Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bubble Coalescence Measurements
2.3. Determination of Surface Tension Isotherms
3. Results
3.1. CCC Values of the Frothers
3.2. Surface Tension Isotherms and Theoretical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castro, S.; Miranda, C.; Toledo, P.; Laskowski, J.S. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process. 2013, 124, 8–14. [Google Scholar] [CrossRef]
- Farrokhpay, S. The significance of froth stability in mineral flotation—A review. Adv. Colloid Interface Sci. 2011, 166, 1–7. [Google Scholar] [CrossRef]
- Finch, J.A.; Nesset, J.E.; Acuña, C. Role of frother on bubble production and behaviour in flotation. Miner. Eng. 2008, 21, 949–957. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, J.R.; Gomez, C.O.; Finch, J.A. A technique for the direct measurement of bubble size distributions in industrial flotation cells. In Proceedings of the 34th Annual Meeting of the Canadian Mineral Processors, Ottawa, ON, Canada, 22–24 January 2002; pp. 389–402. [Google Scholar]
- Tan, Y.H.; Rafiei, A.A.; Elmahdy, A.; Finch, J.A. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers. Int. J. Miner. Process. 2013, 119, 1–5. [Google Scholar] [CrossRef]
- Firouzi, M.; Nguyen, A.V. On the effect of van der Waals attractions on the critical salt concentration for inhibiting bubble coalescence. Miner. Eng. 2014, 58, 108–112. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Evans, G.M. Movement of fine particles on an air bubble surface studied using high-speed video microscopy. J. Colloid Interface Sci. 2004, 273, 271–277. [Google Scholar] [CrossRef]
- Orvalho, S.; Ruzicka, M.C.; Olivieri, G.; Marzocchella, A. Bubble coalescence: Effect of bubble approach velocity and liquid viscosity. Chem. Eng. Sci. 2015, 134, 205–216. [Google Scholar] [CrossRef]
- Bournival, G.; Ata, S.; Karakashev, S.I.; Jameson, G.J. An investigation of bubble coalescence and post-rupture oscillation in non-ionic surfactant solutions using high-speed cinematography. J. Colloid Interface Sci. 2014, 414, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Gungoren, C.; Islek, E.; Baktarhan, Y.; Kursun, I.; Ozdemir, O. A novel technique to investigate the bubble coalescence in the presence of surfactant (MIBC) and electrolytes (NaCl and CaCl2). Physicochem. Probl. Miner. Process. 2018, 54, 1215–1222. [Google Scholar]
- Kracht, W.; Finch, J.A. Using sound to study bubble coalescence. J Colloid Interface Sci. 2009, 332, 237–245. [Google Scholar] [CrossRef]
- Wang, L.; Qu, X. Impact of interface approach velocity on bubble coalescence. Miner. Eng. 2012, 26, 50–56. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Hampton, M.A.; Nguyen, A.V.; Birkett, G.R. The influence of gas velocity, salt type and concentration on transition concentration for bubble coalescence inhibition and gas holdup. Chem. Eng. Res. Des. 2012, 90, 33–39. [Google Scholar] [CrossRef]
- Bournival, G.; Pugh, R.J.; Ata, S. Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation. Miner. Eng. 2012, 25, 47–53. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Grau, R.A.; Heiskanen, K. Bubble size distribution in laboratory scale flotation cells. Miner. Eng. 2005, 18, 1164–1172. [Google Scholar] [CrossRef]
- Kracht, W.; Rebolledo, H. Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems. Miner. Eng. 2013, 50–51, 77–82. [Google Scholar] [CrossRef]
- Laskowski, J.S. Testing flotation frothers. Physicochem. Probl. Miner. Process. 2004, 38, 13–22. [Google Scholar]
- Grandon, F.; Alvarez, J.; Gomez, C. Frother dosage in laboratory flotation testing. In Proceedings of the 11th International Mineral Processing Conference, Santiago, Chile, 21–23 October 2015. [Google Scholar]
