Petrogenesis and Geological Implications of the Oligocene Mingze monzodiorites, Southern Lhasa
Abstract
:1. Introduction
2. Geologic Background
3. Samples and Methods
4. Results
4.1. U-Pb Zircon Ages and Hf Isotopes
4.2. Whole-Rock Geochemistry
4.3. Whole-Rock Sr-Nd Isotopes
5. Discussion
5.1. Coeval Magmatism in the Mingze Region
5.2. Petrogenesis of the Mingze Monzodiorites
5.2.1. Fractional Crystallization
5.2.2. Mechanism of Enriched Lithosphere Mantle
5.2.3. Origin of the Ancient Crustal Signature
5.3. Implications for Geodynamic Processes
6. Conclusions
- The Mingze monzodiorites in southern Tibet were emplaced in the Early Oligocene (~31 Ma).
- The Mingze monzodiorites are the result of partial melting of the lithospheric mantle beneath the Lhasa terrane metasomatized by melts of Indian continental sediments.
- The Indian continental crust was subducted into the lithospheric mantle beneath the Lhasa block prior to ~30 Ma.
- The concurrency of mafic enclaves and intermediate intrusions (~40 to 30 Ma) indicates that the lower crust is heterogeneous along the strike of the Lhasa terrane.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z.M. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Mo, X.X.; Niu, Y.L.; Dong, G.C.; Zhao, Z.D.; Hou, Z.Q.; Zhou, S.; Ke, S. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar] [CrossRef]
- Aitchison, J.C.; Xia, X.P.; Baxter, A.T.; Ali, J.R. Detrital zircon U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet: Implications for oblique convergence and collision between India and Asia. Gondwana Res. 2011, 20, 691–709. [Google Scholar] [CrossRef]
- Xia, L.Q.; Li, X.M.; Ma, Z.P.; Xu, X.Y.; Xia, Z.C. Cenozoic volcanism and tectonic evolution of the Tibetan plateau. Gondwana Res. 2011, 19, 850–866. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, Y.Y.; Wu, S.; You, Z.M.; Wu, X.; Li, M.; Zhou, T.C.; Dong, J. Mineralization age and petrogenesis of associated intrusions in the Mingze-Chengba porphyry-skarn Mo-Cu deposit, Gangdese. Acta Petrol. Sin. 2013, 29, 1392–1406. (In Chinese) [Google Scholar]
- Zheng, Y.C.; Hou, Z.Q.; Li, W.; Liang, W.; Huang, K.X.; Li, Q.Y.; Sun, Q.Z.; Fu, Q.; Zhang, S. Petrogenesis and Geological Implications of the Oligocene Chongmuda-Mingze Adakite-Like Intrusions and Their Mafic Enclaves, Southern Tibet. J. Geol. 2012, 120, 647–669. [Google Scholar] [CrossRef]
- Mo, J.H.; Liang, H.Y.; Yu, H.X.; Chen, Y.; Sun, W.D. Zircon U-Pb age of biotite hornblende monzonitic granite for Chongmuda Cu-Au (Mo) deposit in Gangdese belt, Xizang, China and its implications. Geochemica 2008, 3, 206–212. [Google Scholar]
- Chung, S.L.; Chu, M.F.; Ji, J.Q.; O’Reilly, S.Y.; Pearson, N.J.; Liu, D.Y.; Lee, T.Y.; Lo, C.H. The nature and timing of crustal thickening in southern Tibet: Geochemical and zircon Hf isotopic constraints from post collisional adakites. Tectonophysics 2009, 477, 36–48. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Wang, Q.; Wyman, D.A.; Tang, G.J.; Jia, X.H.; Yang, Y.H.; Yu, H.X. Origin of ~30 Ma Chongmuda adakitic intrusive rocks in southern Gangdese region, southern Tebit: Partial melting of the northward subducted Indian continent crust? Geochemica 2011, 40, 126–146. (In Chinese) [Google Scholar]
- Chen, L.; Qin, K.Z.; Li, G.M.; Li, J.X.; Xiao, B.; Zhao, J.X.; Fan, X. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation. Lithos 2015, 212, 379–396. [Google Scholar] [CrossRef]
- Williams, H.; Turner, S.; Kelley, S.; Harris, N. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 2001, 29, 339–342. [Google Scholar] [CrossRef]
- Chung, S.L.; Liu, D.Y.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Guan, Q.; Zhu, D.C.; Zhao, Z.D.; Dong, G.C.; Zhang, L.L.; Li, X.W.; Liu, M.; Mo, X.X.; Liu, Y.S.; Yuan, H.L. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Res. 2012, 21, 88–99. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Li, Z.X.; Wyman, D.A.; Yang, J.H.; Jiang, Z.Q.; Liu, Y.S.; Gou, G.N.; Guo, H.F. Subduction of Indian continent beneath southern Tibet in the latest Eocene (similar to 35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Res. 2017, 41, 77–92. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; White, N.C.; Chang, Z.S.; Li, Z.Q.; Song, Y.C. