Realizing Beneficial End Uses from Abandoned Pit Lakes
Abstract
:1. Introduction
- Wildlife;
- Recreation; and,
- Primary production.
2. Approach
3. Realized End Uses
- Wildlife: providing a significant wildlife habitat for aquatic and/or amphibious ecology;
- Fishery: used as either an incidental, planned, or stocked fishery or for the purposes of aquaculture—fin fish, crustacea, or otherwise;
- Recreation: used for active recreation, such as swimming, boating, water skiing, and self-contained underwater breathing apparatus (SCUBA) diving, and also including passive recreation of water-oriented amenities, such as picnic areas and walking/biking trails around the lake;
- Source and storage of water: providing a water source for either potable, irrigation (agriculture or horticulture), or industrial purposes and storage space for regional water management, including flood protection;
- Waste storage and treatment: used as a waste storage receptacle for either mine wastes or unrelated wastes, such as from nearby industries.
3.1. Wildlife
3.2. Fishery
3.3. Recreation
3.4. Water Source and Storage
3.5. Waste Containment and Treatment
4. Discussion
4.1. Determinants of End Use Success
4.2. Achieving End Use Success
4.3. General Requirements for Pit Lake End Uses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro, J.M.; Moore, J.N. Pit lakes: Their characteristics and the potential for their remediation. Environ. Earth Sci. 2000, 39, 1254–1260. [Google Scholar] [CrossRef]
- Werner, F.; Bilek, F.; Luckner, L. Impact of regional groundwater flow on the water quality of an old post-mining lake. Ecol. Eng. 2001, 17, 133–142. [Google Scholar] [CrossRef]
- McCullough, C.D.; Marchand, G.; Unseld, J. Mine Closure of Pit Lakes as Terminal Sinks: Best Available Practice When Options are Limited? Mine Water Environ. 2013, 32, 302–313. [Google Scholar] [CrossRef] [Green Version]
- McCullough, C.D.; Harkin, C. Engineered Flow-through Closure of an Acid Pit Lake: A Case Study. In Proceedings of the International Mine Closure 2015 Congress, Vancouver, BC, Canada, 1–3 June 2015. [Google Scholar]
- McCullough, C.D.; Schultze, M. Riverine Flow-through of Mine Pit Lakes: Improving Both Mine Pit Lake and River Water Quality Values? In Proceedings of the Joint International Conference on Acid Rock Drainage ICARD/International Mine Water Association (IMWA) Congress, Santiago, Chile, 28 April–1 May 2015. [Google Scholar]
- Doupé, R.G.; Lymbery, A.J. Environmental Risks Associated with Beneficial End Uses of Mine Lakes in Southwestern Australia. Mine Water Environ. 2005, 24, 134–138. [Google Scholar] [CrossRef]
- Vandenberg, J.A.; McCullough, C.D.; Bolan, N.; Kirkham, M.; Ok, Y. Key Issues in Mine Closure Planning for Pit Lakes. In Spoil to Soil; Informa UK Limited: Colchester, UK, 2017; pp. 175–188. [Google Scholar]
- Eary, T.; Castendyk, D. Hardrock Metal Mine Pit Lakes: Occurrence and Geochemical Characteristics. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2012; pp. 75–106. [Google Scholar]
- Friese, K.; Herzsprung, P.; Schultze, M. Water, Sediment, and Pore Water. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2012; pp. 42–57. [Google Scholar]
- Nestler, P.; Stoll, R.D. Stabilisation of Bank Slopes That Are Prone to Liquefaction in Ecologically Sensitive Areas. Waste Manag. 2001, 21, 153–159. [Google Scholar] [CrossRef]
- Van Zyl, D. Slope Stability Considerations. In Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability; Castendyk, D.N., Eary, L.E., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Englewood, CO, USA, 2009; pp. 269–273. [Google Scholar]
- Ross, T.; McCullough, C.D. Health and Safety Working around Pit Lakes. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 167–181. [Google Scholar]
- McCullough, C.D.; Lund, M.A. Opportunities for Sustainable Mining Pit Lakes in Australia. Mine Water Environ. 2006, 25, 220–226. [Google Scholar] [CrossRef]
- Geller, W.; Schultze, M.; Wisotzky, F. Remediation and Management of Acidified Pit Lakes and Outflowing Waters. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2013; pp. 225–264. [Google Scholar]
- McCullough, C.D.; Hunt, D.; Evans, L.H. Sustainable Development of Open Pit Mines: Creating Beneficial End Uses for Pit Lakes. In Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability; Castendyk, D.N., Eary, L.E., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Englewood, CO, USA, 2009; pp. 249–268. [Google Scholar]
- McCullough, C.D.; Schultze, M. Risks and Rewards of Pit Lakes. AusIMM Bull. 2018, 2018, 38–41. [Google Scholar]
- DIIS. Leading Practice Sustainable Development Program for the Mining Industry—Preventing Acid and Metalliferous Drainage Handbook; Department of Industry, Innovation and Science (DIIS): Canberra, Australia, 2016.
