Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications
Abstract
:1. Introduction
2. The Augustinovka Meteorite
3. Materials and Methods
4. Results
4.1. Occurrence and Associated Minerals
4.2. Appearance and Physical Properties of Xenophyllite.
4.3. Single-Crystal Study and Powder X-Ray Diffraction
4.4. Chemical Composition
4.5. Raman Spectroscopy
5. Discussion
5.1. Relationships between Xenophyllite, Synthetic Na4Fe7(PO4)6 and ANa3M7(PO4)6 Phosphates
5.2. Xenophyllite and Galileiite
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yakubovich, O.V.; Simonov, M.A.; Belov, N.V. The crystal structure of a synthetic triphylite LiFe(PO4). Sov. Phys. Dokl. 1977, 22, 347–348. [Google Scholar]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho olivines as Positive Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Jamesh, M.I.; Prakash, A.S. Advancement of technology towards developing Na-ion batteries. J. Power Sources 2018, 378, 268–300. [Google Scholar] [CrossRef]
- Pu, X.; Rong, C.; Tang, S.; Cao, S.; Wang, H.; Ding, Y.; Cao, Y.; Chen, Z. Zero-strain Na4Fe7(PO4)6 as a novel cathode material for sodium-ion batteries. Chem. Commun. 2019, 55, 9043–9046. [Google Scholar] [CrossRef] [PubMed]
- Britvin, S.N. New Minerals Approved in 2006. Nomenclature Modifications Approved in 2006 by the Commission on New Minerals, Nomenclature and Classification; Burke, E.A.J., Ferraris, G., Hatert, F., Eds.; International Mineralogical Association: Paris, France, 2006; Available online: http://cnmnc.main.jp/minerals2006.pdf (accessed on 25 February 2020).
- Alexeev, W. Ueber den Meteorit aus dem Dorfe Awgustinowka, Gouvernement Jekaterinoslaw. Proc. Rus. Miner. Soc. 1893, 30, 475. [Google Scholar]
- Meunier, M.S. Sur le météorique d’Augustinowka (Russie). Compt. Rend. Acad. Sci. 1893, 116, 1151–1153. [Google Scholar]
- Buchwald, V.F. Handbook of Iron Meteorites; University of California Press: Berkeley, CA, USA, 1975; Volume 2, pp. 279–281. [Google Scholar]
- The Augustinovka meteorite. Available online: https://webmineral.ru/minerals/image.php?id=12970 (accessed on 25 February 2020).
- Olsen, E.; Fredriksson, K. Phosphates in iron and pallasite meteorites. Geochim. Cosmochim. Acta 1966, 30, 459–470. [Google Scholar] [CrossRef]
- Olsen, E.J.; Kracher, A.; Davis, A.M.; Steele, I.M.; Hutcheon, I.D.; Bunch, T.E. The phosphates of IIIAB iron meteorites. Meteorit. Planet. Sci. 1999, 34, 285–300. [Google Scholar] [CrossRef]
- Pieczka, A.; Hawthorne, F.C.; Ball, N.; Abdu, Y.; Gołębiowska, B.; Włodek, A.; Żukrowski, J. Graftonite-(Mn), ideally M1MnM2,M3Fe2(PO4)2, and graftonite-(Ca), ideally M1CaM2,M3Fe2(PO4)2, two new minerals of the graftonite group from Poland. Miner. Mag. 2018, 82, 1307–1322. [Google Scholar] [CrossRef] [Green Version]
- X-AREA, Version 1.42; Stoe & Cie GmbH: Darmstadt, Germany, 2007.
