Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of the Friction Materials
2.2. Characterizations of the Basalt Fiber
2.3. Physical and Mechanical Characterizations of the Composites
2.4. Tribological Performance Evaluation of the Composites
3. Results and Discussion
3.1. Phase Composition, Morphology, and Properties of Basalt Fiber
3.2. Effect of Basalt Fiber Content on the Properties of Composites
3.3. Fracture Surface Analysis
3.4. Effect of Basalt Fiber Content and Temperature on Tribology Performance
3.5. Worn Surface Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liew, K.W.; Nirmal, U. Frictional performance evaluation of newly designed brake pad materials. Mater. Des. 2013, 48, 25–33. [Google Scholar] [CrossRef]
- Dennis, J.P.; Brent, L.F.; Elizabeth, T.L.; Gregory, P.B.; Patrick, J.S. Environmental and occupational health hazards associated with the presence of asbestos in brake linings and pads (1900 to present): A “state-of-the-art” review. J. Toxicol. Environ. Health B 2004, 7, 25–80. [Google Scholar]
- Fu, Z.Z.; Suo, B.T.; Yun, R.P.; Lu, Y.M.; Wang, H.; Qi, S.C.; Jiang, S.G.; Lu, Y.F. Development of eco-friendly brake friction composites containing flax fibers. J. Reinf. Plast. Comp. 2012, 31, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.; Patnaik, A.; Chauhan, R.; Rishiraj, A. Assessment of braking performance of lapinus-wollastonite fibre reinforced friction composite materials. J. King Saud Univ.-Eng. Sci. 2017, 29, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Ma, Y.H.; Jiang, M. Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites. Wear 2003, 255, 734–741. [Google Scholar] [CrossRef]
- Tej, S.; Avinash, T.; Amar, P.; Ranchan, C.; Sharafat, A. Influence of wollastonite shape and amount on tribo-performance of non-asbestos organic brake friction composites. Wear 2017, 386–387, 157–164. [Google Scholar]
- Hou, K.; Ouyang, J.; Zheng, C.H.; Zhang, J.H.; Yang, H.M. Surface-modified sepiolite fibers for reinforcing resin brake composites. Mater. Express 2017, 7, 104–112. [Google Scholar] [CrossRef]
- Kuroe, M.; Tsunoda, T.; Kawano, Y.; Takahashi, A. Application of lignin-modified phenolic resins to brake friction material. J. Appl. Polym. Sci. 2013, 129, 310–315. [Google Scholar] [CrossRef]
- Bernard, S.S.; Jayakumari, L.S. Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad. J. Braz. Soc. Mech. Sci. 2018, 40, 152. [Google Scholar] [CrossRef]
- Ikpambese, K.K.; Gundu, D.T.; Tuleun, L.T. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 2016, 8, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.H.; Wu, S.Y.; Tong, J.; Zhao, X.L.; Zhuang, J.; Liu, Y.C.; Qi, H.Y. Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions. Mater. Res Express 2018, 5, 035101. [Google Scholar] [CrossRef]
- Aranganathan, N.; Mahale, V.; Bijwe, J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear 2016, 354–355, 69–77. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, H. Friction and vibration of brake friction materials reinforced with chopped glass fibers. Tribol. Lett. 2013, 52, 341–349. [Google Scholar] [CrossRef]
- Baklouti, M.; Cristol, A.L.; Desplanques, Y.; Elleuch, R. Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear 2015, 330–331, 507–514. [Google Scholar] [CrossRef]
- Sahin, Y.; Baets, P.D. Friction and wear behavior of carbon fabric-reinforced epoxy composites. JOM J. Miner. Met. Mater. Soc. 2017, 69, 2443–2447. [Google Scholar] [CrossRef]
- Guo, W.J.; Bai, S.X.; Ye, Y.C.; Zhu, L.A.; Li, S. A new strategy for high-value reutilization of recycled carbon fiber: Preparation and friction performance of recycled carbon fiber felt-based C/C-SiC brake pads. Ceram. Int. 2019, 45, 16545–16553. [Google Scholar] [CrossRef]
- Ilanko, A.K.; Vijayaraghavan, S. Wear behavior of asbestos-free eco-friendly composites for automobile brake materials. Friction 2016, 4, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Vergani, L.; Burman, M. Static and fatigue characterization of new basalt fibre reinforced composites. Compos. Struct. 2012, 94, 1165–1174. [Google Scholar] [CrossRef]
- Pavlovski, D.; Mislavsky, B.; Antonov, A. CNG cylinder manufacturers test basalt fibre. J. Reinf. Plast. Comp. 2007, 51, 36–39. [Google Scholar] [CrossRef]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater. Des. 2013, 43, 283–290. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Kim, M.T.; Kim, M.H.; Rhee, K.Y.; Park, S.J. Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites. Compos. Part B Eng. 2011, 42, 499–504. [Google Scholar] [CrossRef]
