Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia)
Abstract
:1. Introduction
2. Geological Setting and Description of Agates
2.1. Geological Setting
2.2. Description of Agates
3. Materials and Methods
4. Results
4.1. Macro- and Microscopic Observations
4.2. Raman Spectroscopy Results
4.3. Scanning Electron Microscopy and Electron Microprobe Analysis Results
4.4. Results of The Fluid Inclusions Study
4.5. XRD Results
5. Discussion
6. Conclusions
- (1)
- Copper mineralization in agates from the Avacha Bay (Eastern Kamchatka, Russia) is represented by native copper, as well as copper sulphides (chalcocite, djurleite, digenite, anilite, yarrowite, rarely chalcopyrite) and cuprite. In addition to copper minerals, sphalerite and native silver are also found in agates from this location.
- (2)
- Raman spectroscopy and XRD results demonstrated that the Avacha Bay agates contained cristobalite in addition to quartz and moganite. The substance of “moss” formations is represented by an aggregate of cristobalite and fluorophlogopite KMg3(Si3Al)O10F2.
- (3)
- The native copper crystallized simultaneously with early silica. Copper sulphides, sphalerite, native silver, cuprite, and barite were deposited later apparently with the participation of low temperature hydrotherms with H2S, which were replaced by sulphate solutions caused by a change in redox change in hypergenic conditions.
- (4)
- Macrocrystalline quartz in the center of agate nodules could be formed at a temperature from 110 to 50°C and below. The main salt components of the fluid inclusions in macrocrystalline quartz were CaCl2 and NaCl with a probable admixture of MgCl2. The salt concentration of solutions is lower than 0.3 wt.% NaCl equivalent.
- (5)
- The surrounding basalts could be the source of copper for agates of the Avacha Bay. The presence of copper minerals and other ore elements in agates of volcanogenic strata of Eastern Kamchatka can serve as a direct indicator of the high ore potential in this territory.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripp, R.B. The mineralogy of Warsaw Formation geodes. Iowa Acad. Sci. Proc. 1959, 66, 350–356. [Google Scholar]
- Barsanov, G.P.; Yakovleva, M.E. Mineralogy, macro- and micromorphological features of agates. New Data Miner. 1982, 30, 3–26. (In Russian) [Google Scholar]
- Godovikov, A.A.; Ripinen, O.I.; Motorin, S.G. Agates; Nedra: Moscow, Russia, 1987; p. 368. (In Russian) [Google Scholar]
- Goncharov, V.I.; Gorodinsky, M.E.; Pavlov, G.F.; Savva, N.E.; Fadeev, A.P.; Vartanov, V.V.; Gunchenko, E.V. Chalcedony of North-East of the USSR; Science: Moscow, Russia, 1987; p. 192. (In Russian) [Google Scholar]
- Heaney, P.J. A proposed mechanism for the growth of chalcedony. Am. Min. 1993, 115, 66–74. [Google Scholar] [CrossRef]
- Graetsch, H. Structural characteristics of opaline and microcrystalline silica minerals. In Silica. Rev. Mineral. 1994, 29, 209–232. [Google Scholar]
- Götze, J.; Tichomirow, M.; Fuchs, H.; Pilot, J.; Sharp, Z.D. Chemistry of agates: A trace element and stable isotope study. Chem. Geol. 2001, 523–541. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Pan, Y. Mineralogy, geochemistry and genesis of agate—A review. Minerals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Moxon, T.; Ríos, S. Moganite and water content as a function of age in agate: An XRD and thermogravimetric study. Eur. J. Mineral 2004, 16, 269–278. [Google Scholar] [CrossRef]
- Moxon, T. Studies on Agate: Microscopy, Spectroscopy, Growth, High Temperature and Possible Origin; Terra Publications: Doncaster, UK, 2009; p. 96. [Google Scholar]
- Lyashenko, E.A. Agates of Russia. Mineral. Alm. 2010, 15, 6–27. (In Russian) [Google Scholar]
- Spiridonov, E.M.; Ladygin, V.M.; Yanakieva, D.Y.; Frolova, J.V.; Semikolennykh, E.S. Agates in metavolcanics. Bulletin of the Russian Federal Property Fund. 2014. Available online: https://www.rfbr.ru/rffi/ru/bulletin/o_1923809#8 (accessed on 22 October 2020).