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proc. Russ. Miner. Soc. 2017, 146, 104–107. [Google Scholar]
- Stoe and Cie GmbH. STOE WinXPOW (Version 1.06); Stoe and Cie GmbH: Darmstadt, Germany, 1999. [Google Scholar]
- Mandarino, J.A. The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. Can. Miner. 1981, 19, 441–450. [Google Scholar]
- Olsen, E.J.; Steele, I.M. Galileiite: A new meteoritic phosphate mineral. Meteorit. Planet. Sci. 1997, 32, A155–A156. [Google Scholar] [CrossRef]
- Chen, M.; Xie, X. Na behavior in shock-induced melt phase of the Yanzhuang (H6) chondrite. Eur. J. Miner. 1996, 8, 325–333. [Google Scholar]
- Xie, X.; Chen, M.; Zhai, S.; Wang, F. Eutectic metal + troilite + Fe-Mn-Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite. Meteorit. Planet. Sci. 2014, 49, 2290–2304. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Karmanov, N.S.; Podgornykh, N.M. Na-Fe-Phosphate Globules in Impact Metal-Troilite Associations of Chelyabinsk Meteorite. In Proceedings of the 79th Annual Meeting of the Meteoritical Society, Berlin, Germany, 7–12 August 2016. [Google Scholar]
- Yakubovich, O.V.; Mel’nikov, O.K.; Urusov, V.S.; Massa, V.; Vochadlo, S. Crystal structure of a new orthophosphate CsNa3Zn7(PO4)6. Doklady Akademii Nauk-Rossijskaya Akademiya Nauk 1996, 348, 755–758. [Google Scholar]
- Queen, W.L.; Hwu, S.-J.; Wang, L. A Low-Dimensional Iron(II) Phosphate Exhibiting Field-Dependent Magnetization Steps. Angew. Chem. Int. Ed. 2007, 46, 5344–5347. [Google Scholar] [CrossRef]
- Guo, W.; He, Z.; Zhang, S.; Yang, M.; Tang, Y.; Cheng, W. KNa3Mn7(PO4)6: 2D spin-frustrated magnetic material with a diamond-like chain structure. RSC Adv. 2014, 4, 21559–21562. [Google Scholar] [CrossRef]
- Ben Hamed, T.; Boukhris, A.; Badri, A.; Ben Amara, M. Synthesis and crystal structure of a new magnesium phosphate Na3RbMg7(PO4)6. Acta Cryst. E 2017, 73, 817–820. [Google Scholar] [CrossRef]
- Böhnisch, D.; Rosenboom, J.; García-Fuente, A.; Urland, W.; Jüstel, T.; Baur, F. On the Blue Emitting Phosphor Na3RbMg7(PO4)6:Eu2+ Showing Ultra High Thermal Stability. J. Mater. Chem. C 2019, 7, 6012–6021. [Google Scholar] [CrossRef]
- Moring, J.; Kostiner, E. The crystal structure of Na4Ni7(PO4)6. J. Solid State Chem. 1986, 62, 105–111. [Google Scholar] [CrossRef]
- Kobashi, D.; Kohara, S.; Yamakawa, J.; Kawahara, A. Un monophosphate synthetique de sodium et de cobalt: Na4Co7(PO4)6. Acta Cryst. C 1998, 54, 7–9. [Google Scholar] [CrossRef]
