Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Material Characterisation
2.2.2. Optical Emission and Crystalline Defects
2.2.3. Photocatalytic Tests
3. Results
3.1. Material Characterisation
3.2. Photoluminescence of Zinc White Powder at Fixed Fluence and Energy
3.3. Photoluminescence of Zinc White Powder Under Various Fluence and Energy Conditions
3.4. Photocatalytic Activity Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J. 2012, 186, 1–22. [Google Scholar] [CrossRef]
- McCrone, W.C.; Fitzhugh, E.W. Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 3. J. Am. Inst. Conserv. 1999, 38, 483. [Google Scholar] [CrossRef]
- Buxbaum, G.; Pfaff, G. Industrial Inorganic Pigments; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Morley-Smith, C.T. The development of anti-chalking french process zinc oxides. J. Oil Colour Chem. Assoc. 1950, 33, 484–501. [Google Scholar]
- Morley-Smith, C.T. Zinc oxide—A reactive pigment. J. Oil Colour Chem. Assoc. 1958, 74, 85–97. [Google Scholar]
- Osmond, G. Zinc white: A review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bull. 2012, 33, 20–29. [Google Scholar] [CrossRef]
- Rogala, D. Everything Old Is New Again: Revisiting a Historical Symposium on Zinc Oxide Paint Films. Metal. Soaps Art 2019, 315–328. [Google Scholar] [CrossRef]
- Borseth, T.M.; Svensson, B.G.; Kuznetsov, A.Y.; Klason, P.; Zhao, Q.X.; Willander, M. Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 2006, 89, 262112. [Google Scholar] [CrossRef]
- Rodnyi, P.A.; Khodyuk, I.V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Janotti, A.; Van De Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Kaftelen, H.; Ocakoglu, K.; Thomann, R.; Tu, S.; Weber, S.; Erdem, E. EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 2012, 86. [Google Scholar] [CrossRef]
- Parashar, S.K.S.; Murty, B.; Repp, S.; Weber, S.; Erdem, E. Investigation of intrinsic defects in core-shell structured ZnO nanocrystals. J. Appl. Phys. 2012, 111, 113712. [Google Scholar] [CrossRef]
- Musić, S.; Popovic, S.; Maljković, M.; Dragčević, Đ. Influence of synthesis procedure on the formation and properties of zinc oxide. J. Alloy. Compd. 2002, 347, 324–332. [Google Scholar] [CrossRef]
- Vanmeert, F.; De Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K. Macroscopic X-ray Powder Diffraction Scanning, a New Method for Highly Selective Chemical Imaging of Works of Art: Instrument Optimization. Anal. Chem. 2018, 90, 6436–6444. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Wallez, G.; Calligaro, T.; Gourier, D.; Menu, M. Synthesizing lead white pigments by lead corrosion: New insights into the ancient manufacturing processes. Corros. Sci. 2019, 146, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Hosseinizori, M.; Bondioli, F.; Manfredini, T.; Taherinassaj, E. Effect of synthesis parameters on a hematite–silica red pigment obtained using a coprecipitation route. Dye. Pigment. 2008, 77, 53–58. [Google Scholar] [CrossRef]
- Artesani, A. Zinc oxide instability in drying oil paint. Mater. Chem. Phys. 2020, 255, 123640. [Google Scholar] [CrossRef]
- Van Driel, B.A.; Berg, K.J.V.D.; Smout, M.; Dekker, N.; Kooyman, P.J.; Dik, J. Investigating the effect of artists’ paint formulation on degradation rates of TiO2-based oil paints. Heritage Sci. 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Van Driel, B.A.; Kooyman, P.; Berg, K.J.V.D.; Schmidt-Ott, A.; Dik, J. A quick assessment of the photocatalytic activity of TiO2 pigments—From lab to conservation studio! Microchem. J. 2016, 126, 162–171. [Google Scholar] [CrossRef]
- Artesani, A.; Gherardi, F.; Nevin, A.; Valentini, G.; Comelli, D. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes. Materials 2017, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Artesani, A.; Gherardi, F.; Mosca, S.; Alberti, R.; Nevin, A.; Toniolo, L.; Valentini, G.; Comelli, D. On the photoluminescence changes induced by ageing processes on zinc white paints. Microchem. J. 2018, 139, 467–474. [Google Scholar] [CrossRef]
- Artesani, A.; Binet, L.; Tana, F.; Comelli, D.; De Nardo, L.; Nevin, A.; Touati, N.; Valentini, G.; Gourier, D. Monitoring metal ion leaching in oil-ZnO paint systems with a paramagnetic probe. Microchem. J. 2019, 151, 104256. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.M.; Kambhampati, P. Linking surface chemistry to optical properties of semiconductor nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 18882–18894. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, M.; Valentini, G.; Toniolo, L.; Alberti, R.; Gironda, M.; Comelli, D. Photoluminescence imaging of modern paintings: There is plenty of information at the microsecond timescale. Microchem. J. 2020, 154, 104618. [Google Scholar] [CrossRef]
- Comelli, D.; Artesani, A.; Nevin, A.; Mosca, S.; Gonzalez, V.; Eveno, M.; Valentini, G. Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers. Materials 2017, 10, 1335. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Gregory, N.W. Elements of X-Ray Diffraction. J. Am. Chem. Soc. 1957, 79, 1773–1774. [Google Scholar] [CrossRef]
