The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore
Abstract
:1. Introduction
2. Geology and Petrography of the University Pluton
3. Materials and Methods
4. Results
4.1. The Magnetic Field of the University Pluton Site
4.2. Main Petrographic Varieties of the University Intrusion Site
4.3. Major- and Trace-Element Compositions of Subalkaline and Alkaline rocks
4.4. Nd–Sr Isotope Systematics
5. Discussion
5.1. Magnetic Anomalies of the University Pluton Site and N-S Trending Crosscutting Younger Swarm of Alkaline Dikes
5.2. Petrographic Synthesis of the University Pluton
5.3. Magma Sources for the University Pluton and Crosscutting Dikes
5.4. Genetic Nexus of Alkaline-Basic Intrusions in the Kuznetsk Alatau Terrane
Conditions for the Formation of the University Pluton in the Kuznetsk Alatau Terrane
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheimann, Y.M.; Apeltsin, F.R.; Nechaeva, E.A. Alkaline Intrusions, Their Placement and Associated Mineralization; Gosgeoltekhizdat: Moscow, Russia, 1961; pp. 1–176. (In Russian) [Google Scholar]
- Sheimann, Y.M. Essays on Deep Geology; Nedra: Moscow, Russia, 1968; pp. 1–232. (In Russian) [Google Scholar]
- Yashina, R.M. Alkaline Magmatism in Orogenic Areas (Case of the Southern Periphery of the Siberian Craton); Nauka: Moscow, Russia, 1982; pp. 1–274. (In Russian) [Google Scholar]
- Burke, K.; Dewey, J. Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. J. Geol. 1973, 81, 406–433. [Google Scholar] [CrossRef] [Green Version]
- Pirajno, F. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res. 2015, 1328, 1–36. [Google Scholar] [CrossRef]
- Condie, K.C. Mantle Plumes and Their Record in Earth History; Cambridge University Press: Cambridge, UK, 2001; pp. 1–305. [Google Scholar]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; pp. 1–667. [Google Scholar]
- Vrublevskii, V.V.; Grinev, O.M.; Izokh, A.E.; Travin, A.V. Geochemistry, isotope triad (Nd–Sr–O), and 40Ar–39Ar age of Paleozoic alkaline mafic intrusions of the Kuznetsk Alatau (by the example of the Belaya Gora pluton). Russ. Geol. Geophys. 2016, 57, 592–602. [Google Scholar] [CrossRef]
- Vrublevskii, V.V. Sources and geodynamic setting of petrogenesis of the Middle Cambrian Upper Petropavlovka alkaline basic pluton (Kuznetsk Alatau, Siberia). Russ. Geol. Geophys. 2015, 56, 379–401. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Gertner, I.F.; Tishin, P.A.; Bayanova, T.B. Age range of zircon and sources of alkaline rocks Kurgusul intrusive, Kuznetsk Alatau: First U–Pb (Shrimp 2) Isotope and Sm–Nd Data. Dokl. Earth Sci. 2014, 459, 601–606. (In Russian) [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Krupchatnikov, V.I.; Izokh, A.E.; Gertner, I.F. Alkaline Rocks and Carbonatites of Gorny Altai (Edelweiss complex): Indicator of Early Paleozoic Pluma Magmatism in the Central Asian Folding Belt. Russ. Geol. Geophys. 2012, 53, 945–963. [Google Scholar]
- Vrublevskii, V.V.; Izokh, A.E.; Polyakov, G.V.; Gertner, I.F.; Yudin, D.S.; Krupchatnikov, V.I. Early Paleozoic alkaline magmatism of Gorny Altai: 40Ar-39Ar-Geochronological evidence of the Edelweiss complex. Dokl. Earth Sci. 2009, 427, 96–100. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Ripp, G.S.; Izbrodin, I.A.; Savatenkov, V.M. Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical and isotope (O, C, D, Sr and Nd) data. Lithos 2012, 152, 157–172. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Izbrodin, I.A.; Rampilov, M.O.; Ripp, G.S.; Lastochkin, E.I.; Khubanov, V.B. Permo–Triassic stage of alkaline magmatism in the Vitim plateau (western Transbaikalia). Russ. Geol. Geophys. 2018, 59, 1061–1077. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Morova, A.A.; Bukharova, O.V.; Konovalenko, S.I. Mineralogy and Geochemistry of Triassic Carbonatites in the Matcha Alkaline Intrusive Complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian Orogenic Belt. J. Asian Earth Sci. 2017, 153, 252–281. [Google Scholar] [CrossRef]