- Ben Smail, R.; Driss, A.; Jouini, T. K4Ni7(AsO4)6. Acta Cryst. C 1999, 55, 284–286. [Google Scholar] [CrossRef] [Green Version]
- Marzouki, R.; Frigui, W.; Guesmi, A.; Zid, M.F.; Driss, A. β-Xenophyllite-type Na4Li0.62Co5.67Al0.71(AsO4)6. Acta Cryst. 2013, 69, i65–i66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Smida, Y.; Marzouki, R.; Georges, S.; Kutteh, R.; Avdeev, M.; Guesmi, A.; Zid, M.F. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6. J. Solid State Chem. 2016, 239, 8–16. [Google Scholar] [CrossRef]
- Issaoui, C.; Chebbi, H.; Guesmia, A. Crystal structure of Na4Co7−xAl0.67x(As1−yPyO4)6 (x = 1.60; y = 0.116). Acta Cryst. 2016, 72, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Marzouki, R. Electrical properties and alkali-pathways simulation of new mixed conductor Na4Li0.62Co5.67Al0.71(AsO4)6. Mater. Res. Exp. 2020, 7, 016313. [Google Scholar] [CrossRef]
- Matvienko, E.N.; Yakubovich, O.V.; Simonov, M.A.; Belov, N.V. The crystal structure of K, Fe-orthophosphate KFe4(PO4)3. Doklady Akademii Nauk SSSR 1981, 259, 591–595. [Google Scholar]
- Moore, P.B. Perception of structural complexity: Fillowite revisited and α-iron related. Am. Miner. 1989, 74, 918–1926. [Google Scholar]
- Attfield, J.P.; Cheetham, A.K.; Cox, D.E.; Sleight, A.W. Synchrotron X-ray and Neutron Powder Diffraction Studies of the Structure of α-CrPO4. J. Appl. Cryst. 1988, 21, 452–457. [Google Scholar] [CrossRef]
- Daidouh, A.; Pico, C.; Veiga, M.L. Structure features and ionic conductivity of the AM4(PO4)3 orthophosphates: (A = Na, K, Rb; M = Ni, Mn). Solid State Ion. 1999, 124, 109–117. [Google Scholar] [CrossRef]
- Chen, Y. Mild hydrothermal synthesis and structures of mixed-valence iron phosphates: SrFe3(PO4)3 and the interesting Mg2+-doped AFe3(PO4)3 (A = Ba, Pb) in Fe2+ site. Cryst. Res. Technol. 2012, 47, 1185–1189. [Google Scholar] [CrossRef]
- Anderson, J.B.; Moring, J.; Kostiner, E. Disorder in the crystal structure of NaNi4(PO4)3. J. Solid State Chem. 1985, 60, 358–365. [Google Scholar] [CrossRef]
- Amara, M.B.; Vlasse, M.; Olazcuaga, R.; le Flem, G.; Hagenmuller, P. La structure de l’orthophosphate triple de magnesium et de sodium, NaMg4(PO4)3. Acta Cryst. C 1983, 39, 936–939. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Evdokimova, O.A.; Mel’nikov, O.K.; Simonov, M.A. Crystal structure of the new K, Mn2+ orthophosphate KMn4(PO4)3. Sov. Phys. Cryst. 1986, 31, 151–154. [Google Scholar]
