features. Math. Geosci. 2016, 48, 835–870. [Google Scholar] [CrossRef]
- Diaz, G.F.; Ortiz, J.M.; Silva, J.F.; Lobos, R.A.; Egana, A.F. Variogram-Based Descriptors for Comparison and Classification of Rock Texture Images. Math. Geosci. 2020, 52, 451–476. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Do, M.N.; Vetterli, M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 2002, 11, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, M.K.; Aazhang, B. Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 1989, 86, 1404–1415. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Szolgay, D.; Szirányi, T. Adaptive image decomposition into cartoon and texture parts optimized by the orthogonality criterion. IEEE Trans. Image Process. 2012, 21, 3405–3415. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Labate, D.; Easley, G.R.; Krim, H. A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 2009, 18, 929–941. [Google Scholar]
- Kutyniok, G.; Labate, D. Shearlets: Multiscale Analysis for Multivariate Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 497. [Google Scholar]
- Ziegel, E.R.; Deutsch, C.; Journel, A. GSLIB: Geostatistical Software Library and User’s Guide. Technometrics 1995, 37, 126. [Google Scholar] [CrossRef]
- Egaña, A.F.; Ortiz, J.M. Image Segmentation for Mineral Identification in an Oxide Copper Deposit abstract. In Proceedings of the 4th International Conference on Mining Innovation, MININ 2010, Santiago, Chile, 23–25 June 2010; pp. 405–412. [Google Scholar]
- Delon, J.; Desolneux, A.; Lisani, J.L.; Petro, A.B. Color image segmentation using acceptable histogram segmentation. Lect. Notes Comput. Sci. 2005, 3523, 239–246. [Google Scholar] [CrossRef]
- Delon, J.; Desolneux, A.; Lisani, J.L.; Petro, A.B. A Nonparametric Approach for Histogram Segmentation. IEEE Trans. Image Process. 2007, 16, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Broomhead, D.S.; Kirby, M. A New Approach to Dimensionality Reduction: Theory and Algorithms. SIAM J. Appl. Math. 2000, 60, 2114–2142. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Xie, Q.; Peng, S.; Tang, L.; Hu, Y.; Tan, J.; Zhao, Y.; Li, C. Dual stacked partial least squares for analysis of near-infrared spectra. Anal. Chim. Acta 2013, 792, 19–27. [Google Scholar] [CrossRef]
- Boulesteix, A.L. PLS Dimension Reduction for Classification with Microarray Data. Stat. Appl. Genet. Mol. Biol. 2004, 3, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals. IEEE Access 2018, 6, 25399–25410. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [Google Scholar] [CrossRef]
- San Martin, G.; López Droguett, E.; Meruane, V.; das Chagas Moura, M. Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis. Struct. Health Monit. 2019, 18, 1092–1128. [Google Scholar] [CrossRef]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Orthonormal Bases of Compactly Supported Wavelets II. Variations on a Theme. SIAM J. Math. Anal. 1993, 24, 499–519. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Deng, Y.; He, K.; Hopcroft, J.E. Adaptive Wavelet Clustering for Highly Noisy Data. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–12 April 2019; pp. 328–337. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Adam, B.L.; Thornquist, M.; Potter, J.D.; Thompson, M.L.; Yasui, Y.; Davis, J.; Schellhammer, P.F.; Cazares, L.; Clements, M.A.; et al. Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics 2003, 59, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Bruce, L.M.; Koger, C.H.; Jiang, L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [Google Scholar] [CrossRef]
- Wickmann, J. A Wavelet Approach to Dimension Reduction and Classification Of Hyperspectral Data. Master’s Thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway, 2007; pp. 1–167. [Google Scholar]
- Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. WIREs Data Min. Knowl. Discov. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Murty, M.N.; Flynn, P.J.; Jain, A.K. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 43. [Google Scholar]
- Hai, M.; Zhang, Y.; Li, H. A Performance Comparison of Big Data Processing Platform Based on Parallel Clustering Algorithms. Procedia Comput. Sci. 2018, 139, 127–135. [Google Scholar] [CrossRef]
- Rezaei, M. Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering. J. Classif. 2020, 37, 352–365. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J. Superpixel segmentation using Linear Spectral Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1356–1363. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Huang, B. Linear Spectral Clustering Superpixel. IEEE Trans. Image Process. 2017, 26, 3317–3330. [Google Scholar] [CrossRef]