- Gordienko, I.V. Relationship between subduction related and plume magmatism at the active boundaries of lithospheric plates in the interaction zone of the Siberian continent and Paleoasian Ocean in the Neoproterozoic and Paleozoic. Geodyn. Tectonophys. 2019, 10, 405–457. (In Russian) [Google Scholar] [CrossRef]
- Gordienko, I.V.; Metelkin, D.V. The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian. Ocean. Russ. Geol. Geophys. 2016, 57, 69–81. [Google Scholar] [CrossRef]
- Makarenko, N.A.; Kotel’nikov, A.D. The Kashpar Cambrian-Ordovik gabbro-diorite-quartzmontsodiorite-syenite Complex-New Petrography Department on the Eastern Slope of the Kuznetsk Alatau. Geosph. Stud. 2018, 2, 52–71. (In Russian) [Google Scholar]
- Doroshkevich, A.G.; Ripp, G.S.; Sergeev, S.A.; Konopel’ko, D.L. The U-Pb geochronology of the Mukhal alkaline massif (Western Transbaikalia). Russ. Geol. Geophys. 2012, 53, 69–81. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Gertner, I.F.; Ernst, R.E.; Izokh, A.E.; Vishnevskii, A.V. The Overmaraat-Gol Alkaline Pluton in Northern Mongolia: U–Pb Age and Preliminary Implications for Magma Sources and Tectonic Setting. Minerals 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Vrublevskii, V.V.; Gertner, I.F.; Gutiérrez-Alonso, G.; Hofmann, M.; Grinev, O.M.; Tishin, P.A. Isotope (U-Pb, Sm–Nd, Rb–Sr) geochronology of alkaline basic plutons of the Kuznetsk Alatau. Russ. Geol. Geophys. 2014, 55, 1264–1277. [Google Scholar] [CrossRef]
- Kuzmin, M.A.; Yarmolyuk, V.V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 2014, 55, 120–143. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kuzmin, M.I.; Vorontsov, A.A. West Pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt. Russ. Geol. Geophys. 2013, 54, 1427–1441. [Google Scholar] [CrossRef]
- Izbrodin, I.; Doroshkevich, A.; Rampilov, M.; Elbaev, A.; Ripp, G. Late Paleozoic alkaline magmatism in Western Transbaikalia, Russia: Implications for magma sources and tectonic settings. Geosci. Front. 2020, 11, 1289–1303. [Google Scholar] [CrossRef]
- Pirajno, F.; Santosh, M. Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore Geol. Rev. 2014, 63, 265–295. [Google Scholar] [CrossRef]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef] [Green Version]
- Vrublevskii, V.V.; Kotel’nikov, A.D.; Izokh, A.E. The age and petrologic and geochemical conditions of formation of the Kogtakh gabbro-monzonite complex in the Kuznetsk Alatau. Russ. Geol. Geophys. 2018, 59, 718–744. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Kotel’nikov, A.D.; Rudnev, S.N.; Krupchatnikov, V.I. Evolution of the Paleozoic granitoid magmatism in the Kuznetsk Alatau: New geochemical and U-Pb (SHRIMP-II) isotope data. Russ. Geol. Geophys. 2016, 57, 225–246. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Koz’min, D.G. Paleomagnetic characteristic of Cambria Batenevskii range: On the question of the evolution of the Kuznetsk-Alatau island arc in the south of Siberia. Russ. Geol. Geophys. 2012, 53, 50–66. (In Russian) [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Veksler, I.V.; Klemd, R.; Khromova, E.A.; Izbrodin, I.A. Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): Implications for the mechanisms of magma evolution and carbonatite formation. Lithos 2017, 284, 91–108. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Gertner, I.F.; Gutiérrez-Alonso, G.; Hofmann, M.; Grinev, O.M.; Mustafaev, A. Multiple intrusion stages and mantle sources of the Paleozoic Kuznetsk Alatau alkaline province, Southern Siberia: Geochemistry and Permian U–Pb, Sm–Nd ages in the Goryachegorsk ijolite-foyaite intrusion. Int. Geol. Rev. 2020. [Google Scholar] [CrossRef]