- Castendyk, D.; Eary, T. The Nature and Global Distribution of Pit Lakes. In Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability; Castendyk, D.N., Eary, L.E., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Englewood, CO, USA, 2009; pp. 1–11. [Google Scholar]
- Bylak, A.; Rak, W.; Wójcik, M.; Kukuła, E.; Kukuła, K. Analysis of Macrobenthic Communities in a Post-Mining Sulphur Pit Lake (Poland). Mine Water Environ. 2019, 38, 536–550. [Google Scholar] [CrossRef] [Green Version]
- Kamberović, J.; Arudanović, S. Algae and Macrophytes of Mine Pit Lakes in the Wider Area of Tuzla, Bosnia and Herzegovina. Nat. Croat 2012, 21, 101–118. [Google Scholar]
- Otahel’ová, H.; Oťahel’, J. Distribution of Aquatic Macrophytes in Pit Lakes in Relation to the Environment (Borská Nížina Lowland, Slovakia). Eklógia 2006, 25, 398–411. [Google Scholar]
- Van Dam, R.A.; Humphrey, C.L.; Harford, A.J.; Sinclair, A.C.; Jones, D.R.; Davies, S.; Storey, A.W. Site-Specific Water Quality Guidelines: 1. Derivation Approaches Based on Physicochemical, Ecotoxicological and Ecological Data. Environ. Sci. Pollut. Res. 2014, 21, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.W., Jr.; Giddings, J.M. The Need for Multiple Lines of Evidence for Predicting Site-Specific Ecological Effects. Hum. Ecol. Risk Assess. 2000, 6, 679–710. [Google Scholar] [CrossRef]
- Donali, E.; Brettum Løvik, J.E.; Lyche-Solheim, A.; Andersen, T. Pelagic Response of a Humic Lake to Three Years of Phosphorus Addition. Can. J. Fish. Aquat. Sci. 2005, 62, 322–332. [Google Scholar] [CrossRef]
- Maavara, T.; Parsons, C.T.; Ridenour, C.; Stojanovic, S.; Durr, H.H.; Powley, H.R.; Van Cappellen, P. Global Phosphorus Retention by River Damming. Proc. Natl. Acad. Sci. USA 2015, 112, 15603–15608. [Google Scholar] [CrossRef] [Green Version]
- Grüneberg, B.; Kleeberg, A. Phosphorus in Acidic Mining Lakes: Importance and Biogeochemical Cycling. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2013; pp. 62–75. [Google Scholar]
- Hupfer, M.; Fischer, P.; Friese, K. Phosphorus Retention Mechanisms in the Sediment of an Eutrophic Mining Lake. Water Air Soil Pollut. 1998, 141, 341–352. [Google Scholar] [CrossRef]
- Kleeberg, A.; Grüneberg, B. Phosphorus Mobility in Sediments of Acid Mining Lakes, Lusatia, Germany. Ecol. Eng. 2005, 24, 89–100. [Google Scholar] [CrossRef]
- Pal, S.; Kumar Mukherjee, A.; Senapati, T.; Samanta, P.; Mondal, S.; Ratan Ghosh, A. Study on Littoral Zone Sediment Quality and Aquatic Macrophyte Diversity of Opencast Coal Pit-Lakes in Raniganj Coal Field, West Bengal, India. Int. J. Environ. Sci. 2014, 4, 575–588. [Google Scholar]
- Kosík, M.; Čadková, Z.; Přikryl, I.; Seďa, J.; Pechar, L.; Pecharová, E. Initial Succession of Zooplankton and Zoobenthos Assemblages in Newly Formed Quarry Lake Medard (Sokolov, Czech Republic). In Proceedings of the International Mine Water Association (IMWA) Congress, Aachen, Germany, 4–11 September 2011. [Google Scholar]
- Van Etten, E.J.B. The Role and Value of Riparian Vegetation for Mine Pit Lakes. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 91–105. [Google Scholar]
- Brinker, C.J.; Symbaluk, M.D.; Boorman, J.G. Constructing Habitat for Sustainable Native Fisheries in the Sphinx Lake End Pit Lake System. In Proceedings of the Sixth International Conference on the Mine Closure, Perth, Australia, 18–21 September 2011. [Google Scholar]
- Hildebrand, L.; Noton, R.L.; Anderson, J.W. Lake Development and Fish Habitat Enhancement at Coal Valley, Alberta. 83. 1982; Prepared for Luscar Ltd.; R.L. & L. Environmental Services Ltd.: Edmonton, AB, Canada, 1982. [Google Scholar]