- Baies, R.; Perez, O.; Caignaert, V.; Pralong, V.; Raveau, B. A new sodium cobaltophosphate with a tunnel structure, ionic conductor. J. Mater. Chem. 2006, 16, 2434–2438. [Google Scholar] [CrossRef]
- Tomaszewski, P.E.; Maczka, M.; Majchrowski, A.; Waskowska, A.; Hanuza, J. Crystal structure and vibrational properties of KMg4(PO4)3. Solid State Sci. 2005, 7, 1201–1208. [Google Scholar] [CrossRef]
- Daidouh, A.; Martinez, J.L.; Pico, C.; Veiga, M.L. Structure characterization and magnetic behavior of NaNi4(PO4)3 and KMn4(PO4)3. J. Solid State Chem. 1999, 144, 169–174. [Google Scholar] [CrossRef]
- Semenenko, V.P.; Perron, C. Shock-melted material in the Krymka LL3.1 chondrite: Behavior of the opaque minerals. Meteorit. Planet. Sci. 2005, 40, 173–185. [Google Scholar] [CrossRef]
- Sharygin, V.V. Na-Fe-Phosphate Globules in Impact Metal-Sulfide Associations from Meteorite Chelyabinsk: Composition and Raman Spectroscopy. In Proceedings of the IV International conference “Meteorites. Asteroids. Comets”, Ekaterinburg, Russia, 26–28 May 2016. [Google Scholar]
- D’Orazio, M.; Folco, L.; Chaussidon, M.; Rochette, P. Sahara 03505 sulfide-rich iron meteorite: Evidence for efficient segregation of sulfide-rich melt during high-degree impact melting of an ordinary chondrite. Meteor. Planet. Sci. 2009, 44, 221–231. [Google Scholar] [CrossRef]
- Sharygin, V.V. Sarcopside from "black blocks" of the 45 mine burned dump, Kopeisk, Chelyabinsk coal basin. In Proceedings of the "Mineralogy of the Urals", Miass-Ekaterinburg, Russia, 22–27 August 2011; pp. 183–186. [Google Scholar]
- Sharygin, V.V. Phosphate Inclusions in Cohenite from “Black Blocks” of the 45 Mine Burned Dump, Kopeisk, Chelyabinsk Coal Basin. In Proceedings of the Mineralogy of Technogenesis, Miass, Russia, 23–26 June 2016; pp. 34–49. [Google Scholar]
Sarcopside | Chromite | |||||
---|---|---|---|---|---|---|
wt.% 1 | Range | sd 3 | wt.% 2 | Range | sd 3 | |
FeO | 57.30 | 56.51–57.72 | 0.33 | 32.01 | 31.44–32.66 | 0.43 |
MnO | 2.12 | 1.72–2.61 | 0.23 | 0.20 | 0.00–0.56 | |
CoO | 0.08 | 0.00–0.25 | 0.16 | 0.00–0.42 | ||
Cr2O3 | bdl 4 | 68.03 | 67.47–68.47 | 0.40 | ||
P2O5 | 40.19 | 39.80–40.60 | 0.20 | bdl 4 | ||
Total | 99.69 | 100.40 |
Wt.% 1 | Range | sd 2 | |
---|---|---|---|
Fe | 62.17 | 61.15–63.39 | 0.78 |
Ni | 22.18 | 21.29–23.14 | 0.76 |
Co | 0.19 | 0.13–0.27 | 0.05 |
P | 15.51 | 15.30–15.85 | 0.17 |
S | bdl 3 | ||
Total | 100.05 |
Imeas | dmeas | dcalc | h | k | l | Imeas | dmeas | dcalc | h | k | l | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
