Deciphering the Iron Provenance on a Medieval Building Yard: The Case of Bourges Cathedral
Abstract
:1. Introduction
2. Samples and Analytical Methodologies
2.1. Sampling of Iron Armatures
2.2. Iron Production around Bourges and Slag Sampling
2.3. Analytical Methods
2.4. Data Processing
3. Results
- -
- C1 and C2 (this latter divided in C2a and C2b) corresponding to unknown provenances, different of the tested production areas, but both having chemical similarities as far as REE signature is concerned.
- -
- N: artefacts with a very high provenance probability from Nozières (not separable by a LDA approach).
- -
- N2: Artefacts whose chemical signature is separated from the one of Nozières by a LDA approach but not by PCA. In the following discussion, they will be considered as coming from Nozières.
- -
- A: artefacts with a very high provenance probability form Allogny (not separable by a LDA approach).
- -
- AN: artefacts whose signature was compatible with both production areas (Allogny and Nozières) by LDA approach or by PCA approach.
- -
- Un: artefacts not compatible with any production area by any approach. Other unknown origin than C1 and C2.
4. Discussion
4.1. A Great Diversity of Supplies: Local and More Distant
4.2. Some Armatures Made of Iron from Different Origins
4.3. Evolution of Provenances during Construction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- L’Héritier, M.; Dillmann, P.; Benoit, P. Iron in the building of gothic churches: Its role, origins and production using evidence from Rouen and Troyes. Hist. Met. 2010, 44, 21–35. [Google Scholar]
- Leroy, S.; L’Héritier, M.; Delqué-Kolic, E.; Dumoulin, J.-P.; Moreau, C.; Dillmann, P. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. J. Archaeol. Sci. 2015, 53, 190–201. [Google Scholar] [CrossRef]
- Timbert, A. L’Homme et la Matière: L’Emploi du Plomb et du Fer dans l’Architecture Gothique; Actes du Colloque: Noyon, France, 2009. [Google Scholar]
- L’Héritier, M.; Dillmann, P.; Timbert, A.; Bernardi, P. The role of iron armatures in gothic constructions: Reinforcement, consolidation or commissioner’s choice. In Nuts and Bolt of Construction History. Culture, Technology and Society; Carvais, R., Guillerme, A., Nègre, V., Sakarovitch, J., Eds.; Picard: Paris, France, 2012; Volume 2, pp. 557–564. [Google Scholar]
- Haas, W. Die rolle des eisens in der vorindustriellen arkitektur dargestellt an ostbayerischen beispielen. In Die Oberpfalz ein Europäisches Eisenzentrum 1600 Jahre Grosse Hammereinigung; Ostbayern Bergbau und Industrie Museum: Amberg, Germany, 1987; pp. 495–504. [Google Scholar]
- Lefebvre, E. Les tirants de fer de la cathédrale Notre-Dame d’Amiens. In L’Homme et la Matière: L’Emploi du Plomb et du Fer dans l’Architecture Gothique; Timbert, A., Ed.; Picard: Paris, France, 2009; pp. 141–147. [Google Scholar]
- Bernardi, P.; Dillmann, P. Stone skeleton or iron skeleton: The provision and use of metal in the construction of the Papal Palace at Avignon in the 14th century. In De Re Metallica. The Uses of Metal in the Middle Ages; Bork, R., Ed.; Ashgate: Aldershot, UK, 2005; Volume 4, pp. 297–315. [Google Scholar]
- L’Héritier, M.; Dillmann, P. L’approvisionnement en fer des chantiers de construction médiévaux: Coût, quantités et qualité. L’exemple des églises de la période gothique. In Edifice et Artifice, Histoires Constructives; Carvais, R., Guillerme, A., Nègre, V., Sakarovitch, J., Eds.; Picard: Paris, France, 2010; pp. 457–466. [Google Scholar]