- Veras, M.M.; Baltar, C.A.M.; Paulo, J.B.A.; Leite, J.Y.P. Comparative study of the main flotation frothers using a new HYDROMESS adapted technique. Rev. Esc. Minas 2014, 67, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kowalczuk, P.B. Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers. Ind. Eng. Chem. Res. 2013, 52, 11752–11757. [Google Scholar] [CrossRef]
- Marucci, G.; Nicodemo, L. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes. Chem. Eng. Sci. 1967, 22, 1257–1265. [Google Scholar] [CrossRef]
- Ozdemir, O.; Du, H.; Karakashev, S.I.; Nguyen, A.V.; Celik, M.S.; Miller, J.D. Understanding the role of ion interactions in soluble salt flotation with alkylammonium and alkylsulfate collectors. Adv. Colloid Interface Sci. 2011, 163, 1–22. [Google Scholar] [CrossRef]
- Chan, B.S.; Tsang, Y.H. A theory on bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence. J. Colloid Interface Sci. 2005, 286, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Craig, V.S.J.; Ninham, B.W.; Pashley, R.M. Effect of electrolytes on bubble coalescence. Nature (London) 1993, 364, 317–319. [Google Scholar] [CrossRef]
- Craig, V.S.J.; Ninham, B.W.; Pashley, R.M. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97, 10192–10197. [CrossRef]
- Slavchov, R.I.; Karakashev, S.I.; Ivanov, I.B. Ionic Surfactants and Ion-Specific Effects: Adsorption, Micellization, Thin Liquid Films; in Surfactant Science and Technology: Retrospects and Prospects; Romsted, L.S., Ed.; Taylor & Francis Group Publishing: Abingdon, UK, 2013; In press. [Google Scholar]
- Helfand, E.; Frish, H.; Lebowitz, J. Theory of the Two- and One-Dimensional Rigid Sphare Fluids. J. Chem. Phys. 1961, 34, 1037–1042. [Google Scholar] [CrossRef]
- Ivanov, I.B.; Danov, K.D.; Dimitrova, D.; Boyanov, M.; Ananthapadmanabhan, K.P.; Lips, A. Equations of state and adsorption isotherms of low molecular non-ionic surfactants. Coll. Surf. A 2010, 354, 118–133. [Google Scholar] [CrossRef]
- Baxter, R.J. Percus-Yevick equation for hard spheres with surface adhesion. J. Chem. Phys. 1969, 49, 2770–2774. [Google Scholar] [CrossRef]
- Tan, Y.H.; Zhang, W.; Finch, J.A. Frother structure-property relationship: Effect of polyethylene glycols on bubble rise velocity. Miner. Eng. 2018, 116, 56–61. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Cho, Y.S.; Ding, K. Effect of frothers on bubble size and foam stability in potash ore flotation systems. Can. J. Chem. Eng. 2003, 81, 63–69. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Tlhone, T.; Williams, P.; Ding, K. Fundamental properties of the polyoxypropylene alkyl ether flotation frothers. Int. J. Miner. Process. 2003, 72, 289–299. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Bubble coalescence and its effect on dynamic foam stability. Canadian J. Chem. Eng. 2002, 80, 299–305. [Google Scholar] [CrossRef]
- Gupta, A.K.; Banerjee, P.K.; Mishra, A. Effect of Frothers on Foamability, Foam Stability, and Bubble Size. Coal Prep. 2007, 27, 107–125. [Google Scholar] [CrossRef]
- Khoshdast, H.; Sam, A. Flotation Frothers: Review of Their Classifications, Properties and Preparation. Open Miner. Process. J. 2011, 4, 25–44. [Google Scholar]
- Srinivas, A.; Ghosh, P. Coalescence of bubbles in aqueous alcohol solutions. Ind. Eng. Chem. Res. 2012, 51, 795–806. [Google Scholar]
- Castillo, P.; Alvarez, J.; Gomez, C. Analytical method to calculate the critical coalescence concentration (CCC). In Proceedings of the XXVII International Mineral Processing Congress (IMPC 2014), Santiago, Chile, 20–24 October 2014; 2014. [Google Scholar]
- Corona-Arroyo, M.A.; López-Valdivieso, A.; Laskowski, J.S.; Encinas-Oropesa, A. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Miner. Eng. 2015, 81, 109–115. [Google Scholar] [CrossRef]
- Zhu, H.; Valdivieso, A.L.; Zhu, J.; Song, S.; Min, F.; Corona Arroyo, M.A. A study of bubble size evolution in Jameson flotation cell. Chem. Eng. Res. Des. 2018, 137, 461–466. [Google Scholar] [CrossRef]
- Drzymala, J.; Kowalczuk, P.B. Classification of flotation frothers. Minerals 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