- Larratt, H.M.; Freberg, M.; Hamaguchi, B.A. Developing Tailings Ponds and Pit Lakes as Bioreactors and Habitat Cost-Effective Successes at Highland Valley Copper. In Proceedings of the British Columbia Mine Reclamation Symposium, Squamish, BC, Canada, 17–20 September 2007. [Google Scholar]
- Sinclair, G.; Fawcett, M. Development of an Aquatic Habitat and Water Resource in Closing out the Enterprise Pit; Australasian Inst Min Metall: Melbourne, Australia, 1994; pp. 447–457. [Google Scholar]
- Smokorowski, K.E.; Kelso, J.R.M.; Geiling, W.D. Experimental Manipulation of Aquatic Habitat in Decommissioned Aggregate Pits and Quarries To: (A) Determine the Role of Habitat in Shaping Fish Communities and (B) Identify Effective Options for Reclaiming Sites with Fisheries Potential. In Proceedings of the Sudbury 2003—Mining and the Environment, Laurentian University, Sudbury, ON, Canada, 25–28 May 2003. [Google Scholar]
- Balvert, S.F.; Duggan, I.C.; Hogg, I.D. Zooplankton Season Dynamics in a Recently Filled Mine Pit Lake: The Effect of Non-Indigenous Daphnia Establishment. Aquat. Ecol. 2009, 43, 403–413. [Google Scholar] [CrossRef]
- Krivácková, O.; Pecharová, E.; Cížková, H. Sandpit Lakes Vegetation in the Třeboň Biosphere Reserve: Effect of Anthropogenic Activities. Ekologia 2006, 25, 270–281. [Google Scholar]
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Gravel Pit Lakes in Denmark: Chemical and Biological State. Sci. Total Environ. 2018, 612, 9–17. [Google Scholar] [CrossRef]
- Rajchard, J.; Fridrichovský, V.; Krivácková, O.; Navrátilová, J. Colonisation by Waterbirds of Artificial Lakes after Surface Mining: A Case Study. Acta Zool. Sin. 2006, 54, 602–614. [Google Scholar]
- Lund, M.A.; McCullough, C.D. Restoring Pit Lakes: Factoring in the Biology. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 83–90. [Google Scholar]
- McCullough, C.D.; Steenbergen, J.; te Beest, C.; Lund, M.A. More Than Water Quality: Environmental Limitations to a Fishery in Acid Pit Lakes of Collie, South-West Australia. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009. [Google Scholar]
- Hakonson, T.E.; Meyer, V.F.; Dean, A. Significance of Biological Productivity of Pit Lakes for Interpreting Ecological Risks. In Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability; Castendyk, D.N., Eary, L.E., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Englewood, CO, USA, 2009; pp. 179–187. [Google Scholar]
- Kumar, R.N.; McCullough, C.D.; Lund, M.A.; Larranãga, S. Assessment of Factors Limiting Algal Growth in Acidic Pit Lakes—A Case Study from Western Australia, Australia. Environ. Sci. Pollut. Res. 2016, 23, 5915–5924. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.L.; Rasmussen, J.B.; Palace, V.P.; Sterling, G.; Hontela, A. Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines in Alberta, Canada. Environ. Manag. 2013, 52, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.L.; Rasmussen, J.B.; Palace, V.P.; Hontela, A. The Physiological Stress Response and Oxidative Stress Biomarkers in Rainbow Trout and Brook Trout from Selenium-Impacted Streams in a Coal Mining Region. J. Appl. Toxicol. 2009, 29, 681–688. [Google Scholar] [CrossRef]
- Wayland, M.; Kneteman, J.; Crosley, R. The American Dipper as a Bioindicator of Selenium Contamination in a Coal Mine-Affected Stream in West-Central Alberta, Canada. Environ. Monit. Assess. 2006, 123, 285–298. [Google Scholar] [CrossRef]
- Palace, V.P.; Baron, C.; Evans, R.E.; Holm, J.; Kollar, S.; Wautier, K.; Werner, J.; Siwik, P.; Sterling, G.; Johnson, C.F. An Assessment of the Potential for Selenium to Impair Reproduction in Bull Trout, Salvelinus confluentus, from an Area of Active Coal Mining. Environ. Biol. Fishes 2004, 70, 169–174. [Google Scholar] [CrossRef]