- Ottens, B.; Götze, J.; Schuster, R.; Krenn, K.; Hauzenberger, C.; Zsolt, B.; Vennemann, T. Exceptional multi-stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals 2019, 1019, 351. [Google Scholar] [CrossRef] [Green Version]
- Gliozzo, E. Variations on the silica theme: Classification and provenance from Pliny to current supplies. EMU Notes Mineral. 2019, 2, 13–85. [Google Scholar]
- Pršek, J.; Dumańska-Słowik, M.; Powolny, T.; Natkaniec-Nowak, L.; Toboła, T.; Zych, D.; Skrepnicka, D. Agates from Western Atlas (Morocco)—Constraints from mineralogical and microtextural characteristics. Minerals 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Moxon, T. A re-examination of water in agate and its bearing on the agate genesis enigma. Min. Mag. 2017, 81, 1223–1244. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; He, X. Gemological characteristics and origin of the Zhanguohong agate from Beipiao, Liaoning province, China: A combined microscopic, X-ray diffraction, and Raman spectroscopic study. Minerals 2020, 10, 401. [Google Scholar] [CrossRef]
- Yusupov, S.S. Thermobarogeochemical Conditions for the Formation of Agate Deposits in the Urals and Kazakhstan. In Questions of Mineralogy, Geochemistry and Genesis of Minerals of the Southern Urals; Bashk. Prince Publishing House: Ufa, Russia, 1982; pp. 92–99. [Google Scholar]
- Rosemeyer, T. The Kearsarge copper-bearing amygdaloidal lode, Houghton and Keweenaw countries, Michigan. Rocks Miner. 2007, 82, 276–297. [Google Scholar] [CrossRef]
- Rosemeyer, T. A spectacular find of amygdaloidal agates with native copper inclusions from Michigan’s Copper Country. Rocks Miner. 2001, 76, 403. [Google Scholar] [CrossRef]
- Rosemeyer, T. Copper-banded Agates from the Kearsarge Copper-bearing Amygdaloidal Lode, Houghton County, Michigan. Rocks Miner. 2012, 87, 352–365. [Google Scholar] [CrossRef]
- Radko, V.A. Agates, Carnelian, Jasperoids of Norilsk; GeoKniga: St. Petersburg, Russia, 2013; p. 128. [Google Scholar]
- Dumańska-Słowik, M.; Natkaniec-Nowak, L.; Kotarba, M.J.; Sikorska, M.; Rzymełka, J.A.; Łoboda, A.; Gaweł, A. Mineralogical and geochemical characterization of the ‘‘bituminous’’ agates from Nowy Kościol Lower Silesia. N. Jb. Miner Mh. 2008, 184, 255–268. [Google Scholar] [CrossRef]
- Nezafati, N.; Momenzadeh, M.; Pernicka, E. Darhand Copper Occurrence: An Example of Michigan-Type Native Copper Deposits in Central Iran. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; Volume 1, pp. 165–166. [Google Scholar]
- Krawczyński, W. Native copper in agates from Rudno near Krzeszowice. Mineral. Pol. 1995, 26, 27–32. [Google Scholar]
- Dumańska-Słowik, M.; Natkaniec-Nowak, L.; Weselucha-Birczyńska, A.; Gaweł, A.; Lankosz, M.; Wróbel, P. Agates from Sidi Rahal, in the Atlas Mountains of Morocco: Gemmological characteristics and proposed origin. Gems Gemol. 2013, 49, 148–159. [Google Scholar] [CrossRef]
- Natkaniec-Nowak, L.; Dumańska-Słowik, M.; Pršek, J.; Lankosz, M.; Wróbel, P.; Gaweł, A.; Kowalczyk, J.; Kocemba, J. Agates from Kerrouchen (the Atlas Mountains, Morocco): Textural types and their gemological characteristics. Minerals 2016, 6, 77. [Google Scholar] [CrossRef]