- Mustafayev, A.A.; Gertner, I.F.; Serov, P.A. Features of geology and composition of rocks from the alkaline-gabbroic University massif (NE Kuznetsk Alatau ridge, Siberia). Earth Envir. Sci. 2017, 319, 1–13. [Google Scholar]
- Mustafaev, A.; Gertner, I. Isotope-geochemical (Sm–Nd, Rb–Sr, REE, HFSE) composition of the University foidolite-gabbro pluton, Kuznetsk Alatau ridge, Siberia. Vestn. St. Petersburg Univer. Earth Sci. 2020, 65, 1–33. (In Russian) [Google Scholar] [CrossRef]
- Sengör, A.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–306. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.V.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.G. Continental growth of North West China. Tectonics 1989, 8, 621–635. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.V. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Res. 2003, 6, 143–159. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. Asian Earth Sci. 2004, 23, 605–627. [Google Scholar] [CrossRef]
- Kröner, A.; Hegner, E.; Lehmann, B.; Heinhorst, J.; Wingate, M.T.D.; Liu, D.Y.; Ermelov, P. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Asian Earth Sci. 2008, 32, 118–130. [Google Scholar] [CrossRef]
- Rytsk, E.Y.; Kovach, V.P.; Yarmolyuk, V.V.; Kovalenko, V.I. Structure and evolution of the continental crust in the Baikal Fold Region. Geotectonic 2007, 41, 440–464. [Google Scholar] [CrossRef]
- Windley, B.F.; Kröner, A.; Guo, J.; Qu, G.; Li, Y.; Zhang, C. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. J. Geol. 2002, 110, 719–739. [Google Scholar] [CrossRef]
- Kröner, A.; Kovach, V.; Belousova, E.; Hegner, E.; Armstrong, R.; Dolgopolova, A.; Sun, M. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 2014, 25, 103–125. [Google Scholar] [CrossRef]
- Vorontsov, A.; Yarmolyuk, V.; Dril, S.; Ernst, R.; Perfilova, O.; Grinev, O.; Komaritsyna, T. Magmatism of the Devonian Altai-Sayan Rift System: Geological and geochemical evidence for diverse plume-lithosphere interactions. Gondwana Res. 2020, 89, 193–219. [Google Scholar] [CrossRef]
- Shokal’skii, S.P.; Babin, G.A.; Vladimirov, A.G.; Borisov, S.M.; Gusev, N.I.; Tokarev, V.N.; Kruk, N.N. Correlation of Igneous and Metamorphic Complexes in the Western Altai–Sayan Folded Area; SO RAN: Novosibirsk, Russia, 2000; pp. 1–188. (In Russian) [Google Scholar]
- Kononova, V.A. Jakupirangite-Urtite Series of Alkaline Rocks; Nauka: Moscow, Russia, 1976; pp. 1–215. (In Russian) [Google Scholar]
- Andreeva, E.D.; Kononova, V.A.; Sveshnikova, E.V.; Yashina, R.M. Alkaline rocks. In Igneous Rocks; Bogatikov, O.A., Kononova, V.A., Borsuk, A.M., Gon’shakova, V.I., Kovalenko, V.I., Laz’ko, E.E., Sharkov, E.V., Eds.; Nauka: Moscow, Russia, 1984; Volume 2, pp. 1–415. (In Russian) [Google Scholar]
- Izokh, A.E.; Vishnevskii, A.V.; Polyakov, G.V.; Shelepaev, R.A. Age of picrite and picrodolerite magmatism in western Mongolia. Russ. Geol. Geophys. 2011, 52, 7–23. [Google Scholar] [CrossRef]
- Ernst, R.E.; Rodygin, S.A.; Grinev, O.M. Age correlation of Large Igneous Provinces with Devonian biotic crises. Glob. Planet. Chang. 2020, 185, 103097. [Google Scholar] [CrossRef]