- Nicholson, A.; Rudnick, D.; Willliams, L.; Ortega, J. Spatial and Temporal Assessment of Ecological Risks at a Gold Mine Pit Lake. In Proceedings of the International Mine Water Association (IMWA) Conference, Golden, CO, USA, 30 September–4 October 2013. [Google Scholar]
- Sampson, J.R.; Mellott, R.S.; Pastorok, R.A. Ecological Risk Assessment for a Mine Pit Lake, Nevada, USA. In Proceedings of the British Columbia Mine Reclamation Symposium, Kamloops, BC, Canada, 17–20 June 1996. [Google Scholar]
- Rümmler, F.; Ritterbusch, D.; Schiewe, S.; Weichler, F.; Füllner, G. Erschließung Neuer Ressourcen Für Die Sächsische Fischerei Durch Maränenbewirtschaftung Von Tagebaurestseen. Schr. Sächsischen Landesanst. Landwirtsch. 2005, 10, 54–151. [Google Scholar]
- Matern, S.; Emmrich, M.; Klefoth, T.; Wolter, C.; Nikolaus, R.; Wegener, N.; Arlinghaus, R. Effect of recreational-fisheries management on fish biodiversity in gravel pit lakes, with contrasts to unmanaged lakes. J. Fish Biol. 2019, 94, 865–881. [Google Scholar] [CrossRef] [Green Version]
- Peterka, J.; Čech, M.; Draštík, V.; Jůza, T.; Frouzová, J.; Prchalová, M.; Kubečka, J. Ten Years of Fish Community Succession in Post-Mining Lake Milada-Chabařovice. In Proceedings of the International Mine Water Association (IMWA) Congress, Aachen, Germany, 4–11 September 2011. [Google Scholar]
- Čech, M.; Peterka, J.; Říha, M.; Draštík, V.; Kratochvíl, M.; Kubečka, J. Deep spawning of perch (Perca fluviatilis, L.) in the newly created Chabařovice Lake, Czech Republic. Hydrobiologia 2010, 649, 375–378. [Google Scholar] [CrossRef]
- Gerner, M.; McCullough, C.D. Planning for a Positive Future: Development of Beneficial End Uses from a Quarry Pit Lake, Victoria, Australia. In From Start to Finish: A Life of Mine Perspective; AusIMM: Brisbane, Australia, 2018; pp. 249–258. [Google Scholar]
- Hinwood, A.L.; Heyworth, J.; Tanner, H.; McCullough, C. Recreational Use of Acidic Pit Lakes—Human Health Considerations for Post Closure Planning. J. Water Resour. Prot. 2012, 4, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- McCullough, C.D.; van Rooijen, A.; van Maren, B. Process-Based Shoreline Erosion Modelling for Batter Design of a Coal Mine Pit Lake. In Proceedings of the Fourteenth International Conference on Mine Closure, Perth, Australia, 3–5 September 2019. [Google Scholar]
- Carlino, A.; McCullough, C.D. Modelling the Long-Term Water Balance of a Pit Lake for Recreational End Uses. In Proceedings of the Fourteenth International Conference on Mine Closure, Perth, Australia, 3–5 September 2019. [Google Scholar]
- Berkner, A. Seenverbünde in Der Neuen Wasserlandschaft Mitteldeutschland. In Braunkohlenplanung, Bergbaufolgelandschaften, Wasserhaushaltssanierung—Arbeitsmaterial Der Akademie Für Raumforschung Und Landesplanung Hannover Nr. 323; Berkner, A., Thieme, T., Eds.; Akademie für Raumforschung und Landesplanung: Hannover, Germany, 2005. [Google Scholar]
- Seifert, P. Urlaubsgäste Statt Kohlekumpel? Die Nutzung Des Rheinischen, Mitteldeutschen Und Lausitzer Reviers Für Die Erholung. In Braunkohlenplanung, Bergbaufolgelandschaften, Wasserhaushaltssanierung—Arbeitsmaterial Der Akademie Für Raumforschung Und Landesplanung Hannover Nr. 323; Berkner, A., Thieme, T., Eds.; Akademie für Raumforschung und Landesplanung: Hannover, Germany, 2005. [Google Scholar]
- Heidenfelder, R.; Schneider, K. Wassertouristische Potenziale in Der Lausitz Zwischen Iba Fürst-Pückler-Land, Seenverbund Und Erlebniswelt. In Braunkohlenplanung, Bergbaufolgelandschaften, Wasserhaushaltssanierung—Arbeitsmaterial Der Akademie Für Raumforschung Und Landesplanung Hannover Nr. 323; Berkner, A., Thieme, T., Eds.; Akademie für Raumforschung und Landesplanung: Hannover, Germany, 2005. [Google Scholar]
- Tourism Canmore. Quarry Lake. Available online: http://www.tourismcanmore.com/things-to-do/quarry-lake (accessed on 8 April 2017).