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol. Rev. 2009, 36, 133–159. [Google Scholar] [CrossRef]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Zhu, D.C.; Zhou, S.; Niu, Y.L. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. J. Earth Sci. 2009, 20, 241–249. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Wyman, D.A.; Jiang, Z.Q.; Yang, J.H.; Li, Q.L.; Gou, G.N.; Guo, H.F. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro. Chem. Geol. 2013, 349, 54–70. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- AutKeith, N.S.; Richard, A.S. An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation. Geochim. Cosmochim. Acta 2002, 66, 2379–2397. [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand. Geoanal. Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Yongsheng, L.; Zhaochu, H.; Shan, G.; Günther, D.; Juan, X.; Changgui, G.; Haihong, C. In situ analysis of major and trace elements of anhydrous minerals by LA-ICPMS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar]
- Ludwig, K.R. Berkeley Geochronology Center; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; de Jong, J.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, Q08006. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genetic mineralogy of zircon and its constraints on the interpretation of U-Pb age. Chin. Sci. Bull. 2003, 49, 1589–1604. (In Chinese) [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of somemodern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chu, M.F.; Chung, S.L.; O’Reilly, S.Y.; Pearson, N.J.; Wu, F.Y.; Li, X.H.; Liu, D.Y.; Ji, J.Q.; Chu, C.H.; Lee, H.Y. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 2011, 307, 479–486. [Google Scholar] [CrossRef]
- Xu, Y.G.; Lan, J.B.; Yang, Q.J.; Huang, X.L.; Qiu, H.N. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chem. Geol. 2008, 255, 439–453. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Frei, R.; Tejada, M.; Mo, X.; Leat, P.; Nägler, T. Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J. Petrol. 1998, 39, 1285–1306. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Zhao, Z.D.; Niu, Y.L.; Zhu, D.C.; Liu, D.; Wang, Q.; Hou, Z.Q.; Mo, X.X.; Wei, J.C. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos 2017, 278, 477–490. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Ji, J.; Qian, Q.; Gallet, S.; Lo, C.H.; Lee, T.Y.; Zhang, Q. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J. Asian Earth Sci. 2012, 53, 96–114. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Mo, X.X.; Dilek, Y.; Niu, Y.L.; DePaolo, D.J.; Robinson, P.; Zhu, D.C.; Sun, C.G.; Dong, G.C.; Zhou, S.; et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 2009, 113, 190–212. [Google Scholar] [CrossRef]
- Guo, Z.F.; Wilson, M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res. 2012, 22, 360–376. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Wyman, D.A.; Jiang, Z.Q.; Wu, F.Y.; Li, X.H.; Yang, J.H.; Gou, G.N.; Guo, H.F. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. J. Geophys. Res. Solid Earth 2015, 120, 6159–6181. [Google Scholar] [CrossRef]
- Harrison, T.M.; Yin, A.; Grove, M.; Lovera, O.M.; Ryerson, F.J.; Zhou, X.H. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. J. Geophys. Res. Solid Earth 2000, 105, 19211–19230. [Google Scholar] [CrossRef] [Green Version]
- Perfit, M.R.; Gust, D.A.; Bence, A.E.; Arculus, R.J.; Taylor, S.R. Chemical Characteristics of Island-Arc Basalts—Implications for Mantle Sources. Chem. Geol. 1980, 30, 227–256. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.B.; Wei, J.H.; Bagas, L.; Santosh, M.; Liu, Y.; Zhang, D.H.; Zhou, H.Z. Late Permian back-arc extension of the eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos 2019, 340, 34–48. [Google Scholar] [CrossRef]
- Davidson, J.; Turner, S.; Handley, H.; MacPherson, C.; Dosseto, A. Amphibole “sponge” in arc crust? Geology 2007, 35, 787. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Cao, H.W.; Hollis, S.P.; Tang, L.; Xu, M.; Jiang, J.S.; Gao, S.B.; Wang, Y.S. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Paleogene gabbro and granite from Central Lhasa, southern Tibet: Petrogenesis and tectonic implications. Int. Geol. Rev. 2019, 61, 868–894. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Rogers, N.; Macdonald, R.; Fitton, J.G.; George, R.; Smith, M.; Barreiro, B. Two mantle plumes beneath the east African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts. Earth Planet. Sci. Lett. 2000, 176, 387–400. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Zhou, M.F.; Micheal lesher, C.; Yang, Z.Z.; Li, J.W.; Sun, M. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfidebearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chem. Geol. 2004, 209, 233–257. [Google Scholar] [CrossRef]
- Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 2012, 149, 16–30. [Google Scholar] [CrossRef]
- Gu, X.Y.; Ingrin, J.; Deloule, E.; France, L.; Xia, Q.K. Metasomatism in the sub-continental lithospheric mantle beneath the south French Massif Central: Constraints from trace elements, Li and H in peridotite minerals. Chem. Geol. 2018, 478, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.C.; Hou, Z.Q.; Li, Q.Y.; Sun, Q.Z.; Liang, W.; Fu, Q.; Li, W.; Huang, K.X. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos 2012, 148, 296–311. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in Oceanic Basalts—New Constraints on Mantle Evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Wang, R.Q.; Qiu, J.S.; Yu, S.B.; Lin, L.; Xu, H. Magma mixing origin for the Quxu intrusive complex in southern Tibet: Insights into the early Eocene magmatism and geodynamics of the southern Lhasa subterrane. Lithos 2019, 328, 14–32. [Google Scholar] [CrossRef]
- Chauvel, C.; Marini, J.C.; Plank, T.; Ludden, J.N. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem. Geophys. Geosyst. 2009, 10, Q01001. [Google Scholar] [CrossRef]
- Iizuka, T.; Yamaguchi, T.; Itano, K.; Hibiya, Y.; Suzuki, K. What Hf isotopes in zircon tell us about crust-mantle evolution. Lithos 2017, 274, 304–327. [Google Scholar] [CrossRef]
- Ma, L.; Wang, B.D.; Jiang, Z.Q.; Wang, Q.; Li, Z.X.; Wyman, D.A.; Zhao, S.R.; Yang, J.H.; Gou, G.N.; Guo, H.F. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos 2014, 196, 321–338. [Google Scholar] [CrossRef]
- Yang, C.H.; Xu, W.L.; Yang, D.B.; Wang, W.; Wang, W.D.; Liu, J.M. Petrogenesis of Shangyu gabbro-diorites in western Shandong: Geochronological and geochemical evidence. Sci. Chin. Ser. D Earth Sci. 2008, 51, 481–492. [Google Scholar] [CrossRef]
- Qu, X.M.; Hou, Z.Q.; Li, Y.G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 2004, 74, 131–148. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Mo, X.X.; Zhang, S.Q.; Guo, T.Y.; Zhou, S.; Dong, G.C.; Wang, Y. Post-collisional magmatism in Wuyu basin, central Tibet: Evidence for recycling of subducted Tethyan oceanic crust. Sci. Chin. Ser. D Earth Sci. 2001, 44, 27–34. [Google Scholar] [CrossRef]
- Guo, Z.F.; Wilson, M.; Zhang, M.L.; Cheng, Z.H.; Zhang, L.H. Post-collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-back and Delamination of the Subducted Indian Continental Lithosphere Slab. J. Petrol. 2015, 56, 1365–1405. [Google Scholar] [CrossRef]
- Nabelek, J.; Hetenyi, G.; Vergne, J.; Sapkota, S.; Kafle, B.; Jiang, M.; Su, H.; Chen, J.; Huang, B.S.; Hi, C.T. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 2009, 325, 1371–1374. [Google Scholar] [CrossRef]
- Mo, X.Z.; Dong, G.C.; Zhao, Z.D.; Guo, T.Y.; Wang, L.; Chen, T. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geol. Sin. Engl. 2005, 79, 66–76. [Google Scholar]
- Annen, C.; Blundy, J.D.; Sparks, R.S.J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 2006, 47, 505–539. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Shi, Z.; Liao, R.; Zhu, F. Petrogenesis and Geological Implications of the Oligocene Mingze monzodiorites, Southern Lhasa. Minerals 2020, 10, 301. https://doi.org/10.3390/min10040301
Zhang K, Shi Z, Liao R, Zhu F. Petrogenesis and Geological Implications of the Oligocene Mingze monzodiorites, Southern Lhasa. Minerals. 2020; 10(4):301. https://doi.org/10.3390/min10040301
Chicago/Turabian StyleZhang, Kailiang, Zeming Shi, Rong Liao, and Feilin Zhu. 2020. "Petrogenesis and Geological Implications of the Oligocene Mingze monzodiorites, Southern Lhasa" Minerals 10, no. 4: 301. https://doi.org/10.3390/min10040301
APA StyleZhang, K., Shi, Z., Liao, R., & Zhu, F. (2020). Petrogenesis and Geological Implications of the Oligocene Mingze monzodiorites, Southern Lhasa. Minerals, 10(4), 301. https://doi.org/10.3390/min10040301