32 | 7.47 | 7.49 | 1 | 1 | 1 | 12 | 1.755 | 1.757 | 4 | 1 | 7 | |
56 | 5.860 | 5.877 | 0 | 0 | 3 | 1.756 | 3 | 5 | 4 | |||
5.843 | −1 | −1 | 2 | 1.754 | 5 | 4 | 2 | |||||
4 | 4.964 | 4.967 | 1 | −1 | 1 | 1.754 | −4 | −3 | 6 | |||
12 | 4.789 | 4.799 | −1 | 0 | 3 | 8 | 1.732 | 1.733 | 0 | 1 | 10 | |
4.787 | 2 | 1 | 0 | 1.731 | 1 | 5 | 4 | |||||
4.785 | 1 | 2 | 0 | 6 | 1.646 | 1.646 | −4 | 2 | 2 | |||
10 | 3.908 | 3.913 | −2 | –2 | 1 | 1.646 | −4 | −3 | 7 | |||
3.911 | 0 | −1 | 4 | 1.645 | −3 | 3 | 3 | |||||
3.899 | 1 | −1 | 3 | 6 | 1.639 | 1.640 | 5 | 2 | 6 | |||
22 | 3.319 | 3.317 | 2 | −1 | 1 | 1.640 | −3 | −1 | 9 | |||
3.315 | 2 | 1 | 4 | 1.639 | 1 | −3 | 8 | |||||
47 | 3.188 | 3.191 | −1 | −2 | 4 | 1.639 | −3 | −5 | 5 | |||
3.187 | 3 | 1 | 0 | 1.638 | 5 | 0 | 4 | |||||
3.186 | 1 | 3 | 0 | 3 | 1.607 | 1.608 | −5 | −5 | 1 | |||
3.184 | −1 | −1 | 5 | 1.606 | 5 | 5 | 2 | |||||
100 | 3.020 | 3.024 | −3 | −2 | 1 | 8 | 1.594 | 1.594 | 6 | 2 | 0 | |
3.022 | 1 | 3 | 2 | 1.593 | 3 | 6 | 1 | |||||
14 | 2.919 | 2.922 | 1 | −2 | 3 | 1.593 | 2 | −3 | 7 | |||
2.921 | −2 | −2 | 4 | 1.593 | −4 | 1 | 6 | |||||
2.917 | −1 | 2 | 3 | 1.593 | 6 | 2 | 1 | |||||
19 | 2.856 | 2.856 | 0 | −3 | 1 | 1.593 | 2 | 6 | 0 | |||
14 | 2.813 | 2.812 | 1 | 0 | 6 | 10 | 1.559 | 1.560 | −1 | −1 | 11 | |
67 | 2.719 | 2.722 | 0 | −2 | 5 | 1.560 | −1 | −5 | 6 | |||
2.718 | 2 | 2 | 5 | 1.560 | −4 | −5 | 5 | |||||
77 | 2.703 | 2.701 | 3 | 3 | 0 | 1.559 | −1 | 5 | 2 | |||
2.701 | 2 | −1 | 4 | 1.559 | 5 | 2 | 7 | |||||
39 | 2.568 | 2.569 | −3 | 0 | 3 | 1.559 | 0 | 4 | 8 | |||
2.566 | 1 | −1 | 6 | 1.558 | −6 | −3 | 2 | |||||
18 | 2.534 | 2.534 | −3 | −1 | 4 | 1.558 | –5 | −4 | 5 | |||
31 | 2.395 | 2.396 | 1 | 3 | 5 | 4 | 1.533 | 1.534 | −1 | 4 | 7 | |
2.394 | 4 | 2 | 0 | 1.534 | −1 | 3 | 9 | |||||
2.393 | 2 | 4 | 0 | 1.533 | 4 | 6 | 2 | |||||
10 | 2.345 | 2.345 | 1 | 4 | 1 | 6 | 1.518 | 1.519 | 6 | 2 | 4 | |
8 | 2.104 | 2.106 | 0 | −4 | 2 | 1.518 | −5 | 1 | 3 | |||
2.104 | −1 | −1 | 8 | 4 | 1.503 | 1.503 | −3 | −2 | 10 | |||
6 | 1.944 | 1.943 | 3 | −2 | 3 | 1.503 | 5 | −1 | 4 | |||
1.942 | 4 | 3 | 5 | 5 | 1.445 | 1.446 | −1 | 2 | 11 | |||
1.942 | −4 | −2 | 5 | 1.446 | 0 | −1 | 12 | |||||
10 | 1.867 | 1.869 | 3 | −2 | 4 | 1.446 | 5 | 5 | 6 | |||
1.868 | −3 | −5 | 1 | 1.445 | 2 | 3 | 11 | |||||
1.867 | −5 | −3 | 1 | 1.445 | −1 | −6 | 4 | |||||
1.866 | 5 | 1 | 0 | 1.444 | −4 | 3 | 2 | |||||
10 | 1.773 | 1.774 | 5 | 4 | 0 | 4 | 1.408 | 1.408 | −3 | −5 | 8 | |
1.774 | 4 | 2 | 7 | |||||||||