- Stephenson, H.G.; Castendyk, D. The Reclamation of Canmore Creek—An Example of a Successful Walk Away Pit Lake Closure. Min. Eng. 2019, 71, 20. [Google Scholar]
- Sumer, S.; Pitts, L.; McCulloch, J.; Quan, H. Alberta Lake Re-Established after Draining to Mine Coal. Min. Eng. 1995, 47, 1015–1019. [Google Scholar]
- Teck. Reclamation-Example---from-a-Tailings-Pond-to-a-Trout-Pond. Available online: https://www.teck.com/news/stories/2016/reclamation-example---from-a-tailings-pond-to-a-trout-pond (accessed on 9 December 2019).
- Buzzacott, P.; Paine, D. Former Pit Mine Dive Parks. In Proceedings of the International Mine Water Association (IMWA) Congress, Bunbury, Australia, 30 September–4 October 2012. [Google Scholar]
- Schultze, M.; Hemm, M.; Geller, W.; Benthaus, F.-C. Pit Lakes in Germany: Hydrography, Water Chemistry and Management. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2013; pp. 265–291. [Google Scholar]
- Linke, S.; Schiffer, L. Development Prospects for the Post-Mining Landscape in Central Germany. In Remediation of Abandoned Surface Coal Mining Sites: A NATO-Project; Mudroch, A., Stottmeister, U., Kennedy, C., Klapper, H., Eds.; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Lund, M.A.; McCullough, C.D.; Kumar, N.R. The Collie Pit Lake District, Western Australia: An Overview. In Proceedings of the International Mine Water Association (IMWA) Congress, Bunbury, Australia, 29 September–4 October 2012. [Google Scholar]
- McCullough, C.D. Consequences and Opportunities of River Breach and Decant from an Acidic Mine Pit Lake. Ecol. Eng. 2015, 85, 328–338. [Google Scholar] [CrossRef]
- Hinwood, A.L.; Heyworth, J.; Tanner, H.; McCullough, C.D. Mine Voids Management Strategy (II): Review of Potential Health Risks Associated with Recreational Use of the Collie Pit Lakes; MiWER/Centre for Ecosystem Management Report 2010-11; Edith Cowan University: Perth, Australia, 2010. [Google Scholar]
- Hrdinka, T. Typology and Potential Utilization of Anthropogenic Lakes in Mining Pits in the Czech Republic. Limnol. Rev. 2007, 7, 47–53. [Google Scholar]
- Schultze, M.; Rinke, K.; Brode, E.; Benthaus, F.-C. Wasserqualität in Als Speicher Genutzten Tagebauseen. WASSERWIRTSCHAFT 2019, 109, 38–41. [Google Scholar] [CrossRef]
- Verburg, R.; Bezuidenhout, N.; Chatwin, T.; Ferguson, K. The Global Acid Rock Drainage Guide (Gard Guide). Mine Water Environ. 2009, 28, 305–310. [Google Scholar] [CrossRef]
- MEM. Guidelines for Metal Leaching and Acid Rock Drainage at Minesites in British Columbia; MEM (B.C. Ministry of Energy and Mines): Victoria, BC, Canada, 1998.
- Fritz, W.; Tropp, P.; Meltzer, A. A Remediation and Reclamation Strategy for Disused Brown Coal Mines in the Geiseltal Area. Surf. Min. Braunkohle Other Miner. 2001, 53, 155–166. [Google Scholar]
- Reichel, M.; Uhlig, G.; Schroeter, A.; Wilsnack, T. Natürlicher Rückhalt Und Abbau Deponiebürtiger Schadstoffe Am Beispiel Der Submersen Deponie Großkayna (Runstedter See). In Tagungsband Magdeburger Gewässerschutzseminar; Povodi Ohre: Chomutov, Czech Republic, 2010. [Google Scholar]
- MacKinnon, M.; Boerger, H. Description of Two Treatment Methods for Detoxifying Oil Sands Tailings Pond Water. Water Qual. Res. J. 1986, 21, 496–512. [Google Scholar] [CrossRef]
- Johnson, E.; Miyanishi, K. Creating New Landscapes and Ecosystems. Ann. N. Y. Acad. Sci. 2008, 1134, 120–145. [Google Scholar] [CrossRef]
- Vandenberg, J. Current Perspectives in Pit Lake Water Management and Passive Treatment. In Proceedings of the COSIA AI-EES Water Conference Workshop, Calgary, AB, Canada, 22–23 March 2016. [Google Scholar]
- Han, X.; MacKinnon, M.D.; Martin, J.W. Estimating the in Situ Biodegradation of Naphthenic Acids in Oil Sands Process Waters by Hplc/Hrms. Chemosphere 2009, 76, 63–70. [Google Scholar] [CrossRef]