Chemical | Hydroxyl Value (mgKOH/g) | Molecular Weight (g/mol) | Formula | HLB | pH (1% Solution) | Molecular Structure |
---|---|---|---|---|---|---|
PPG 200 n ~ 3.5 | 510–623 | 180–220 | HO(C3H6O)nH | 10.55 | 5.0–7.0 | |
PPG 400 n ~ 6.5 | 255–312 | 360–440 | HO(C3H6O)nH | 8.69 | 5.0–7.0 | |
PPG 600 n ~ 10 | 170–208 | 540–660 | HO(C3H6O)nH | 8.25 | 5.0–7.0 | |
BTPG n = 3 | ~75 Polyglycols | 248.36 | C4H9(C3H6O)nOH | 6.63 | 5.0–7.0 | |
BTEG n = 3 | ≥50%–<100% Polyglycols | 206.2793 | C4H9(C2H4O)nOH | 8.05 | 5.0–7.0 | |
BDPG n = 2 | 98.5 Polyglycols | 190.28 | C4H9(C3H6O)nOH | 6.75 | 5.0–7.0 | |
MIBC | w/w:≥100% | 102.17 | CH3CH(OH)CH2−−CH(OH)CH3 | 6.53 | 5.0–6.0 |
Frother | CCC (ppm) | CCC (mol/L) |
---|---|---|
PPG 600 | 3 | 5.00 × 10−6 |
PPG 400 | 4 | 9.52 × 10−6 |
BTPG | 5 | 2.01 × 10−5 |
MIBC | 10 | 9.78 × 10−5 |
PPG 200 | 11 | 5.73 × 10−5 |
BDPG | 17 | 8.93 × 10−5 |
BTEG | 20 | 9.7 × 10−5 |
Frothers | Molecular Weight (g/mol) | (A2) | CCC (mol/L) | ||
---|---|---|---|---|---|
PPG 600 | 540–660 | 0.05 | 166.00 | 0.68 | 5.00 × 10−6 |
PPG 400 | 360–440 | 0.05 | 49.28 | 0 | 9.52 × 10−6 |
BTPG | 248.36 | 9.72 × 10−4 | 23.00 | 0 | 2.01 × 10−5 |
PPG 200 | 180–220 | 3.60 × 10−5 | 21.85 | 0 | 5.73 × 10−5 |
BDPG | 190.28 | 2.46 × 10−4 | 19.96 | 0 | 8.93 × 10−5 |
BTEG | 206.2793 | 9.79 × 10−5 | 12.39 | 0 | 9.70 × 10−5 |
MIBC | 102.17 | 1.17 × 10−4 | 9.93 | 0 | 9.78 × 10−5 |
Frother | CCC (mmol/L) | CCC (ppm) | Method | Literature |
---|---|---|---|---|
MIBC | 0.079 | 8.1 | Three-hole sparger, open-top flotation cell University of Cape Town, (UCT) bubble size analyzer and D32 | [15] |
MIBC | 0.11 | 11.2 | Sauter mean bubble diameter (D32) UCT bubble sizer and DFI-CCC diagram | [18] |
MIBC | 0.352 | 36.0 | Camera and image analysis Sauter mean diameter (D50) | [35] |
MIBC | 0.11 | 11.2 | UCT bubble size analyzer and Sauter mean bubble diameter CCC values | [36] |
MIBC/DF-200 | 0.094 | 9.6 | ||
MIBC/DF-250 | 0.067 | 6.85 | ||
MIBC/DF-1024 | 0.049 | 5.01 | ||
MIBC | 0.098 | 10.0 | Scatter the HeNe laser and stochastic mode/Hydrophillic Lipophillic Balance (HLB) | [37] |
MIBC | 0.108 | 11.0 | The capillary tube was studied; acoustic emissions were recorded | [17] |
MIBC | 0.098 | 10.0 | HLB and Sauter mean bubble diameter | [21] |
MIBC | 0.124 | 12.7 | Calculated from the average and standard deviation of 5 measurements | [38] |
MIBC | 0.196 | 20.0 | Sauter mean bubble diameter (D32) | [20] |
MIBC (analytical grade) | 0.07 | 7.2 | McGill bubble size analyzer/D32 mm Sauter mean bubble diameter | [19] |
MIBC (commercial) | 0.068 | 7.0 | ||
MIBC | 0.079 | 8.1 | Sauter mean diameter (D32) and HLB group number calculated | [39] |
MIBC CC95 | 0.059 | 6.0 | Sauter mean diameter (D32) | [40] |
MIBC CC90 | 0.046 | 4.7 | ||
MIBC CC85 | 0.038 | 3.9 | ||
MIBC | 0.11 | 11.2 | Sauter mean bubble diameter/HLB/MW | [41] |
MIBC | 0.098 | 10.0 | Bubble-bubble contact time | [10] |
MIBC* | 0.098 ± 0.035 | 10.02 ± 3.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guven, O.; Batjargal, K.; Ozdemir, O.; Karakashev, S.I.; Grozev, N.A.; Boylu, F.; Çelik, M.S. Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers. Minerals 2020, 10, 617. https://doi.org/10.3390/min10070617
Guven O, Batjargal K, Ozdemir O, Karakashev SI, Grozev NA, Boylu F, Çelik MS. Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers. Minerals. 2020; 10(7):617. https://doi.org/10.3390/min10070617
Chicago/Turabian StyleGuven, Onur, Khandjamts Batjargal, Orhan Ozdemir, Stoyan I. Karakashev, Nikolay A. Grozev, Feridun Boylu, and Mehmet Sabri Çelik. 2020. "Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers" Minerals 10, no. 7: 617. https://doi.org/10.3390/min10070617
APA StyleGuven, O., Batjargal, K., Ozdemir, O., Karakashev, S. I., Grozev, N. A., Boylu, F., & Çelik, M. S. (2020). Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers. Minerals, 10(7), 617. https://doi.org/10.3390/min10070617