3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena
Abstract
:1. Introduction
2. Methodology
2.1. Calculations
2.1.1. Calculation Methods
2.1.2. Chemical Reactivity
2.1.3. Interaction Energy of Metal-Ligand Complexes
2.2. Experimental
2.2.1. Mineral Samples and Chemical Reagents
2.2.2. Flotation Tests
3. Results and Discussion
3.1. Reagent Molecular Structure-Reaction Relationship
3.2. Reagent Ionic Structure-Reaction Relationship
Metal Ion Complexes
3.3. Flotation Separation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, B.; Yin, W.; Zhu, Z.; Wang, D.; Han, H.; Fu, Y.; Sun, H.; Chu, F.; Yao, J. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol. 2019, 354, 358–368. [Google Scholar] [CrossRef]
- Yin, W.; Yang, B.; Fu, Y.; Chu, F.; Yao, J.; Cao, S.; Zhu, Z. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol. 2019, 343, 578–585. [Google Scholar] [CrossRef]
- Piao, Z.; Wei, D.; Liu, Z.; Liu, W.; Gao, S.; Li, M. Selective depression of galena and chalcopyrite by O, O-bis (2, 3-dihydroxypropyl) dithiophosphate. Trans. Nonferrous Met. Soc. China 2013, 23, 3063–3067. [Google Scholar] [CrossRef]
- Drzymala, J.; Kapusniak, J.; Tomasik, P. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin. Int. J. Miner. Process. 2003, 70, 147–155. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Miner. Eng. 2000, 13, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, W.; Wei, D. Research progress of flotation separation and separation depressants of copper-molybdenum mixed concentrate. Met. Mine 2018, 4, 35–41. [Google Scholar]
- Valdivieso, A.L.; Cervantes, T.C.; Song, S.; Cabrera, A.R.; Laskowski, J. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner. Eng. 2004, 17, 1001–1006. [Google Scholar] [CrossRef]
- Liu, R.; Qin, W.; Fen, J.; Wang, X.; Bin, P.; Yang, Y.; Lai, C. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans. Nonferrous Met. Soc. China 2016, 26, 265–271. [Google Scholar] [CrossRef]
- Qiu, T.; Song, Y.; Qiu, X.; Li, X. Performance of organic depressants in scheelite flotation system. Chin. J. Nonferrous Met. 2017, 27, 1527–1534. [Google Scholar]
- Liu, J.; Wang, Y.; Luo, D.; Zeng, Y. Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation. Miner. Eng. 2018, 121, 31–38. [Google Scholar] [CrossRef]
- Piao, Z.; Wei, D.; Liu, Z. Effects of small molecule organic depressants on the flotation behavior of chalcopyrite and galena. J. Northeast. Univ. 2013, 34, 884–888. [Google Scholar]
- Huang, P.; Wang, L.; Liu, Q. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 2014, 128, 6–15. [Google Scholar] [CrossRef]
- Grimme, S.; Schreiner, P.R. Computational chemistry: The fate of current methods and future challenges. Angew. Chem. Int. Ed. 2018, 57, 4170–4176. [Google Scholar] [CrossRef] [PubMed]
- Miquel, S.; Frank, D.P.; Matthias, F.B. Special collection: Computational chemistry. Chemistryopen 2019, 8, 814–816. [Google Scholar]
- Mao, Y.; Wang, H.; Hu, P. Theory and applications of surface micro-kinetics in the rational design of catalysts using density functional theory calculations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1321. [Google Scholar] [CrossRef] [Green Version]
- Alipour, M. Dipole moments of molecules with multi-reference character from optimally tuned range-separated density functional theory. J. Comput. Chem. 2018, 39, 1508–1516. [Google Scholar] [CrossRef]
- Wang, L.; Sun, N.; Wang, Z.; Han, H.; Yang, Y.; Liu, R.; Hu, Y.; Tang, H.; Sun, W. Self-assembly of mixed dodecylamine-dodecanol molecules at the air/water interface based on large-scale molecular dynamics. J. Mol. Liq. 2019, 276, 867–874. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Chen, X.; Zhou, Z.; Yang, H.; Yang, B.; Xu, B.; Liu, D. Bimetallic pbncun (n = 2–14) clusters were investigated by density functional theory. Comput. Theor. Chem. 2017, 1106, 21–27. [Google Scholar] [CrossRef]
- Poling, G.W.; Liu, Q. Flotation depression of chalcopyrite with thioglycolic acid. Trans. Inst. Min. Met. Sect. C Miner. Process. Extr. Metall. 1987, 96, C7–C12. [Google Scholar]