- Swarndepp, S.J.; Pandya, S. An Overview of Partitioning Algorithms in Clustering Techniques. Int. J. Adv. Res. Comput. Technol. (IJARCET) 2016, 5, 1943–1946. [Google Scholar]
- Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J. Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. Geosci. Remote Sens. IEEE Trans. 2009, 47, 2973–2987. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2010, 40, 1267–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taskesen, B.; Koz, A.; Alatan, A.; Weatherbee, O. Change Detection for Hyperspectral Images Using Extended Mutual Information and Oversegmentation. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, H.; Peng, X.; Xiao, X.; Liu, Y. BSLIC: SLIC Superpixels Based on Boundary Term. Symmetry 2017, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Stutz, D. Superpixel Segmentation: An Evaluation. Lect. Notes Comput. Sci. (Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2015, 9358, 555–562. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. Pattern Anal. Mach. Intell. IEEE Trans. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Tilton, J.; Pasolli, E. Incorporating edge information into best merge region-growing segmentation. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 4891–4894. [Google Scholar] [CrossRef]
- Rodriguez, M.; Comin, C.; Casanova, D.; Bruno, O.; Amancio, D.; da Costa, L.; Rodrigues, F. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef]
- Bicego, M.; Cristani, M.; Fusiello, A.; Murino, V. Watershed-based unsupervised clustering. Lect. Notes Comput. Sci. (Lect. Artif. Intell. Lect. Notes Bioinform.) 2003, 2683, 83–94. [Google Scholar] [CrossRef]
- Theiler, J.P.; Gisler, G. Contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation. In Optical Science, Engineering and Instrumentation’97; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; pp. 108–118. [Google Scholar]
- Tsapanos, N.; Tefas, A.; Nikolaidis, N.; Pitas, I. Kernel matrix trimming for improved Kernel K-means clustering. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 2285–2289. [Google Scholar]
- Haroske, D.D.; Skandera, P.; Triebel, H. An Approach to Wavelet Isomorphisms of Function Spaces via Atomic Representations. J. Fourier Anal. Appl. 2018, 24, 830–871. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S. Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies. Earth-Sci. Rev. 2019, 198, 102952. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.; Gorelick, N.S. Automatic Continuum Analysis of Reflectance Spectra. In Proceedings of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop (JPL), Pasadena, CA, USA, 15 June 1985; NASA JPL Publication: La Cañada Flintridge, CA, USA, 1987; pp. 138–142. [Google Scholar]
- Kruse, F.A.; Raines, G.L.; Watson, K. Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and imaging spectrometer data. In Proceedings of the International Symposium on Remote Sensing of Environment, Fourth Thematic Conference: Remote Sensing for Exploration Geology, San Francisco, CA, USA, 1–4 April 1986; pp. 309–324. [Google Scholar]
- Green, A.A.; Craig, M.D. Analysis of aircraft spectrometer data with logarithmic residuals. In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, USA, 8–10 April 1985; pp. 111–119. [Google Scholar]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G.; Chamberland, M. Comparison assessment of low rank sparse-PCA based-clustering/classification for automatic mineral identification in long wave infrared hyperspectral imagery. Infrared Phys. Technol. 2018, 93, 103–111. [Google Scholar] [CrossRef]
- Pisapia, C.; Jamme, F.; Duponchel, L.; Ménez, B. Tracking hidden organic carbon in rocks using chemometrics and hyperspectral imaging. Sci. Rep. 2018, 8, 2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekanayake, E.; Vithana, S.; Ekanayake, E.; Rathnayake, A.; Abeysekara, A.; Oorloff, T.; Herath, H.; Godaliyadda, G.; Ekanayake, M.; Senaratne, A. Mapping ilmenite deposit in Pulmudai, Sri Lanka using a hyperspectral imaging-based surface mineral mapping method. J. Natl. Sci. Found. Sri Lanka 2019, 47, 271. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, B.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G. Assessing the reliability of an automated system for mineral identification using LWIR Hyperspectral Infrared imagery. Miner. Eng. 2020, 155, 106409. [Google Scholar] [CrossRef]