- Dillmann, P.; Perez, L.; Verna, C. (Eds.) Les aciers avant Bessemer. In L’acier en Europe Avant Bessemer; CNRS-Université de Toulouse-Le Mirail: Paris, France, 2011; pp. 7–69. [Google Scholar]
- Chapelot, O.; Benoit, P. Pierre et Métal dans le Bâtiment au Moyen Age; EHESS: Paris, France, 1985. [Google Scholar]
- Dillmann, P. De Soissons à Beauvais: Le fer des cathédrales de Picardie, une approche archéométrique. In L’Homme et la Matière: L’emploi du Plomb et du fer dans L’architecture Gothique; Timbert, A., Ed.; Picard: Paris, France, 2009; pp. 93–112. [Google Scholar]
- Charlton, M.F. The last frontier in “sourcing”: The hopes, constraints and future for iron provenance research. J. Archaeol. Sci. 2015, 56, 210–220. [Google Scholar] [CrossRef]
- Brauns, M.; Yahalom-Mack, N.; Stepanov, I.; Sauder, L.; Keen, J.; Eliyahu-Behar, A. Osmium isotope analysis as an innovative tool for provenancing ancient iron: A systematic approach. PLoS ONE 2020, 15, e0229623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, R.; Heger, D.; Höppner, B.; Pernicka, E. The provenance of iron artefacts from Manching: A multi-technique approach. Archaeometry 2006, 48, 433–452. [Google Scholar] [CrossRef]
- Dillmann, P.; Schwab, R.; Bauvais, S.; Brauns, M.; Disser, A.; Leroy, S.; Gassmann, G.; Fluzin, P. Circulation of iron products in the North-Alpine area during the end of the first Iron Age (6th–5th c. BC): A combination of chemical and isotopic approaches. J. Archaeol. Sci. 2017, 87, 108–124. [Google Scholar] [CrossRef]
- Milot, J.; Poitrasson, F.; Baron, S.; Coustures, M.-P. Iron isotopes as a potential tool for ancient iron metals tracing. J. Archaeol. Sci. 2016, 76, 9–20. [Google Scholar] [CrossRef]
- Rose, T.; Télouk, P.; Klein, S.; Marschall, H.R. Questioning Fe isotopes as a provenance tool: Insights from bog iron ores and alternative applications in archeometry. J. Archaeol. Sci. 2019. [Google Scholar] [CrossRef]
- Desaulty, A.-M.; Dillmann, P.; L’Héritier, M.; Mariet, C.; Gratuze, B.; Joron, J.-L.; Fluzin, P. Does it come from the Pays de Bray? Examination of an origin hypothesis for the ferrous reinforcements used in French medieval churches using major and trace element analyses. J. Archaeol. Sci. 2009, 36. [Google Scholar] [CrossRef]
- Leroy, S.; Cohen, S.X.; Verna, C.; Gratuze, B.; Téreygeol, F.; Fluzin, P.; Bertrand, L.; Dillmann, P. The medieval iron market in Ariège (France). Multidisciplinary analytical approach and multivariate analyses. J. Archaeol. Sci. 2012, 39, 1080–1093. [Google Scholar] [CrossRef]
- Coustures, M.P.; Béziat, D.; Tollon, F.; Domergue, C.; Long, L.; Rebiscoul, A. The use of trace element analysis of entrapped slag inclusions to establish ore—Bar iron links: Examples from two Gallo-Roman iron-making sites in France (Les Martys, Montagne noire, and les Ferrys, Loiret). Archaeometry 2003, 45, 599–613. [Google Scholar] [CrossRef]
- Disser, A.; Dillmann, P.; Leroy, M.; L’Héritier, M.; Bauvais, S.; Fluzin, P.H. Iron Supply for the Building of Metz Cathedral: New Methodological Development for Provenance Studies and Historical Considerations. Archaeometry 2017, 59, 493–510. [Google Scholar] [CrossRef]
- Hørst-Madsen, L.; Buchwald, V.F. The characterisation and provenancing of ore, slag and iron from the Iron Age settlement in Snorup. J. Hist. Metall. Soc. 1999, 33, 57–67. [Google Scholar]
- Dillmann, P.; L’Héritier, M. Slag inclusion analyses for studying ferrous alloys employed in French medieval buildings: Supply of materials and diffusion of smelting processes. J. Archaeol. Sci. 2007, 34, 1810–1823. [Google Scholar] [CrossRef]