- Artesani, A.; Bellei, S.; Capogrosso, V.; Cesaratto, A.; Mosca, S.; Nevin, A.; Valentini, G.; Comelli, D. Photoluminescence properties of zinc white: An insight into its emission mechanisms through the study of historical artist materials. Appl. Phys. A 2016, 122, 1053. [Google Scholar] [CrossRef] [Green Version]
- Dozzi, M.V.; Prati, L.; Canton, P.; Selli, E. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Phys. Chem. Chem. Phys. 2009, 11, 7171. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, F.; Wang, C.; Wang, X.; Wang, K.; Qu, Y. Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Adv. 2014, 4, 5122–5129. [Google Scholar] [CrossRef]
- Pelant, I.; Valenta, J. Luminescence Spectroscopy of Semiconductors; Oxford Scholarship: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Ghirardello, M.; Kelly, N.M.; Valentini, G.; Toniolo, L.; Comelli, D. Photoluminescence excited at variable fluences: A novel approach for studying the emission from crystalline pigments in paints. Anal. Methods 2020, 12, 4007–4014. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, A.C.; Zhao, J. Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+and/or Pt (IV) under Visible Light Irradiation: N-Deethylation, Chromophore Cleavage, and Mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef] [PubMed]
- Dozzi, M.V.; Saccomanni, A.; Selli, E. Cr (VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2. J. Hazard. Mater. 2012, 188–195. [Google Scholar] [CrossRef]
- Bernardini, C.; Cappelletti, G.; Dozzi, M.V.; Selli, E. Photocatalytic degradation of organic molecules in water: Photoactivity and reaction paths in relation to TiO2 particles features. J. Photochem. Photobiol. A Chem. 2010, 211, 185–192. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Selli, E. Effects of phase composition and surface area on the photocatalytic paths on fluorinated titania. Catal. Today 2013, 206, 26–31. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation ofRhodamine Bunder Visible Light Irradiation in Aqueous TiO2 Dispersions. J. Phys. Chem. B 1998, 102, 5845–5851. [Google Scholar] [CrossRef]
- Ohkuma, N.; Funayama, Y.; Ito, H.; Mizutani, N.; Kato, M. Reaction of carbon dioxide containing water vapor with ZnO fine particles. Nippon. KAGAKU KAISHI 1987, 802–806. [Google Scholar] [CrossRef]
- Hageraats, S.; Keune, K.; Stankic, S.; Stanescu, S.; Tromp, M.; Thoury, M. X-ray Nanospectroscopy Reveals Binary Defect Populations in Sub-micrometric ZnO Crystallites. J. Phys. Chem. C 2020, 124, 12596–12605. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72. [Google Scholar] [CrossRef] [Green Version]
- Oba, F.; Togo, A.; Tanaka, I.; Paier, J.; Kresse, G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B 2008, 77. [Google Scholar] [CrossRef] [Green Version]
- Vempati, S.; Mitra, J.; Dawson, P. One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 2012, 7, 470. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Cai, W.; Zeng, H. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 2006, 88, 161101. [Google Scholar] [CrossRef]
- Kodama, K.; Uchino, T. Thermally activated below-band-gap excitation behind green photoluminescence in ZnO. J. Appl. Phys. 2012, 111, 93525. [Google Scholar] [CrossRef]
- Kurbanov, S.; Panin, G.; Kim, T.; Kang, T. Strong violet luminescence from ZnO nanocrystals grown by the low-temperature chemical solution deposition. J. Lumin. 2009, 129, 1099–1104. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Erhart, P.; Albe, K. Diffusion of zinc vacancies and interstitials in zinc oxide. Appl. Phys. Lett. 2006, 88, 201918. [Google Scholar] [CrossRef] [Green Version]
- Kayaci, F.; Vempati, S.; Donmez, I.; Biyikli, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale 2014, 6, 10224–10234. [Google Scholar] [CrossRef] [Green Version]
- Dozzi, M.V.; D’Andrea, C.; Ohtani, B.; Valentini, G.; Selli, E. Fluorine-Doped TiO2 Materials: Photocatalytic Activity vs Time-Resolved Photoluminescence. J. Phys. Chem. C 2013, 117, 25586–25595. [Google Scholar] [CrossRef]
Technique | Info | ZW1 | ZW2 | ZW3 | ZnO1 | ZnO2 |
---|---|---|---|---|---|---|
XRF | Metal impurities | Ba, Fe, Co, Ni | Ba, Fe, Co, Ni | |||
XRPD | Structure | Hexagonal | Hexagonal | |||
Crystallite size (nm) | 54.5 ± 0.5 | 52.6 ± 2.9 | 58.1 ± 2.3 | 47.8 ± 2.0 | 42.5 ± 5.0 | |
FTIR | Compounds | Zinc Carbonate Hydroxide | - | |||
Hydroxyl group | Hydroxyl group | |||||
SSA | Specific Surface Area (m2 g−1) | 5.5 ± 0.1 | 3.9 ± 0.1 | 2.0 ± 0.1 | 3.7 ± 0.1 | 13.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artesani, A.; Dozzi, M.V.; Toniolo, L.; Valentini, G.; Comelli, D. Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide. Minerals 2020, 10, 1129. https://doi.org/10.3390/min10121129
Artesani A, Dozzi MV, Toniolo L, Valentini G, Comelli D. Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide. Minerals. 2020; 10(12):1129. https://doi.org/10.3390/min10121129
Chicago/Turabian StyleArtesani, Alessia, Maria Vittoria Dozzi, Lucia Toniolo, Gianluca Valentini, and Daniela Comelli. 2020. "Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide" Minerals 10, no. 12: 1129. https://doi.org/10.3390/min10121129
APA StyleArtesani, A., Dozzi, M. V., Toniolo, L., Valentini, G., & Comelli, D. (2020). Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide. Minerals, 10(12), 1129. https://doi.org/10.3390/min10121129