1.774 | 4 | 5 | 0 | |||||||||
1.773 | −5 | −3 | 3 | |||||||||
1.773 | 5 | 4 | 1 | |||||||||
1.772 | 4 | 5 | 1 |
Xenophyllite (the True Cell) | Synthetic Na4Fe7(PO4)6 | Xenophyllite C-Centered Subcell | Xenophyllite I-Centered Subcell | |
---|---|---|---|---|
Crystal system | Triclinic | Triclinic | Monoclinic | Orthorhombic |
Space group | P1 or P-1 | P1 or P-1 | C2/m or Cm | Imma or Im2a |
a (Å) | 9.643(6) | 9.647 | 16.257(9) | 10.298(9) |
b (Å) | 9.633(5) | 9.553 | 10.318(8) | 14.997(7) |
c (Å) | 17.645(11) | 17.573 | 6.257(9) | 6.351(7) |
α (°) | 88.26(5) | 88.43 | ||
β (°) | 88.16(5) | 88.03 | 112.77(9) | |
γ (°) | 64.83(5) | 64.80 | ||
V (Å3) | 1482(2) | 1464 | 968(2) | 981(2) |
Z | 3 | 3 | 2 | 2 |
V/Z (Å3) | 494 | 488 | 484 | 491 |
T1 | (½, −½, 0)( ½, ½, 0)( ½, 0, 3) | (−½, ½, ½)(½, ½, ½)(0, ½, −2.5) | ||
Reference | This work | [5] 2 | This work | This work |
Xenophyllite, wt.% 2 | Galileiite, wt.% 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 3 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | A | B | C | D | |
Na2O | 10.9 | 7.2 | 7.0 | 8.7 | 8.2 | 7.0 | 9.7 | 9.4 | 6.32 | 6.03 | 5.87 | 6.00 |
K2O | 0.4 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | 1.07 | 0.26 | 0.04 | 0.01 |
CaO | bdl | 0.1 | bdl | bdl | bdl | bdl | 0.4 | 0.2 | 0.01 | bdl | bdl | 0.02 |
FeO | 42.1 | 46.4 | 42.4 | 44.3 | 40.1 | 48.5 | 43.1 | 41.0 | 43.47 | 51.67 | 48.95 | 34.63 |
MnO | 5.8 | 6.1 | 9.7 | 7.0 | 11.7 | 5.8 | 5.8 | 7.5 | 5.42 | 1.87 | 3.98 | 16.98 |
MgO | bdl | bdl | 0.2 | bdl | bdl | bdl | 0.2 | bdl | bdl | bdl | bdl | bdl |
Cr2O3 | 0.8 | 0.5 | 1.0 | 0.6 | 1.4 | bdl | 0.6 | 1.2 | 1.55 | 0.13 | 0.07 | 1.16 |
P2O5 | 40.7 | 39.1 | 39.5 | 40.3 | 39.2 | 38.7 | 40.3 | 40.7 | 41.19 | 39.61 | 40.25 | 43.99 |
Total | 100.7 | 99.4 | 99.8 | 100.9 | 100.6 | 100.0 | 100.1 | 100.0 | 99.03 | 99.57 | 99.16 | 102.79 |
Atomic amounts (atoms per formula unit, recalculated to 24 oxygen atoms) | ||||||||||||
Na | 3.67 | 2.49 | 2.40 | 2.95 | 2.81 | 2.43 | 3.29 | 3.18 | 2.15 | 2.08 | 2.02 | 1.94 |
K | 0.09 | - 4 | - | - | - | - | - | - | 0.24 | 0.06 | 0.01 | - |
Ca | - | 0.02 | - | - | - | - | 0.08 | 0.04 | - | - | - | - |
ΣNa | 3.76 | 2.51 | 2.40 | 2.95 | 2.81 | 2.43 | 3.37 | 3.22 | 2.39 | 2.14 | 2.03 | 1.95 |
Fe | 6.12 | 6.93 | 6.28 | 6.47 | 5.92 | 7.26 | 6.31 | 5.98 | 6.38 | 7.69 | 7.26 | 4.84 |
Mn | 0.85 | 0.92 | 1.45 | 1.04 | 1.75 | 0.88 | 0.86 | 1.11 | 0.81 | 0.28 | 0.60 | 2.40 |
Mg | - | - | 0.05 | - | - | - | 0.05 | - | - | - | - | - |