- Marentette, J.R.; Frank, R.A.; Bartlett, A.J.; Gillis, P.L.; Hewitt, L.M.; Peru, K.M.; Headley, J.V.; Brunswick, P.; Shang, D.; Parrott, J.L. Toxicity of Naphthenic Acid Fraction Components Extracted from Fresh and Aged Oil Sands Process-Affected Waters, and Commercial Naphthenic Acid Mixtures, to Fathead Minnow (Pimephales Promelas) Embryos. Aquat. Toxicol. 2015, 164, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, G.A.; Tedford, E.W.; Pieters, R. Suspended Solids in an End Pit Lake: Potential Mixing Mechanisms. Can. J. Civil Eng. 2016, 43, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Lu, M. Aqueous Geochemistry of Pit Lakes—Two Cases Studies at Rävlidmyran and Udden, Sweden. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2004. [Google Scholar]
- McCullough, C.D.; Vandenberg, J.A. Studying Mine Pit Lake Systems across Multiple Scales. Mine Water Environ. 2020, in press. [Google Scholar]
- Morgenstern, N.R.; Vick, S.G.; Van Zyl, D. Independent Expert Engineering Investigation and Review Panel: Report on Mount Polley Tailings Storage Facility Breach. 30 January 2015. Available online: http://www.rosemontminetruth.com/wp-content/uploads/2015/02/ReportonMountPolleyTailingsStorageFacilityBreach.pdf (accessed on 20 January 2020).
- Vandenberg, J.; Litke, S. Beneficial Use of Springer Pit Lake at Mount Polley Mine. Mine Water Environ. 2017, 37, 663–672. [Google Scholar] [CrossRef]
- Beddoes, P.; Herrell, M.; Vandenberg, J.A.; Richards, J.; Millar, R.; McMahen, K. Validation of Springer Pit Lake Water Balance and Water Quality Model, Mount Polley Mine, British Columbia, Canada. In Proceedings of the IMWA Conference, Freiberg, Germany, 11–15 July 2016. [Google Scholar]
- Jones, H.; McCullough, C.D. Regulator Guidance and Legislation Relevant to Pit Lakes. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 137–152. [Google Scholar]
- McCullough, C.D. Mine Water Research: Enhancing Mining Industry and Academic Collaboration. Mine Water Environ. 2016, 35, 113–118. [Google Scholar] [CrossRef]
- Halír, J.; Žižka, L. Sandpit Lakes in the Tebo Basin Biosphere Reserve (Czech Republic). In Proceedings of the 10th International Mine Water Association (IMWA) Congress, Karlovy Vary, Czech Republic, 2–5 June 2008. [Google Scholar]
- Stephens, F.J.; Ingram, M. Two Cases of Fish Mortality in Low Ph, Aluminium Rich Water. J. Fish Dis. 2006, 29, 765–770. [Google Scholar] [CrossRef]
- Cech, M.; Peterka, J.; Riha, M.; Juza, T.; Kubecka, J. Distribution of Egg Strands of Perch (Perca fluviatilis L.) with Respect to Depth and Spawning Substrate. Hydrobiologia 2009, 630, 105–114. [Google Scholar] [CrossRef]
- Svoboda, I.; Vrbova, I.; Ondráček, V. Surface Coal Mining and Land Reclamation in the Czech Republic. Górnictwo i Geoinżynieria 2007, 31, 587–594. [Google Scholar]
- Otchere, F.A.; Veiga, M.M.; Hinton, J.J.; Farias, R.A.; Hamaguchi, R. Transforming Open Mining Pits into Fish Farms: Moving Towards Sustainability. Nat. Resour. Forum 2004, 28, 216. [Google Scholar] [CrossRef]
- Vandenberg, J.; Lauzon, N.; Prakash, S.; Salzsauler, K. Use of Water Quality Models for Design and Evaluation of Pit Lakes. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 63–80. [Google Scholar]
- Canadian North Environmental Services. Giant Mine Human Health and Ecological Risk Assessment; Canadian North Environmental Services: Edmonton, AB, Canada, 2017. [Google Scholar]
- Vandenberg, J.A.; McCullough, C.D.; Castendyk, D. Key Issues in Mine Closure Planning Related to Pit Lakes. In Proceedings of the joint International Conference on Acid Rock Drainage ICARD/International Mine Water Association (IMWA) Congress, Santiago, Chile, 21–24 April 2015. [Google Scholar]