- Huang, H.; Wang, J.; Geng, Z.; Gao, Z. A study of the chalcopyrite depression mechanism by thioglycolic acid. Conserv. Util. Min. Resour. 2015, 6, 22–26. [Google Scholar]
- Chen, J.; Feng, Q.; Lu, Y. Research on the interaction of tga with chalocopyrite and sphalerite. Conserv. Util. Min. Resour. 2002, 5, 22–24. [Google Scholar]
- Bala, T.; Prasad, B.; Sastry, M.; Kahaly, M.U.; Waghmare, U.V. Interaction of different metal ions with carboxylic acid group: A quantitative study. J. Phys. Chem. A 2007, 111, 6183–6190. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Yao, C.; Wang, Y. Sorption behaviour and mechanism of ytterbium (III) on imino-diacetic acid resin. Hydrometallurgy 2006, 82, 190–194. [Google Scholar] [CrossRef]
- Chen, L.; Liu, T.; Ma, C. Metal complexation and biodegradation of edta and s, s-edds: A density functional theory study. J. Phys. Chem. A 2010, 114, 443–454. [Google Scholar] [CrossRef] [PubMed]
Sample | Cu | Pb | Fe | S | Si | Other |
---|---|---|---|---|---|---|
chalcopyrite | 32.12 | / | 30.73 | 34.67 | 1.12 | 1.36 |
galena | / | 81.17 | 1.21 | 13.15 | 2.20 | 2.27 |
Reagent | Mulliken Charges/e | Front Orbital Energy/ev | Electronegativity | |||
---|---|---|---|---|---|---|
–SH,S | –OH,O | S+O | EHOMO | ELUMO | (χ) | |
3-mercaptopropionic acid | −0.142 | −0.571 | −0.713 | −0.24598 | 0.00350 | 0.12474 |
3-mercaptoisobutyrate acid | −0.138 | −0.571 | −0.709 | −0.24720 | 0.00248 | 0.12484 |
mercaptoacetic acid | −0.100 | −0.553 | −0.653 | −0.25017 | −0.01000 | 0.12009 |
Reagent | Mulliken Charges/e | Front Orbital Energy/ev | Electronegativity | |||
---|---|---|---|---|---|---|
–SH, S | –OH,O | S+O | EHOMO | ELUMO | (χ) | |
depressant ions generated by removing hydrogen atoms from carboxyl group | ||||||
3-mercaptopropionic acid | −0.183 | −0.674 | −0.857 | −0.18904 | 0.03703 | 0.11304 |
3-mercaptoisobutyrate acid | −0.182 | −0.669 | −0.851 | −0.18892 | 0.03665 | 0.11279 |
mercaptoacetic acid | −0.187 | −0.633 | −0.820 | −0.20040 | 0.05053 | 0.12547 |
depressant ions produced by removing hydrogen atoms from sulfhydryl groups | ||||||
3-mercaptopropionic acid | −0.858 | −0.576 | −1.434 | −0.16358 | 0.01562 | 0.08960 |
3-mercaptoisobutyrate acid | −0.858 | −0.578 | −1.436 | −0.16346 | 0.01777 | 0.09062 |
mercaptoacetic acid | −0.792 | −0.576 | −1.368 | −0.17134 | 0.01520 | 0.09327 |
Reagent | Mental | Energy | A | B | C |
---|---|---|---|---|---|
3-mercaptopropionic acid | Cu | Totalenergy(E)/(a.u.) | −1528.115 | −1528.166 | −1528.157 |
Binding energy(ΔE)/(KJ/mol) | −861.371 | −907.302 | −874.720 | ||
Pb | Totalenergy(E)/(a.u.) | −1335.507 | −1335.521 | −1335.521 | |
Binding energy(ΔE)/(KJ/mol) | −503.090 | −557.591 | −549.989 | ||
3-mercaptoisobutyrate acid | Cu | Totalenergy(E)/(a.u.) | −1606.794 | −1606.793 | −1606.799 |
Binding energy(ΔE)/(KJ/mol) | −891.434 | −904.917 | −912.499 | ||
Pb | Totalenergy(E)/(a.u.) | −1414.126 | −1414.160 | −1414.156 | |
Binding energy(ΔE)/(KJ/mol) | −481.762 | −587.515 | −567.833 | ||
mercaptoacetic acid | Cu | Totalenergy(E)/(a.u.) | −1449.517 | −1449.528 | −1449.539 |
Binding energy(ΔE)/(KJ/mol) | −818.482 | −863.343 | −885.255 | ||
Pb | Totalenergy(E)/(a.u.) | −1256.890 | −1256.899 | −1256.899 | |
Binding energy(ΔE)/(KJ/mol) | −516.158 | −554.749 | −546.243 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Xu, R.; Wang, L.; Jiang, F.; Jin, J.; Gao, Z.; Tang, H.; Sun, W. 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals 2020, 10, 258. https://doi.org/10.3390/min10030258
Liu R, Xu R, Wang L, Jiang F, Jin J, Gao Z, Tang H, Sun W. 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals. 2020; 10(3):258. https://doi.org/10.3390/min10030258
Chicago/Turabian StyleLiu, Ruohua, Rui Xu, Li Wang, Feng Jiang, Jiao Jin, Zhiyong Gao, Honghu Tang, and Wei Sun. 2020. "3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena" Minerals 10, no. 3: 258. https://doi.org/10.3390/min10030258
APA StyleLiu, R., Xu, R., Wang, L., Jiang, F., Jin, J., Gao, Z., Tang, H., & Sun, W. (2020). 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals, 10(3), 258. https://doi.org/10.3390/min10030258