- Johnstone, I.M.; Titterington, D.M. Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. A Math. Eng. Sci. 2009, 367, 4237–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Li, R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; European Mathematical Society Publishing House: Zuerich, Switzerland, 2006; Volume 3, pp. 595–622. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Ma, W.; Gong, C.; Hu, Y.; Meng, P.; Xu, F. The Hughes phenomenon in hyperspectral classification based on the ground spectrum of grasslands in the region around Qinghai Lake. In International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Applications; Zhang, L., Yang, J., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; Volume 8910. [Google Scholar] [CrossRef]
- Wang, J.; Chang, C.-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1586–1600. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Hill, B.; Roger, T.; Vorhagen, F.W. Comparative Analysis of the Quantization of Color Spaces on the Basis of the CIELAB Color-Difference Formula. ACM Trans. Graph. 1997, 16, 109–154. [Google Scholar] [CrossRef]
- Apsemidis, A.; Psarakis, S.; Moguerza, J.M. A review of machine learning kernel methods in statistical process monitoring. Comput. Ind. Eng. 2020, 142, 106376. [Google Scholar] [CrossRef]
- Pillonetto, G.; Dinuzzo, F.; Chen, T.; De Nicolao, G.; Ljung, L. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica 2014, 50, 657–682. [Google Scholar] [CrossRef] [Green Version]
- Schölkopf, B. The Kernel Trick for Distances. In Advances in Neural Information Processing Systems 13; Leen, T.K., Dietterich, T.G., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2001; pp. 301–307. [Google Scholar]
- Martín-Merino, M.; Muñoz, A. Extending the SOM algorithm to non-Euclidean distances via the kernel trick. Lect. Notes Comput. Sci. (Lect. Artif. Intell. Lect. Notes Bioinform.) 2004, 3316, 150–157. [Google Scholar] [CrossRef]
- Badshah, N.; Ahmad, A.; Rehman, F. Variational level set image segmentation model coupled with kernel distance function. J. Algorithms Comput. Technol. 2020, 14. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Newton—Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 1988, 83, 1014–1022. [Google Scholar] [CrossRef]
- Bates, D.M.; DebRoy, S. Linear mixed models and penalized least squares. J. Multivar. Anal. 2004, 91, 1–17. [Google Scholar] [CrossRef]
- Molenberghs, G.; Renard, D.; Verbeke, G. A review of generalized linear mixed models. J. La Soc. Française Stat. 2002, 143, 53–78. [Google Scholar]
- Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The Design of SimpleITK. Front. Neuroinform. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
Sample ID | RECCU | RECMO | PH | CONSCAL | WI |
---|---|---|---|---|---|
(%) | (%) | (-) | (Kg/ton) | (-) | |
Sample 001 | 85.50 | 63.50 | 7.70 | 0.12 | 14.50 |
Sample 002 | 86.6 | 43.80 | 8.70 | 0.16 | 16.00 |
Sample 137 | 90.6 | 63.3 | 7.10 | 0.26 | 13.00 |
Model Regression | RECCU | RECMO | PH | CONSCAL | WI | |
---|---|---|---|---|---|---|
Dynamic Range | 24.799 | 85.500 | 4.799 | 0.800 | 10.600 | |
Scenario 1: Naive individual Spectra based classification | MAE | 4.568 | 18.639 | 0.810 | 0.095 | 1.594 |
RMSE | 5.192 | 23.387 | 1.061 | 0.125 | 2.077 | |
Scenario 2: Proposed Approach with k-means clustering and no dim. reduction | MAE | 1.540 | 10.224 | 0.533 | 0.071 | 1.385 |
RMSE | 1.861 | 12.845 | 0.751 | 0.079 | 1.408 | |
Scenario 3: Proposed Approach with HySSIC Clustering and no dim. reduction | MAE | 1.461 | 8.671 | 0.351 | 0.069 | 0.957 |
RMSE | 1.651 | 9.749 | 0.378 | 0.075 | 0.991 | |
Scenario 4: Proposed Approach with HySSIC Clustering and dim. reduction | MAE | 0.621 | 2.398 | 0.153 | 0.066 | 0.350 |
RMSE | 0.853 | 3.400 | 0.189 | 0.071 | 0.441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egaña, Á.F.; Santibáñez-Leal, F.A.; Vidal, C.; Díaz, G.; Liberman, S.; Ehrenfeld, A. A Robust Stochastic Approach to Mineral Hyperspectral Analysis for Geometallurgy. Minerals 2020, 10, 1139. https://doi.org/10.3390/min10121139
Egaña ÁF, Santibáñez-Leal FA, Vidal C, Díaz G, Liberman S, Ehrenfeld A. A Robust Stochastic Approach to Mineral Hyperspectral Analysis for Geometallurgy. Minerals. 2020; 10(12):1139. https://doi.org/10.3390/min10121139
Chicago/Turabian StyleEgaña, Álvaro F., Felipe A. Santibáñez-Leal, Christian Vidal, Gonzalo Díaz, Sergio Liberman, and Alejandro Ehrenfeld. 2020. "A Robust Stochastic Approach to Mineral Hyperspectral Analysis for Geometallurgy" Minerals 10, no. 12: 1139. https://doi.org/10.3390/min10121139
APA StyleEgaña, Á. F., Santibáñez-Leal, F. A., Vidal, C., Díaz, G., Liberman, S., & Ehrenfeld, A. (2020). A Robust Stochastic Approach to Mineral Hyperspectral Analysis for Geometallurgy. Minerals, 10(12), 1139. https://doi.org/10.3390/min10121139