- McCullough, C.D.; Harvey, B.; Unger, C.J.; Winchester, S.; Coetzee, J. From Start to Finish—A Perspective on Improving Sustainable Development Aspects on Life-of-Mine Practices. In From Start to Finish: Life of Mine Perspective; AusIMM: Brisbane, Australia, 2018; pp. 395–400. [Google Scholar]
- McNeill, S.A.; Arens, C.J.; Hogan, N.S.; Köllner, B.; van den Heuvel, M.R. Immunological Impacts of Oil Sands-Affected Waters on Rainbow Trout Evaluated Using an in Situ Exposure. Ecotoxicol. Environ. Saf. 2012, 84, 254–261. [Google Scholar] [CrossRef]
- Luek, A.; Rowan, D.J.; Rasmussen, J.B. N-P Fertilization Stimulates Anaerobic Selenium Reduction in an End-Pit Lake. Sci. Rep. 2017, 7, 10502. [Google Scholar] [CrossRef] [PubMed]
- McCullough, C.D.; Lund, M.A. Limiting Factors for Crayfish and Finfish in Acidic Coal Pit Lakes. In Proceedings of the International Mine Water Conference (IMWA) Congress, Aachen, Germany, 19–23 October 2011. [Google Scholar]
- Evans, L.; Cronin, D.; Doupé, R.G.; Hunt, D.; Lymbery, A.J.; McCullough, C.D.; Tsvetnenko, Y. Potential of Pit Lakes as a Positive Post-Mining Option—Examples, Issues and Opportunities; Centre for Sustainable Mine Lakes: Perth, Australia, 2005. [Google Scholar]
- Noller, B.N.; Ng, J.C.; Matanitobua, V.; Harris, H.H.; Zheng, J.; Huynh, T. Assessment of Ecotoxicology and Health Risk from Bioaccumulation in Fish of Heavy Metals and Metalloids from Historical Mine Practices in the Leichhardt River, Queensland, Australia. In Proceedings of the Life of Mine, Brisbane, Australia, 28–30 September 2016. [Google Scholar]
- D’Souza, G.; Miller, D.; Semmens, K.; Smith, D. Mine Water Aquaculture as an Economic Development Strategy. J. Appl. Aquac. 2004, 15, 159–172. [Google Scholar] [CrossRef]
- Lienhoop, N.; Messner, F. The Economic Value of Allocating Water to Post-Mining Lakes in East Germany. Water Resour. Manag. 2009, 23, 965–980. [Google Scholar] [CrossRef]
- Lienhoop, N.; Messner, F. The Economics of Mine Pit Restoration: The Case of Pit Lakes in Lusatia, Germany. In Acidic Pit Lakes—Legacies of Surface Mining on Coal and Metal Ores; Geller, W., Schultze, M., Kleinmann, R.L.P., Wolkersdorfer, C., Eds.; Springer: Berlin, Germany, 2013; pp. 421–435. [Google Scholar]
- McCullough, C.D. Key Mine Closure Lessons Still to Be Learned. In Proceedings of the International Mine Closure 2016 Congress, Perth, Australia, 15–17 March 2016. [Google Scholar]
- APEC. Mine Closure Checklist for Governments; Asia Pacific Economic Consortium (APEC): Toronto, ON, Canada, 2018. [Google Scholar]
- ICMM. Integrated Mine Closure: Good Practice Guide, 2nd ed.; International Council on Mining and Metals (ICMM): London, UK, 2019. [Google Scholar]
- Charette, T.; Wylynko, D. Generating Regional Guidance for Best Practice Pit Lake Closure and Reclamation. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 43–52. [Google Scholar]
- Swanson, S. What Type of Lake Do We Want? Stakeholder Engagement in Planning for Beneficial End Uses of Pit Lakes. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 29–42. [Google Scholar]
- Swanson, S.; Abbott, R.; Funk, W.; Kirk, L.; McKenna, G.; Ohlendorf, H.; Sandy, T. Building Stakeholder Engagement in Sustainable Solutions—The Strategic Advisory Panel on Selenium Management. In Proceedings of the Sixth International Conference on Mine Closure, Lake Louise, AB, Canada, 18–21 September 2011. [Google Scholar]
- Nelson, J.; Scoble, M. Social License to Operate Mines: Issues of Situational Analysis and Process. In Proceedings of the Mine Planning and Equipment Selection (MPES) Conference, Banff, AB, Canada, 31 October–3 November 2005. [Google Scholar]
