Structural Characterization of Octahedral Sheet in Dioctahedral Smectites by Thermal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Thermal Analysis
3. Results and Discussion
3.1. Characterization and Classification of Octahedral Structure
3.2. Relationship between Octahedral Cations and Octahedral Structure
3.3. Relationship between Layer Charge Density and Octahedral Structure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, H.H. Bentonite Applications. In Applied Clay Mineralogy: Ocurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 111–130. [Google Scholar]
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and mineralogy of clay minerals. In Handbook of Clay Science, 1st ed.; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 35–43. [Google Scholar]
- Güven, N. Smectites. In Hydrous Phyllosilicates; Bailey, S., Ed.; Mineralogical Society of America: Washington, DC, USA, 1988; Volume 19, pp. 497–559. [Google Scholar]
- Méring, J.; Oberlin, A. The Smectites. In The Electron Optical Investigation of Clays; Gard, J.A., Ed.; Mineralogical Society: London, UK, 1971; Volume 3, pp. 193–229. [Google Scholar]
- Tsipursky, S.I.; Drits, V.A. The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner. 1984, 19, 177–193. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; pp. 335–339. [Google Scholar]
- Drits, V.A.; Besson, G.; Muller, F. An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays Clay Miner. 1995, 43, 718–731. [Google Scholar] [CrossRef]
- Drits, V.A.; Lindgreen, H.; Salyn, A.L.; Ylagan, R.; McCarty, D.K. Semiquantitative determination of trans-vacantand cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. Am. Mineral. 1998, 83, 1188–1198. [Google Scholar] [CrossRef]
- Drits, V.A.; Sakharov, B.A.; Dainyak, L.G.; Salyn, A.L.; Lindgreen, H. Structural and chemical heterogeneity of illite-smectites from Upper Jurassic mudstones of East Greenland related to volcanic and weathered parent rocks. Am. Mineral. 2002, 87, 1590–1607. [Google Scholar] [CrossRef]
- Drits, V.A.; Zviagina, B.B. Trans-vacant and cis-vacant 2:1 layer silicates: Structural features, identification, and occurrence. Clays Clay Miner. 2009, 57, 405–415. [Google Scholar] [CrossRef]
- Muller, F.; Drits, V.A.; Plançon, A.; Besson, G. Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (I) Structural transformation. Clay Miner. 2000, 35, 491–504. [Google Scholar] [CrossRef]
- Muller, F.; Drits, V.A.; Tsipursky, S.I.; Plançon, A. Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (II) Cation migration. Clay Miner. 2000, 35, 505–514. [Google Scholar] [CrossRef]
- Muller, F.; Drits, V.A.; Plançon, A.; Robert, J.L. Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays Clay Miner. 2000, 48, 572–585. [Google Scholar] [CrossRef]
- Dainyak, L.G.; Zviagna, B.B.; Rusakov, V.S.; Drits, V.A. Interpretation of the nontronite dehydroxylate Mössbauer spectrum using EFG calculations. Eur. J. Miner. 2006, 18, 753–764. [Google Scholar] [CrossRef]
- Marchel, C.; Stanjek, H. Cation ordering in cis-and trans-vacant dioctahedral smectites and its implications for growth mechanisms. Clay Miner. 2012, 47, 105–115. [Google Scholar] [CrossRef]
- Drits, V.A.; McCarty, D.K.; Zviagina, B.B. Crystalchemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays Clay Miner. 2006, 54, 131–152. [Google Scholar] [CrossRef]
- Wolters, F.; Lagaly, G.; Kahr, G.; Nüesch, R.; Emmerich, K. A comprehensive characterization of dioctahedral smectites. Clays Clay Miner. 2009, 57, 115–133. [Google Scholar] [CrossRef]