- Jahn, B.-M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Babin, G.A.; Yuriev, A.A.; Bychkov, A.I. State Geological Map of the Russian Federation. Scale 1:1,000,000 (Third Generation). Sheet N-45 (Novokuznetsk); VSEGEI: Saint Petersburg, Russia, 2007. (In Russian) [Google Scholar]
- Kortusov, M.P. Paleozoic Intrusive Complexes of the Mariinsky Taiga (Kuznetsk Alatau). Tom 1; Izd. Tomsk Univers: Tomsk, Russia, 1967; pp. 1–163. (In Russian) [Google Scholar]
- Alabin, L.V. Structural-Formational and Metallogenic Zoning of the Kuznetsk Alatau; Nauka: Novosibirsk, Russia, 1983; pp. 1–102. (In Russian) [Google Scholar]
- Esin, S.V.; Korchagin, S.A.; Esina, O.A.; Gertner, I.F. Alkaline and subalkaline rocks of the Kuznetsk Alatau. Nepheline Ore-Bearing Rocks of Universitetskii 1 and 2 Sites (Kuznetsk Alatau); Izd. Tomsk Univers: Tomsk, Russia, 1987; pp. 74–82. (In Russian) [Google Scholar]
- Osipov, P.V.; Makarenko, N.A.; Korchagin, S.A.; Gertner, I.F.; Grinev, O.M. New alkaline-gabbroid ore-bearing massif in the Kuznetsk Alatau. Russ. Geol. Geophys. 1989, 11, 79–82. (In Russian) [Google Scholar]
- Korchagin, S.A.; Gertner, I.F. Report on the Search for Naturally Rich and Easily Ore-Rich Nepheline Ores within the Universitetskii 1 and 2, Voskresenka and Bezymyanka Sites Conducted by the Martaiga Expedition in 1983–1987; Martaiga: Novokuznetsk, Russia, 1987. (In Russian) [Google Scholar]
- Karmanova, N.G.; Karmanov, N.S. Universal XRF silicate analysis of rocks using the ARL-9900XP spectrometer. In All-Russian Conference on X-ray Spectral Analysis No. 7; IGM SB RAS: Novosibirsk, Russia, 2011; 126p. (In Russian) [Google Scholar]
- Anoshkina, Y.V.; Asochakova, E.M.; Bukharova, O.V.; Tishin, P.A. Improvement of schemes for chemical sample preparation of carbonaceous rocks with subsequent analysis of high-charge elements by inductively coupled plasma mass spectrometry. Bull. TSU 2012, 359, 178–181. (In Russian) [Google Scholar]
- Serov, P.A.; Ekimova, N.A.; Bayanova, T.B.; Mitrofanov, F.P. Sulfide minerals—New geochronometers during Sm-Nd dating of ore genesis of stratified mafic-ultramafic intrusions of the Baltic Shield. Lithosphere 2014, 4, 11–21. (In Russian) [Google Scholar]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Kunimaru, T. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Raczek, I.; Jochum, K.P.; Hofmann, A.W. Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostand. Geoanal. Res. 2003, 27, 173–179. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology; John Wiley & Sons: New York, NY, USA, 1986; pp. 132–155. [Google Scholar]
- York, D. Least squares fitting of straight line. Canad. J. Phys. 1966, 44, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, K.R. User’s Manual for Isoplot/Ex, Version 2.10. In A Geochronological Toolkit for Microsoft Excel; Berkley Geochronology Center Special Publication: Berkeley, CA, USA, 1999; Volume 1, pp. 1–46. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–244. [Google Scholar] [CrossRef]
- Le Maitre, M.J.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Lameyre, J. Igneous Rocks; Cambridge University Press: Cambridge, UK, 2002; pp. 21–29. [Google Scholar]
- Sun, S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for mantle Composition and Processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Kelemen, P.B.; Hanghøj, K.; Greene, A.R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In Treatise on Geochemistry; Holland, Y.D., Turekian, K.K., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; Volume 3, pp. 593–659. [Google Scholar]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Mustafayev, A.A.; Gertner, I.F.; Serov, P.A. New Sm-Nd isotopic data on the University alkaline-gabbro massif (NE Kuznetsk Alatau). In LIP through Earth History: Mantle Plumes, Supercontinents, Climate Change, Metallogeny and Oil-Gas, Planetary Analogues; Tomsk CNTI: Tomsk, Russia, 2019; pp. 90–92. [Google Scholar]