- Disser, A.; Dillmann, P.; Bourgain, C.; L’Héritier, M.; Vega, E.; Bauvais, S.; Leroy, M. Iron reinforcements in Beauvais and Metz Cathedrals: From bloomery or finery? The use of logistic regression for differentiating smelting processes. J. Archaeol. Sci. 2014, 42, 315–333. [Google Scholar] [CrossRef]
- Hendrickson, M.; Leroy, S. Sparks and needles: Seeking catalysts of state expansions, a case study of technological interaction at Angkor, Cambodia (9th to 13th centuries CE). J. Anthropol. Archaeol. 2020, 57, 101141. [Google Scholar] [CrossRef]
- L’Héritier, M. Les armatures de fer de la cathédrale de Bourges: Nouvelles données, nouvelles lectures. Bull. Monum. 2016, 174, 447–465. [Google Scholar] [CrossRef]
- Férauge, M.; Mignerey, P. L’utilisation du fer dans l’architecture gothique: L’exemple de la cathédrale de Bourges. Bull. Monum. 1996, T154, 129–146. [Google Scholar] [CrossRef]
- Dieudonné-Glad, N. La métallurgie du fer autour d’Avaricum (Bourges) dans l’Antiquité. Rev. Archéol. Cent. Fr. 1992, 31, 58–74. [Google Scholar]
- Branner, R. The Cathedral of Bourges and its Place in Gothic Architecture; MIT Press: Cambridge, UK, 1989. [Google Scholar]
- Branner, R. Le Maitre de la cathédrale de Beauvais. Art Fr. 1962, 2, 77–92. [Google Scholar]
- Tallon, A. La perpendicularité de la cathédrale de Bourges, enjeu de la perfection architecturale. Bull. Monum. 2016, 174, 425–446. [Google Scholar] [CrossRef]
- Bordeloup, J.-L. Nouvelles observations sur la métallurgie ancienne du fer à Allogny (Cher). Bull. Groupe Rech. Archéol. Hist. Sologne 1995, 1, 143–158. [Google Scholar]
- Landes, C.; Bordeloup, J.-L. Recherches récentes sur la forêt d’Allogny (Cher). Bull. Groupe Rech. Archéol. Hist. Sologne 1985, 7, 41–52. [Google Scholar]
- L’Héritier, M. La Production du Fer au Moyen Age en Forêt d’Allogny. Prospection Thématique et Sondage sur le Site de Bléron; SRA Centre: Orléans, France, 2011. [Google Scholar]
- Dunikowski, C. Etude d’un complexe métallurgique à Farges Allichamps (Centre). Rev. Archéol. Cent. Fr. 1987, 26, 85–86. [Google Scholar]
- Ribault, J.-Y. L’abbaye cistercienne de Noirlac et la métallurgie du fer au XIIIe siècle. Lett. Noirlac 1991, 16, 14–17. [Google Scholar]
- Belhoste, J.-F.; Léon, P. Naissance d’une sidérurgie moderne aux confins du Berry (fin du XIVe–XVe siècles). In Mélanges Jean-Yves Ribault; Cahiers D’Archéologie et d’Histoire du Berry: Bourges, France, 1996; pp. 45–51. [Google Scholar]
- Schoevaert, M. La Métallurgie à Jouet sur l’Aubois: Le Moyen Âge. La Voix Patrim. L’industrie 2012, 28, 3–12. [Google Scholar]
- L’Héritier, M.; Leroy, S.; Dillmann, P. Bernard Gratuze Characterization of Slag Inclusions in Iron Objects. In Recent Advances in Laser Ablation ICP-MS for Archaeology; Dussubieux, L., Golitko, M., Gratuze, B., Eds.; Springer: Berlin, Germany, 2016; pp. 213–228. [Google Scholar]
- Gratuze, B. Obsidian characterisation by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. J. Archaeol. Sci. 1999, 26, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Gratuze, B.; Blet-Lemarquand, M.; Barrandon, J.-N. Mass spectrometry with laser sampling: A new tool to characterize archaeological materials. J. Radionalytical Nucl. Chem. 2001, 247, 645–656. [Google Scholar] [CrossRef]
- Gratuze, B. Glass Characterization Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Methods. In Recent Advances in Laser Ablation ICP-MS for Archaeology; Dussubieux, L., Golitko, M., Gratuze, B., Eds.; Springer: Berlin, Germany, 2016; pp. 179–196. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 9 November 2020).