- Kaufhold, S.; Kremleva, A.; Krüger, S.; Roesch, N.; Emmerich, K.; Dohrmann, R. Crystal-chemical composition of dicoctahedral smectites: An energy-based assessment of empirical relations. ACS Earth Space Chem. 2017, 1, 629–636. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Gerpolymers and geopolymeric materials. J. Therm. Anal. 1998, 35, 429–441. [Google Scholar] [CrossRef]
- Ufer, K.; Stanjek, H.; Roth, G.; Kleeberg, R.; Dohrmann, R.; Kaufhold, S. Quantitative phase analysis of bentonites by the Rietveld method. Clays Clay Miner. 2008, 56, 272–282. [Google Scholar] [CrossRef]
- Tributh, H.; Lagaly, G. Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. I. Aufbereitung der Proben im Labor. GIT-Fachzeitschrift für das Laboratorium 1986, 30, 524–529. [Google Scholar]
- Środoń, J. Indentification and quantitative analysis of clay minerals. In Handbook of Clay Science, 1st ed.; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 765–776. [Google Scholar]
- Köster, H.M. Die Berechnung kristallchemischer Strukturformeln von 2:1 Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie der Darstellung der Ladungsverteilung in der Strukturmittels Dreieckskoordinaten. Clay Miner. 1977, 12, 45–54. [Google Scholar] [CrossRef]
- Lagaly, G.; Weiss, A. The layer charge of smectitic layer silicates. In Proceedings of the International Clay Conference, Mexico City, Mexico, 16–23 July 1975; pp. 157–172. [Google Scholar]
- Laird, D.A.; Scott, A.D.; Fenton, T.E. Evaluation of the alkylammonium method of determining layer charge. Clays Clay Miner. 1989, 37, 41–46. [Google Scholar] [CrossRef]
- Wang, X.L.; Kleeberg, R.; Ufer, K. Routine investigation of important structural parameters of dioctahedral smectites by the Rietveld method. Appl. Clay Sci. 2018, 163, 257–264. [Google Scholar] [CrossRef]
- Wang, X.L.; Liao, L.B. Rietveld structure refinement of Cu-trien exchanged nontronites. Front. Chem. 2018, 6, 558. [Google Scholar] [CrossRef]
- Wolters, F.; Emmerich, K. Thermal reactions of smectites-Relation of dehydroxylation temperature to octahedral structure. Thermochim. Acta 2007, 462, 80–88. [Google Scholar] [CrossRef]
- Emmerich, K.; Kahr, G. The cis- and trans-vacant variety of a montmorillonite: An attempt to create a model smectite. Appl. Clay Sci. 2001, 20, 119–127. [Google Scholar] [CrossRef]
- Köster, H.M.; Schwertmann, U. Dreischichtminerale. In Tonminerale und Tone; Jasmund, K., Lagaly, G., Eds.; Steinkopff Verlag: Darmstadt, Germany, 1993; pp. 33–58. [Google Scholar]
- Cuadros, J. Structural insights from the study of Csexchanged smectites submitted to wetting and drying cycles. Clay Miner. 2002, 37, 473–486. [Google Scholar] [CrossRef]
Samples | Description | Source | Supplier |
---|---|---|---|
XL_01_B8 | Montmorillonite | Wyoming, USA | Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) |
XL_02_B9 | Montmorillonite | Wyoming, USA | |
XL_04_B14 | Beidellite | Hungary | |
XL_06_B22 | Montmorillonite | Hungary | |
XL_09_SWy1 | Montmorillonite | Wyoming, USA | Society’s Source Clays Repository, Clay Minerals Society (CMS) |
XL_10_STx1 | Montmorillonite | Texas, USA | |
XL_11_NAu1 | Nontronite | South Australia | |
XL_12_NAu2 | Nontronite | South Australia | |
XL_13_14TR03 | Montmorillonite | Unidentified | Karlsruhe Institute of Technology (KIT) |
XL_14_41ValC18 | Beidellite | Valdagno, Italy | |
XL_16_4JUP | Montmorillonite | Argentina | |
XL_17_2LP | Montmorillonite | Argentina | |
XL_18_Valdol | Beidellite | Valdagno, Italy | |
XL_19_NWa | Nontronite | Washington, USA |
Samples | Oxides (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | K2O | NaO | TiO2 | CuO | P2O5 | Cr2O3 | NiO | LOI * | Sum | |