Cr | 0.11 | 0.07 | 0.14 | 0.08 | 0.20 | - | 0.08 | 0.17 | 0.22 | 0.02 | 0.01 | 0.15 |
Σfe | 7.09 | 7.92 | 7.93 | 7.59 | 7.86 | 8.13 | 7.31 | 7.26 | 7.40 | 7.99 | 7.87 | 7.39 |
P | 5.99 | 5.91 | 5.92 | 5.96 | 5.86 | 5.86 | 5.97 | 6.01 | 6.12 | 5.97 | 6.04 | 6.22 |
Compound | Space Group | a (Å) | b (Å) | c (Å) | β (°) | V (Å3) | Z | V/Z | Reference |
---|---|---|---|---|---|---|---|---|---|
Xenophyllite | A2/m or Am 1 | 12.514/2 | 10.318 | 16.257 | 112.77 | 968 | 2 | 484 | This work |
RbNa3Mg7(PO4)6 | C2/c | 12.734 | 10.685 | 15.498 | 112.83 | 1944 | 4 | 486 | [25] |
KNa3Fe7(PO4)6 | C2/c | 13.003 | 10.762 | 15.708 | 113.64 | 2013 | 4 | 503 | [23] |
KNa3Mn7(PO4)6 | C2/c | 13.165 | 10.907 | 15.960 | 113.24 | 2106 | 4 | 527 | [24] |
CsNa3Zn7(PO4)6 | C2/c | 13.151 | 10.901 | 15.994 | 113.20 | 2107 | 4 | 527 | [22] |
Compound | Space Group | a (Å) | b (Å) | c (Å) | V (Å3) | Reference |
---|---|---|---|---|---|---|
Xenophyllite | Imma1 | 10.298 | 14.997 | 6.351 | 981 | This work |
SrFe3(PO4)3 | Imma | 10.438 | 13.421 | 6.556 | 919 | [38] |
NaNi4(PO4)3 | Amam2 | 9.892 | 14.842 | 6.358 | 933 | [39] |
NaMg4(PO4)3 | Pnma | 9.883 | 6.345 | 15.240 | 956 | [40] |
KMn4(PO4)3 | Pmcn2 | 6.550 | 16.028 | 9.977 | 1047 | [41] |
NaCo4(PO4)3 | P21/n | 6.339 | 9.867 | 15.300 | 957 3 | [42] |
KFe4(PO4)3 | Pmnn | 6.273 | 16.513 | 9.808 | 1016 | [34] |
KMg4(PO4)3 | Pnnm | 16.361 | 9.562 | 6.171 | 966 | [43] |
KNi4(PO4)3 | Pmnn | 6.152 | 16.214 | 9.484 | 946 | [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britvin, S.N.; Krivovichev, S.V.; Obolonskaya, E.V.; Vlasenko, N.S.; Bocharov, V.N.; Bryukhanova, V.V. Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications. Minerals 2020, 10, 300. https://doi.org/10.3390/min10040300
Britvin SN, Krivovichev SV, Obolonskaya EV, Vlasenko NS, Bocharov VN, Bryukhanova VV. Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications. Minerals. 2020; 10(4):300. https://doi.org/10.3390/min10040300
Chicago/Turabian StyleBritvin, Sergey N., Sergey V. Krivovichev, Edita V. Obolonskaya, Natalia S. Vlasenko, Vladimir N. Bocharov, and Vera V. Bryukhanova. 2020. "Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications" Minerals 10, no. 4: 300. https://doi.org/10.3390/min10040300
APA StyleBritvin, S. N., Krivovichev, S. V., Obolonskaya, E. V., Vlasenko, N. S., Bocharov, V. N., & Bryukhanova, V. V. (2020). Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications. Minerals, 10(4), 300. https://doi.org/10.3390/min10040300