- Aitchison, J. Some comments on compositional data analysis in archaeometry, in particular the fallacies in Tangri and Wright’s dismissal of logratio analysis. Archaeometry 2002, 44, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.J.; Freestone, I.C. Log-ratio Compositional Data Analysis in Archaeometry. Archaeometry 2006, 48, 511–531. [Google Scholar] [CrossRef]
- L’Héritier, M. Le fer et le plomb dans la construction monumentale au Moyen Âge, de l’étude des sources écrites à l’analyse de la matière. Bilan de 20 ans de recherches et perspectives. Ædificare 2019, 6, 79–121. [Google Scholar]
- Pages, G.; L’Héritier, M. La circulation du fer brut dans la Gaule antique et la France médiévale: Nouvelles perspectives. In Le Marché des Matières Premières dans l’Antiquité et au Moyen Age; Boisseuil, D., Rico, C., Gelichi, S., Eds.; Ecole Française de Rome: Rome, Italy, 2020. [Google Scholar]
- L’Héritier, M.; Arles, A.; Disser, A.; Gratuze, B. Lead it be! Identifying the construction phases of gothic cathedrals using lead analysis by LA-ICP-MS. J. Archaeol. Sci. Rep. 2016, 6, 252–265. [Google Scholar] [CrossRef]
Bay | Number of Analyzed Links | Number of Analyzed Samples | Samples References |
---|---|---|---|
Apse | 11 | 11 | CHABS41, CHABS43, CHABS46, CHABS47, CHABS51, CHABS53, CHABS55, CHABS58, CHABS61, CHABS62, CHABS63 |
North 1 | 4 | 4 | CH1N34, CH1N35, CH1N36, CH1N40 |
North 2 | 3 | 3 | CH2N27, CH2N32, CH2N33 |
North 3 | 5 | 6 | CH3N20, CH3N21, CH3N22, CH3N23, CH3N24E, CH3N24W |
North 4 | 5 | 6 | CH4N13E, CH4N13W, CH4N14, CH4N15, CH4N16, CH4N17 |
North 5 | 5 | 6 | CH5N10E, CH5N10W, CH5N6, CH5N7, CH5N8, CH5N9 |
North 6 | 3 | 3 | CH6N1, CH6N2, CH6N3 |
South 1 | 6 | 6 | CH1S65, CH1S66, CH1S67, CH1S68, CH1S69, CH1S70 |
South 2 | 5 | 5 | CH2S73, CH2S74, CH2S75, CH2S76, CH2S77 |
South 3 | 2 | 2 | CH3S83, CH3S85 |
South 4 | 4 | 4 | CH4S88, CH4S90, CH4S91, CH4S92 |
South 5 | 1 | 1 | CH5S96, |
South 6 | 2 | 2 | CH6S101, CH6S102 |
Total | 56 | 59 |
Tie-Rod Reference | Location (Bay) | Number of Analyzed Samples |
---|---|---|
TN3 | North 2–3 | 4 |
TN4 | North 3–4 | 4 |
TN5 | North 4–5 | 3 |
TN6 | North 5–6 | 4 |
TN7 | North 6–7 | 3 |
TN8 | North 7–8 | 2 |
TN9 | North 8–9 | 3 |
TS6 | South 5–6 | 3 |
TS7 | South 6–7 | 2 |
TS8 | South 7–8 | 5 |
TS9 | South 8–9 | 3 |
TS10 | South 9–10 | 1 |
TS11 | South 10–11 | 3 |
Total | 40 |
n° on Map | Site | Ref. | City | Period | Dating Method | Analyzed Slag | Nb of Analyses |
---|---|---|---|---|---|---|---|
1 | Le Parc | PA | Allogny | 13th–15th c. AD | 2 dates C14 | 18 | 18 |
2 | Les Usages | US | Saint-Eloy-de-Gy | ? | - | 14 | 16 |