XL_01_B8 | 55.18 | 19.98 | 4.40 | 0.01 | 1.74 | 0.05 | 0.03 | 0.00 | 0.14 | 3.42 | 0.00 | 0.00 | 0.00 | 15.05 | 100.01 |
XL_02_B9 | 60.25 | 17.03 | 3.74 | 0.01 | 2.19 | 0.03 | 0.03 | 0.00 | 0.12 | 2.86 | 0.01 | 0.00 | 0.00 | 13.74 | 100.00 |
XL_04_B14 | 46.63 | 18.17 | 11.10 | 0.02 | 1.95 | 0.04 | 0.50 | 0.00 | 2.24 | 3.01 | 0.12 | 0.03 | 0.02 | 16.16 | 100.00 |
XL_06_B22 | 59.93 | 16.24 | 1.22 | 0.00 | 3.53 | 0.03 | 0.04 | 0.00 | 0.15 | 3.79 | 0.00 | 0.00 | 0.00 | 15.07 | 100.00 |
XL_09_SWy1 | 55.19 | 19.78 | 4.19 | 0.01 | 2.66 | 0.03 | 0.03 | 0.00 | 0.10 | 3.12 | 0.00 | 0.00 | 0.00 | 14.89 | 100.00 |
XL_10_STx1 | 58.03 | 18.10 | 2.00 | 0.01 | 2.93 | 0.04 | 0.06 | 0.00 | 0.27 | 3.16 | 0.02 | 0.00 | 0.00 | 15.37 | 100.00 |
XL_11_NAu1 | 43.63 | 7.36 | 30.25 | 0.01 | 0.00 | 0.03 | 0.01 | 0.00 | 0.03 | 3.82 | 0.00 | 0.01 | 0.01 | 14.85 | 100.00 |
XL_12_NAu2 | 48.35 | 2.49 | 32.67 | 0.00 | 0.01 | 0.04 | 0.02 | 0.00 | 0.04 | 3.07 | 0.00 | 0.00 | 0.01 | 13.30 | 100.00 |
XL_13_14TR03 | 55.14 | 16.60 | 1.76 | 0.01 | 4.98 | 0.03 | 0.02 | 0.00 | 0.09 | 4.09 | 0.00 | 0.00 | 0.00 | 17.27 | 100.00 |
XL_14_41ValC18 | 52.29 | 16.06 | 8.40 | 0.01 | 3.65 | 0.03 | 0.98 | 0.00 | 0.29 | 3.18 | 0.04 | 0.04 | 0.03 | 15.00 | 100.00 |
XL_16_4JUP | 52.29 | 18.24 | 7.44 | 0.03 | 2.13 | 0.04 | 0.32 | 0.00 | 0.93 | 3.11 | 0.03 | 0.00 | 0.00 | 15.45 | 100.00 |
XL_17_2LP | 54.20 | 18.62 | 4.48 | 0.02 | 3.00 | 0.03 | 0.06 | 0.00 | 0.15 | 2.99 | 0.00 | 0.00 | 0.00 | 16.44 | 100.00 |
XL_18_Valdol | 49.85 | 15.26 | 10.44 | 0.02 | 3.70 | 0.05 | 1.07 | 0.00 | 0.39 | 3.04 | 0.11 | 0.04 | 0.03 | 16.00 | 100.00 |
XL_19_NWa | 46.53 | 8.64 | 23.02 | 0.02 | 1.65 | 0.02 | 0.05 | 0.00 | 0.60 | 2.97 | 0.02 | 0.01 | 0.00 | 16.46 | 100.00 |
Varieties | cv | cv/tv | tv/cv | tv |
---|---|---|---|---|
the area of dehydroxylation peaks above 600 °C/% | 100–75 | 74–50 | 49–25 | 24–0 |
Sample | Tetrahedral Cation (mol/FU) | Octahedral Cations (mol/FU) | Octahedral Sheet | Classification | |||
---|---|---|---|---|---|---|---|
Al3+ | Al3+ | Fe3+ | Mg3+ | Wcv (%) | Wtv (%) | ||
XL_01_B8 | 0.12 | 1.58 | 0.24 | 0.19 | 82.5 | 17.5 | cv |
XL_06_B22 | 0.09 | 1.53 | 0.08 | 0.45 | 90.0 | 10.0 | |
XL_09_SWy1 | 0.12 | 1.53 | 0.22 | 0.28 | 87.7 | 12.3 | |
XL_10_STx1 | 0.00 | 1.57 | 0.11 | 0.32 | 92.8 | 7.2 | |
XL_17_2LP | 0.10 | 1.48 | 0.24 | 0.32 | 95.7 | 4.3 | |
XL_02_B9 | 0.41 | 1.55 | 0.27 | 0.32 | 57.0 | 43.0 | cv/tv |
XL_13_14TR03 | 0.00 | 1.42 | 0.10 | 0.54 | 51.1 | 48.9 | |
XL_16_4JUP | 0.20 | 1.40 | 0.41 | 0.24 | 47.6 | 52.4 | tv/cv |
XL_04_B14 | 0.44 | 1.23 | 0.65 | 0.23 | 1.3 | 98.7 | tv |
XL_11_NAu1 | 0.49 | 0.21 | 1.83 | 0.00 | 0.0 | 100.0 | |
XL_12_NAu2 | 0.19 | 0.04 | 1.94 | 0.00 | 0.0 | 100.0 | |
XL_14_41ValC18 | 0.17 | 1.22 | 0.47 | 0.40 | 15.0 | 85.0 | |
XL_18_Valdol | 0.25 | 1.10 | 0.59 | 0.42 | 17.1 | 82.3 | |
XL_19_NWa | 0.42 | 0.43 | 1.46 | 0.21 | 0.8 | 99.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, Y.; Wang, H. Structural Characterization of Octahedral Sheet in Dioctahedral Smectites by Thermal Analysis. Minerals 2020, 10, 347. https://doi.org/10.3390/min10040347
Wang X, Li Y, Wang H. Structural Characterization of Octahedral Sheet in Dioctahedral Smectites by Thermal Analysis. Minerals. 2020; 10(4):347. https://doi.org/10.3390/min10040347
Chicago/Turabian StyleWang, Xiaoli, Yan Li, and Hejing Wang. 2020. "Structural Characterization of Octahedral Sheet in Dioctahedral Smectites by Thermal Analysis" Minerals 10, no. 4: 347. https://doi.org/10.3390/min10040347
APA StyleWang, X., Li, Y., & Wang, H. (2020). Structural Characterization of Octahedral Sheet in Dioctahedral Smectites by Thermal Analysis. Minerals, 10(4), 347. https://doi.org/10.3390/min10040347