- Schultze, M.; Geller, W.; Benthaus, F.C.; Jolas, P. Filling and Management of Pit Lakes with Diverted River Water and with Mine Water—German Experiences. In Mine Pit Lakes: Closure and Management; McCullough, C.D., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 107–120. [Google Scholar]
- Schultze, M.; Pokrandt, K.-H.; Scholz, E.; Jolas, P. Use of Mine Water for Filling and Remediation of Pit Lakes. In Proceedings of the International Mine Water Association (IMWA) Congress, Aachen, Germany, 4–11 September 2011. [Google Scholar]
- Pelletier, C.A.; Wen, M.; Poling, G.W. Flooding Pit Lakes with Surface Water. In Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability; Castendyk, D.N., Eary, L.E., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Englewood, CO, USA, 2009; pp. 187–202. [Google Scholar]
- McCullough, C.D.; Schultze, M. Engineered River Flow-through to Improve Mine Pit Lake and River Water Values. Sci. Total Environ. 2018, 640, 217–231. [Google Scholar] [CrossRef]
- Kulczyk, S.; Woźniak, E.; Derek, M. Landscape, Facilities and Visitors: An Integrated Model of Recreational Ecosystem Services. Ecosyst. Serv. 2018, 31, 491–501. [Google Scholar] [CrossRef]
- Nürnberg, G.K. Assessing Internal Phosphorus Load—Problems to Be Solved. Lake Reserv. Manag. 2009, 25, 419–432. [Google Scholar] [CrossRef]
Country | Wildlife | Fishery | Recreation | Source | Waste | Total |
---|---|---|---|---|---|---|
Australia | 7 | 6 | 8 | 2 | 2 | 25 |
Canada | 6 | 22 | 2 | 5 | 35 | |
Czech Republic | 11 | 7 | 18 | 11 | 3 | 50 |
Germany | 2 | 2 | 10 | 0 | 2 | 16 |
New Zealand | 2 | 0 | 1 | 0 | 0 | 3 |
Poland | 13 | 5 | 0 | 0 | 1 | 19 |
Spain | 0 | 0 | 1 | 0 | 2 | 3 |
USA | 9 | 10 | 1 | 2 | 0 | 22 |
Total | 50 | 52 | 41 | 15 | 15 |
Type | 1996 | 2018 |
---|---|---|
One-day visitors | ca. 700,000 | ca. 800,000 |
Visitors staying overnight | 19,500 | 62,500 |
Guest nights | 96,700 | 268,000 |
Average duration of stay of overnight visitors | 4.96 days | 4.29 |
Activity | Black Diamond (n = 127) | Lake Kepwari (n = 32) | Stockton Lake (n = 123) | Other (n = 6) |
---|---|---|---|---|
Swimming | 83.5 | 53.1 | 72.4 | 50 |
Kayaking/Canoeing | 15.0 | 3.1 | 15.4 | 33 |
Wading | 31.5 | 21.9 | 24.4 | 17 |
Boating | 6.3 | 9.4 | 40.7 | 0 |
Water skiing | 2.4 | 3.1 | 27.6 | 0 |
Marroning | 11.0 | 9.4 | 12.2 | 33 |
Picnicking | 42.5 | 40.6 | 47.2 | 50 |
Camping | 20.5 | 9.4 | 30.9 | 33.3 |
Walking | 7.9 | 9.4 | 2.4 | 0 |
Fishing | 1.6 | 0.0 | 1.6 | 17 |
Other | 7.1 | 28.1 | 11.4 | 0 |
Lake | Lake Number | Total Volume (in Case of Total Filling) 106 m3 | Storage Capacity 106 m3 | Surface Area (in Case of Total Filling) km2 |
---|---|---|---|---|
Senftenberg | 4 | 102 | 20.5 | 10.3 |
Sedlitz + Geierswald + Partnitz | 6 + 7 + 9 | 212 + 98 + 134 | 15.0 | 14.2 + 6.5 + 11 |
Knappenrode | 21 | 18.1 | 6.4 | 2.86 |
Burghammer | 22 | 35 | 6.0 | 4.82 |
Lohsa I | 23 | 23.3 | 5.8 | 3.42 |
Dreiweibern | 24 | 35 | 5.6 | 2.94 |
Lohsa II | 25 | 97 | 60.5 | 10.8 |
Bärwalde | 26 | 173 | 25.0 | 13.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCullough, C.D.; Schultze, M.; Vandenberg, J. Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals 2020, 10, 133. https://doi.org/10.3390/min10020133
McCullough CD, Schultze M, Vandenberg J. Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals. 2020; 10(2):133. https://doi.org/10.3390/min10020133
Chicago/Turabian StyleMcCullough, Cherie D., Martin Schultze, and Jerry Vandenberg. 2020. "Realizing Beneficial End Uses from Abandoned Pit Lakes" Minerals 10, no. 2: 133. https://doi.org/10.3390/min10020133
APA StyleMcCullough, C. D., Schultze, M., & Vandenberg, J. (2020). Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals, 10(2), 133. https://doi.org/10.3390/min10020133