3 | Bléron | BL | Saint-Martin d’Auxigny | 1st c. AD | 3 dates C14 | 38 | 43 |
4 | La Main Ferme | MA | Saint-Eloy-de-Gy | 2nd–4th c. AD | 3 dates C14 | 16 | 23 |
5 | Les Barbotzies | BA | Saint-Martin d’Auxigny | Medieval? | C14 (Bordeloup, personnal communication) | 18 | 18 |
6 | Bubelle | BU | Vouzeron | Late or post medieval? | Some blast furnace type slags | 18 | 26 |
7 | La Motte du fief | MF | Menetou-Salon | ? | - | 11 | 17 |
8 | Le Latier | LA | Menetou-Salon | ? | - | 11 | 11 |
Total Allogny | 144 | 172 | |||||
9 | Le Petit Plaix | PP | Nozières | 12th–13th c. AD | Ceramics | 28 | 37 |
10 | La Beaume | BE | Nozières | Postmedieval | Hydraulic forge Blast furnace slags | 20 | 21 |
11 | Les Nounins | LN | Farges-Allichamps | Roman and early medieval | Roman and early medieval | 14 | 39 |
12 | Les Petits Champs | PC | Farges-Allichamps | 12th–13th c. AD | Ceramics | 10 | 10 |
13 | Les Rougeaux | LR | Farges-Allichamps | Medieval? | Ceramics | 3 | 8 |
14 | Cheval | CH | Farges-Allichamps | ? | - | 3 | 3 |
Total Nozières | 78 | 118 | |||||
15 | Raveau | RAV | Raveau | Post medieval | Hydraulic forge Blast furnace slags | 4 | 4 |
16 | Le Fournay | FNAY | Jouet-sur-l’Aubois | Post medieval | Hydraulic forge Blast furnace slags | 4 | 4 |
17 | Coulanges | COUL | Le Chautay | Post medieval | Hydraulic forge Blast furnace slags | 4 | 4 |
18 | Préçy | PRECY | Précy | Post medieval | Hydraulic forge Blast furnace slags | 4 | 4 |
Total Aubois | 16 | 16 |
Provenance Group | Samples from Tie Rods | Samples from the Chain Links |
---|---|---|
Allogny | TS8P5, TS9P3 | CH1S65, CH1S67, CH1S69, CH1S70 *, CH3N24W *, CH4N13E, CH4N13W, CH4N14, CH4N17 *, CH5N6, CH5N7, CH5N9, CH6N2, CH6N3 |
Nozières | TN3P1, TN3P2, TN4P3, TN5P1, TN5P2, TN6P3, TN7H+ b | CH3S85, CH4S90 *, CH4S91, CH4S92, CH6S101, CH6S102 |
Allogny and Nozières | None | CHABS61 |
Aubois | None | None |
No attribution | TN3P3, TN3P4, TN4P1, TN4P2, TN4P4, TN5P3, TN6P1, TN6P2, TN6P4, TN7F, TN7G, TN7H+, TS11P1, TS8P1, TS8P2, TS8P3, TS8P4 | CH1S68, CH2N27, CH2N32, CH2S73 *, CH2S74, CH2S75, CH2S76, CH2S77, CH3N20, CH3N21, CH3N22, CH3N23, CH3N24E *, CH3S83, CH4N16, CH4S88, CH5N10E *, CH5N10W *, CH5N8, CH5S96, CH6N1 |
Production Area | Samples from Tie Rods | Samples from the Chain Links |
---|---|---|
Nozières | TN3P3, TN3P4, TN4P1, TN4P2, TN4P4, TN5P3, TN6P1, TN6P2, TN6P4, TN7G, TN7H+, TS11P1, TS8P3 | CH2S73 *, CH2S74, CH2S76, CH2S77, CH3N20, CH3S83, CH4S88, CH5N8, CH5N10W *, CH5S96 |
Allogny | None | None |
Allogny and Nozières | TS11P1, TS8P2, TS8P4 | CH1S68, CH2N27, CH2N32, CH2S75, CH3N22, CH3N23, CH3N24E *, CH4N15, CH4N16, CH5N10E *, CH6N1 |