- Makarenko, N.A.; Osipov, P.V.; Grinev, O.M.; Nomokonova, G.G.; Rihvanov, L.P. Geological and Geophysical Features of the Ore-Bearing Alkaline-Gabbro Massifs of the Mariinsky Taiga and the Criteria for the Control. of Nepheline Mineralization; VINITI: Lubercy, Russia, 1988; pp. 1–180. (In Russian) [Google Scholar]
- Pokrovsky, B.G. Crustal Contamination of Mantle Magmas According to Isotope Geochemistry; Nauka: Moscow, Russia, 2000; pp. 1–223. (In Russian) [Google Scholar]
- Vrublevskii, V.V.; Gertner, I.F.; Vladimirov, A.G.; Rudnev, S.N.; Borisov, S.M.; Levchenkov, O.A.; Voitenko, D.N. Geochronological boundaries and geodynamic interpretation of the alkaline mafic magmatism in Kuznetsk Alatau. Dokl. Earth Sci. 2004, 398, 990–994. (In Russian) [Google Scholar]
- Pokrovskii, B.G.; Andreeva, E.D.; Vrublevskii, V.V.; Grinev, O.M. Contamination mechanisms of alkaline-gabbro intrusions in the southern periphery of the Siberian craton: Evidence from strontium and oxygen isotopic compositions. Petrologiya 1998, 6, 237–251. (In Russian) [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Sal’nikova, E.B. Geodynamics of caledonides in the Central Asian foldbelt. Dokl. Earth Sci. 2003, 389A, 311–316. (In Russian) [Google Scholar]
- Izokh, A.E.; Polyakov, G.V.; Shelepaev, R.A.; Vrublevskii, V.V.; Egorova, V.V.; Rudnev, S.N.; Lavrenchuk, A.V.; Borodina, E.V.; Oyunchimeg, T. Early Paleozoic Large Igneous Province of the Central Asia Mobile Belt. 2008. Available online: http://www.largeigneousprovinces.org/08may (accessed on 13 December 2020).
- Cole, R.B.; Stewart, B.W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics 2009, 464, 118–136. [Google Scholar] [CrossRef]
- Gorton, M.P.; Schandl, E.S. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can. Miner. 2000, 38, 1065–1073. [Google Scholar] [CrossRef]
- Tomlinson, K.Y.; Condie, K.C. Archean mantle plumes: Evidence from greenstone belt geochemistry. Spec. Pap. Geol. Soc. Am. 2001, 352, 341–358. [Google Scholar]
- Ernst, R.E.; Buchan, K.L. Recognizing Mantle Plumes in the Geological Record. Ann. Rev. Earth Planet. Sci. 2003, 31, 469–523. [Google Scholar] [CrossRef] [Green Version]
- Condie, K.C. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 2005, 79, 491–504. [Google Scholar] [CrossRef]
- Thièblemont, D.; Chèvremont, P.; Castaing, C.; Triboulet, C.; Feybesse, J.L. The geotectonic discrimination of basic magmatic rocks from trace elements. Re-appraisal from a data base and application to the Pan-African belt of Togo. Geodyn. Acta 1994, 7, 139–157. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Pease, V.L. Siberian trap magmatism on the New Siberian Islands: Constraints for Arctic Mesozoic plate tectonic reconstructions. J. Geol. Soc. 2007, 164, 959–968. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust; Holland, Y.D., Turekian, K.K., Eds.; Treatise on Geochemistry; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Weaver, B.L. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Stracke, A.; Bizimis, M.; Salters, V.J.M. Recycling oceanic crust: Quantitative constraints. Geochem. Geophys. Geosyst. 2003, 4, 1–33. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Allen, M.; Han, C.M. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