- Powolny, T.; Dumańska-Słowik, M.; Sikorska-Jaworowska, M.; Wójcik-Bania, M. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland)—Microtextural, mineralogical, and geochemical constraints. Ore Geol. Rev. 2019, 114, 103–130. [Google Scholar] [CrossRef]
- Sidorov, E.G.; Kutyev, F.T.; Anikin, P.P. Native Copper Agates of the Kuril-Kamchatka Province. In Native Metals in Postmagmatic Formations; Yakutsk Publishing House: Yakutsk, Russia, 1985; pp. 72–73. (In Russian) [Google Scholar]
- Sheymovich, V.S. The State Geological Map of the Russian Federation, Scale 1:200,000; South-Kamchatka Series. Sheets N_57_XXI (Northern Koryaks), N_57_XXVII (Petropavlovsk-Kamchatsky), N_57_XXXIII (Mutnovskaya hill); Explanatory Note: Moscow, Russia, 2000; p. 302. (In Russian) [Google Scholar]
- Savelyev, D.P.; Palechek, T.N.; Portnyagin, M.V. Campanian oceanic siliceous-volcanogenic deposits in the basement of the Eastern Kamchatka volcanic belt. Pac. Geol. 2005, 24, 46–54. (In Russian) [Google Scholar]
- Frolova, Y.V.; Blyumkina, M.E.; Bolshakov, I.E.; Ermolinsky, A.B. Comparative Petrophysical Characteristics of Volcanic Rocks of the Cretaceous and Miocene Age of Avacha Bay. Volcanism and Related Processes; Materials of the XXIII Annual Scientific Conference Dedicated to the Volcanologist’s Day; IViS: Petropavlovsk-Kamchatsky, Russia, 2020; pp. 68–71. [Google Scholar]
- Saveliev, D.P. A scattering of agates at Cape Vertikalny, Eastern Kamchatka. Bull. Kamchatka Reg. Assoc. Educ. Sci. Cent. Ser. Earth Sci. 2020, 47, 3. [Google Scholar] [CrossRef]
- The Powder Diffraction File PDF-4þ; International Centre for Diffraction Data: Newtown Square, PA, USA, 2009.
- Borisenko, A.S. Analysis of the Salt Composition of solutions of gas-liquid inclusions in minerals by cryometry. In The Use of Methods of Thermobarogeochemistry in the Search and Study of Ore Deposits; Laverova, N.P., Ed.; Nedra: Moscow, Russia, 1982; pp. 37–47. (In Russian) [Google Scholar]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 79–108. [Google Scholar]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl–H2O fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Polytechnic Inst State Univ: Blacksburg, VA, USA, 1994; pp. 117–131. [Google Scholar]
- Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland; classification, origin, and implication. Econ. Geol. 1995, 90, 1841–1856. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96–105. [Google Scholar] [CrossRef]
- Bodnar, R.J. Interpretation of data from aqueous-electrolyte fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; pp. 81–100. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Short Course: Tulsa, OK, USA, 1994; Volume 31, p. 199. [Google Scholar]
- Hardie, L.A. Origin of CaCl2 brines by basalt-seawater interactions insights provided by some simple mass balance calculations. Contrib. Mineral. Petrol. 1983, 82, 205–213. [Google Scholar] [CrossRef]
- Heaney, P.J.; Post, J.E. The Widespread Distribution of a Noel Silica Polymorph in Microcrystalline Quartz Varieties. Science 1992, 255, 441–443. [Google Scholar] [CrossRef]
- Moxon, T.; Carpenter, M.A. Crystallite growth kinetics in nanocrystalline quartz (agate and chalcedony). Miner. Mag. 2009, 73, 551–568. [Google Scholar] [CrossRef]