Aubois | None | None |
No Compatibility | CH3N21 |
Production Area | Samples from Tie Rods | Samples from the Chain Links |
---|---|---|
C1 | None | CHABS41, CHABS43, CHABS46, CHABS47, CHABS51, CHABS53, CHABS55, CHABS58, CHABS62, CHABS63, CH1N34, CH1N35, CH1N36, CH1N40, CH1S66, CH2N33 |
C2a | TN8P1, TN8P2, TN9P2, TN9P3, TN9P4, TS7P1, TS7P2, TS9P1, TS9P2, TS10P1, TS11P2, TS11P3 | None |
C2b | TS6P1, TS6P2, TS6P3 | None |
Nozières (N + N2) | TN3P1, TN3P2, TN3P3, TN3P4, TN4P1, TN4P2, TN4P3, TN4P4, TN5P1, TN5P2, TN5P3, TN6P1,TN6P2, TN6P3,TN6P4, TN7G, TN7H+, TN7H+ b, TS8P3, TS11P1 | CH2S73 *, CH2S74, CH2S76, CH2S77, CH3N20, CH3S83, CH3S85, CH4S88, CH5N8, CH5N10W *, CH4S90 *, CH4S91, CH4S92, CH5S96, CH6S101, CH6S102 |
Allogny (A) | TS8P5, TS9P3 | CH1S65, CH1S67, CH1S69, CH1S70 *, CH3N24W *, CH4N13E, CH4N13W, CH4N14, CH4N17 *, CH5N6, CH5N7, CH5N9, CH6N2, CH6N3 |
Allogny or Nozières (AN) | TS8P2, TS8P4, TS11P1 | CHABS61, CH1S68, CH2N27, CH2N32, CH2S75, CH3N22, CH3N23, CH3N24E *, CH4N15, CH4N16, CH5N10E *, CH6N1 |
Aubois | None | None |
No Compatibility | CH3N21 |
Production Area | Samples from Tie Rods: Bars (Samples) | Samples from the Chain Links |
---|---|---|
C1 | 0 | 16 |
C2 | 7 (15) | 0 |
Nozières N + N2 | 7 (20) | 16 |
Allogny | 2 | 13 |
Allogny and Nozières | 2 (3) | 12 |
Aubois | 0 | 0 |
No Compatibility | 0 | 1 |
Recycled | Irrelevant | 6 |
Production Area | Apse and 1st Bay | Northern Bays (2nd–6th) | Southern Bays (2nd–6th) |
---|---|---|---|
C1 | 15 | 1 | 0 |
C2 | 0 | 0 | 0 |
Nozières (N + N2) | 0 | 3 | 13 |
Allogny (A) | 4 | 9 | 0 |
Allogny or Nozières (AN) | 2 | 9 | 1 |
Aubois | 0 | 0 | 0 |
No Compatibility | 0 | 1 | 0 |
Recycled | 1 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
L’Héritier, M.; Dillmann, P.; Sarah, G. Deciphering the Iron Provenance on a Medieval Building Yard: The Case of Bourges Cathedral. Minerals 2020, 10, 1131. https://doi.org/10.3390/min10121131
L’Héritier M, Dillmann P, Sarah G. Deciphering the Iron Provenance on a Medieval Building Yard: The Case of Bourges Cathedral. Minerals. 2020; 10(12):1131. https://doi.org/10.3390/min10121131
Chicago/Turabian StyleL’Héritier, Maxime, Philippe Dillmann, and Guillaume Sarah. 2020. "Deciphering the Iron Provenance on a Medieval Building Yard: The Case of Bourges Cathedral" Minerals 10, no. 12: 1131. https://doi.org/10.3390/min10121131
APA StyleL’Héritier, M., Dillmann, P., & Sarah, G. (2020). Deciphering the Iron Provenance on a Medieval Building Yard: The Case of Bourges Cathedral. Minerals, 10(12), 1131. https://doi.org/10.3390/min10121131