Sample, Rock | Sm, ppm | Nd, ppm | 147Sm/144Nd | 143Nd/144Nd ± 2σ | (143Nd/144Nd)T | εNd(T) |
C-41/87.0(WR), LG | 1.769 | 7.462 | 0.143307 | 0.512907 ± 12 | 0.512355 | +8.7 |
Pl | 0.588 | 3.44 | 0.1033 | 0.512797 ± 9 | ||
Ol | 3.95 | 11.02 | 0.2165 | 0.513160 ± 12 | ||
Px | 2.43 | 7.99 | 0.1841 | 0.513041 ± 25 | ||
C-36/147.0(WR), MG | 3.418 | 15.266 | 0.135334 | 0.512808 ± 9 | 0.512358 | +7.3 |
Pl | 1.531 | 9.458 | 0.0978 | 0.512709 ± 16 | ||
Ol | 4.49 | 13.23 | 0.2050 | 0.513051 ± 10 | ||
Px | 4.18 | 15.02 | 0.1682 | 0.512922 ± 8 | ||
AC-7/1(WR), AS | 6.614 | 20.709 | 0.153049 | 0.512221 ± 9 | 0.512271 | +4.0 |
УH-1(WR), U | 3.981 | 22.298 | 0.107919 | 0.512693 ± 7 | 0.512273 | +3.5 |
8a(WR), LT | 2.906 | 16.428 | 0.106922 | 0.512667 ± 19 | 0.512223 | +4.9 |
6a(WR), I | 6.61 | 20.7 | 0.1530 | 0.512692 ± 12 | 0.512236 | +3.2 |
Px | 8.38 | 29.9 | 0.1693 | 0.512745 ± 5 | ||
Ne | 0.689 | 4.11 | 0.1015 | 0.512569 ± 25 | ||
7a(WR), AS | 3.98 | 22.3 | 0.1079 | 0.512694 ± 13 | 0.512291 | +5.8 |
Pl | 0.469 | 3.2 | 0.0887 | 0.512621 ± 12 | ||
Amp | 12.91 | 50.8 | 0.1536 | 0.512794 ± 11 | ||
Anl | 0.93 | 5.59 | 0.1006 | 0.512664 ± 8 | ||
Sample, Rock | Rb ppm | Sr ppm | 87Rb/86Sr | 87Sr/86Sr ± 2σ | (87Sr/86Sr)T | εSr(T) |
C-41/87.0(WR), LG | 13.75 | 744.94 | 0.052077 | 0.70520 ± 20 | 0.704834 | +12.93 |
C-36/147.0(WR), MG | 19.33 | 582.49 | 0.093628 | 0.70620 ± 23 | 0.705541 | +22.99 |
AC-7/1(WR), AC | 47.49 | 1261.1 | 0.106247 | 0.70615 ± 22 | 0.705556 | +21.48 |
УH-1(WR), U | 54.1 | 1414.8 | 0.107886 | 0.70664 ± 19 | 0.706037 | +28.31 |
8a(WR), LT | 44.3 | 963.86 | 0.129674 | 0.70649 ± 20 | 0.705766 | +24.44 |
6a(WR), I | 23.46 | 1023.7 | 0.064658 | 0.70633 ± 21 | 0.705969 | +27.34 |
7a(WR), AS | 36.42 | 2542.9 | 0.040409 | 0.70574 ± 16 | 0.705514 | +20.87 |
Intrusion | Rock Type (Mineral) | Age, Ma | Dating Method | Reference |
---|---|---|---|---|
Upper Petropavlovka | Carbonatite, foidolite; Theralite | 509 ± 10 502 ± 46 | 147Sm/144Nd 87Rb/86Sr | [9] |
University | Subalkaline leucogabbro, Subalkaline melanogabbro | 494 ± 36 491 ± 36 | 147Sm/144Nd | [32] |
N-S dike swarm crosscutting University pluton | Plagioclase ijolite, Analcime syenite | 394 ± 16 389 ± 37 | 147Sm/144Nd | [33] |
Kiya-Shaltyrskii | Melanocratic gabbro, Pegmatoid ijolite, Nepheline syenite | 406 ± 2 398.9 ± 5.5 387.5 ± 2.8 | 87Rb/86Sr 206Pb/238U 206Pb/238U | [21] |
Belogorskii | Plagioclase ijolite (amphibole), Nepheline syenite (mica) | 402.9 ± 3.4 400.6 ± 3.4 | 40Ar/39Ar | [8] |
Dedovogorskii | Pegmatoid nepheline syenite (baddeleyite, zircon) | 401 ± 2 400.9 ± 6.8 | 206Pb/238U | [21] |
Kurgusuyulskii | Juvite | 393.6 ± 9.2 | 206Pb/238U | [21] |
Goryachegorskii | Foyaite | 264.1 ± 1.9 | 206Pb/238U | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafaev, A.A.; Gertner, I.F.; Ernst, R.E.; Serov, P.A.; Kolmakov, Y.V. The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore. Minerals 2020, 10, 1128. https://doi.org/10.3390/min10121128
Mustafaev AA, Gertner IF, Ernst RE, Serov PA, Kolmakov YV. The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore. Minerals. 2020; 10(12):1128. https://doi.org/10.3390/min10121128
Chicago/Turabian StyleMustafaev, Agababa A., Igor F. Gertner, Richard E. Ernst, Pavel A. Serov, and Yurii V. Kolmakov. 2020. "The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore" Minerals 10, no. 12: 1128. https://doi.org/10.3390/min10121128
APA StyleMustafaev, A. A., Gertner, I. F., Ernst, R. E., Serov, P. A., & Kolmakov, Y. V. (2020). The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore. Minerals, 10(12), 1128. https://doi.org/10.3390/min10121128