- Barton, P.B., Jr.; Skinner, R.J. Sulphide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 278–403. [Google Scholar]
- Cornwall, H.R. A summary of ideas on the origin of native copper deposits. Econ. Geol. 1956, 51, 615–631. [Google Scholar] [CrossRef]
- Moxon, T.; Palyanova, G. Agate genesis: A continuing enigma. Minerals 2020, 10, 953. [Google Scholar] [CrossRef]
- Gilg, H.A.; Morteani, G.; Kostitsyn, Y.; Preinfalk, C.; Gatter, I.; Strieder, A.J. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): A fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner. Depos. 2003, 38, 1009–1025. [Google Scholar] [CrossRef]
- Stoiber, R.E.; Davison, E.S. Amygdule mineral zoning in the Portage Lake lava series, Michigan copper district. Econ. Geol. 1959, 54, 1444–1460. [Google Scholar] [CrossRef]
- Bornhorst, T.J. Tectonic context of native copper deposits of the North American Midcontinent rift system. Geol. Soc. Am. Spec. Pap. 1997, 312, 127–136. [Google Scholar]
- Brown, A.C. Genesis of native copper lodes in the Keweenaw district, northern Michigan: A hybrid evolved meteoric and metamorphic model. Econ. Geol. 2006, 101, 1437–1444. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Savchuk, Y.S.; Volkov, A.V.; Aristov, V.V. Cupriferous basalts of the Northern Urals. Litosfera 2017, 17, 133–144. [Google Scholar]
No | O | Si | S | Fe | Cu | Total | Formula | Mineral |
---|---|---|---|---|---|---|---|---|
5/1-1 | 1.01 | - | 31.35 | 0.19 | 67.48 | 100.03 | Cu1.1S | yarrowite |
5/1-2 | 1.19 | 0.43 | 31.48 | - | 66.19 | 99.3 | Cu1.1S | yarrowite |
5/1-3 | 2.28 | 0.29 | 21.68 | 0.26 | 74.03 | 98.54 | Cu1.73S | anilite |
5/1-4 | 1.92 | 0.36 | 21.99 | 0.38 | 75.07 | 99.72 | Cu1.73S | anilite |
5/3-1 | 1.5 | 0.49 | 29.93 | 0.59 | 66.32 | 98.83 | Cu1.12S | yarrowite |
5/3-1 | 3.21 | 19.98 | 74.65 | 97.84 | Cu1.89S | djurleite | ||
5/3-2 | 2.79 | 0.37 | 20.18 | 76.04 | 99.54 | Cu1.90S | djurleite | |
4/1 | 20.24 | 79.1 | 99.34 | Cu1.98S | chalcocite-djurleite | |||
4/26 | 20.43 | 78.62 | 99.05 | Cu1.94S | djurleite | |||
4/27 | 20.24 | 78.06 | 98.30 | Cu1.95S | djurleite | |||
7/2-1 | 2.11 | 0.28 | 20.5 | 76.17 | 99.05 | Cu1.88S | djurleite-digenite | |
7/2-2 | 2.72 | 0.64 | 20.7 | 74.83 | 98.89 | Cu1.83S | digenite | |
7/2-3 | 1.18 | 0.28 | 22.18 | 75.09 | 98.73 | Cu1.71S | anilite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palyanova, G.; Sidorov, E.; Borovikov, A.; Seryotkin, Y. Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia). Minerals 2020, 10, 1124. https://doi.org/10.3390/min10121124
Palyanova G, Sidorov E, Borovikov A, Seryotkin Y. Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia). Minerals. 2020; 10(12):1124. https://doi.org/10.3390/min10121124
Chicago/Turabian StylePalyanova, Galina, Evgeny Sidorov, Andrey Borovikov, and Yurii Seryotkin. 2020. "Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia)" Minerals 10, no. 12: 1124. https://doi.org/10.3390/min10121124
APA StylePalyanova, G., Sidorov, E., Borovikov, A., & Seryotkin, Y. (2020). Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia). Minerals, 10(12), 1124. https://doi.org/10.3390/min10121124