- Lee, S.O.; Rhee, K.Y.; Park, S.J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites. J. Ind. Eng. Chem. 2015, 32, 153–156. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; Iorio, I.D. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Fiore, V.; Bella, G.D.; Valenza, A. Glass-basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Wu, Z.S.; Dong, Z.Q.; Xie, Q. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment. Mater. Des. 2014, 64, 721–728. [Google Scholar] [CrossRef]
- Shi, J.Z.; Wang, X.; Wu, Z.S.; Zhu, Z.G. Fatigue behavior of basalt fiber-reinforced polymer tendons under a marine environment. Constr. Build. Mater. 2017, 137, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics. Mater. Des. 2010, 31, 3835–3844. [Google Scholar] [CrossRef]
- Eslami-Farsani, R.; Khalili, S.M.R.; Hedayatnasab, Z.; Soleimani, N. Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene-clay nanocomposites. Mater. Des. 2014, 53, 540–549. [Google Scholar] [CrossRef]
- Li, X.; Yahya, M.Y.; Nia, A.B.; Wang, Z.H.; Yang, J.L.; Lu, G.X. Dynamic failure of basalt/epoxy laminates under blast-Experimental observation. Int. J. Impact Eng. 2017, 102, 16–26. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, H.; Fang, Q.; Liu, J.Z.; Gong, Z.M. Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm. Int. J. Impact Eng. 2016, 88, 201–213. [Google Scholar] [CrossRef]
- Thirumalai, R.; Prakash, R.; Ragunath, R.; SenthilKumar, K.M. Experimental investigation of mechanical properties of epoxy based composites. Mater. Res. Express 2019, 6, 075309. [Google Scholar] [CrossRef]
- Amuthakkannan, P.; Manikandan, V.; Winowlin Jappes, J.T.; Uthayakumar, M. Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater. Phys. Mech. 2013, 16, 107–117. [Google Scholar]
- Ilanko, A.K.; Vijayaraghavan, S. Wear mechanism of flax/basalt fiber-reinforced eco-friendly brake friction materials. Tribol. Mater. Surf. Interfaces 2017, 11, 47–53. [Google Scholar] [CrossRef]
- Manoharan, S.; Vijay, R.; Lenin Singaravelu, D.; Krishnaraj, S.; Suresha, B. Tribological characterization of recycled basalt-aramid fiber reinforced hybrid friction composites using grey-based taguchi approach. Mater. Res. Express 2019, 6, 065301. [Google Scholar] [CrossRef]
- Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Appl. Catal. B Environ. 2018, 226, 23–30. [Google Scholar] [CrossRef]
- Peng, K.; Fu, L.; Li, X.; Ouyang, J.; Yang, H. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl. Clay Sci. 2017, 138, 100–106. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Ouyang, J.; Yang, H.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306–312. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, A.; Yang, H.; Ouyang, J. Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 2016, 119, 8–17. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, Y.; Yang, Q.; Yang, H. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Res. Lett. 2017, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, K.; Fu, L.; Ouyang, J.; Yang, H. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666–2675. [Google Scholar] [CrossRef]
- Niu, M.; Yang, H.; Zhang, X.; Wang, Y.; Tang, A. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 Capture. ACS Appl. Mater. Interfaces 2016, 8, 17312–17320. [Google Scholar] [CrossRef] [PubMed]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Yassien, K.M.; El-Bakary, M.A. Effect of gamma irradiation on the physical and structural properties of basalt fiber. Microsc. Res. Tech. 2019, 82, 643–650. [Google Scholar] [CrossRef]
- Özturk, B.; Arslan, F.; Özturk, S. Effects of different kinds of fibers on mechanical and tribological properties of brake friction materials. Tribol. Trans. 2013, 56, 536–545. [Google Scholar] [CrossRef]
- Yun, R.P.; Lu, Y.F.; Filip, P. Application of extension evaluation method in development of novel eco-friendly brake material. SAE Int. J. Mater. Manuf. 2010, 2, 1–7. [Google Scholar] [CrossRef]
- Yun, R.P.; Martynkova, S.G.; Lu, Y.F. Performance and evaluation of nonasbestos organic brake friction composites with SiC particles as an abrasive. J. Compos. Mater. 2011, 45, 1585–1593. [Google Scholar]
- Dadkar, N.; Tomar, B.S.; Satapathy, B.K.; Patnaik, A. Performance assessment of hybrid composite friction materials based on flyash-rock fibre combination. Mater. Des. 2010, 31, 723–731. [Google Scholar] [CrossRef]
- Kim, S.J.; Jang, H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol. Int. 2000, 33, 477–484. [Google Scholar] [CrossRef]
- Zhao, X.; Ouyang, J.; Tan, Q.; Tan, X.; Yang, H. Interfacial characteristics between mineral fillers and phenolic resin in friction materials. Mater. Express 2020, 10, 70–80. [Google Scholar] [CrossRef]
Sample | Binder | Basalt Fiber | Assistance Fibers | Abrasives | Solid Lubricants | Barite |
---|---|---|---|---|---|---|
Bas-0 | 8 | 0 | 33 | 6 | 19 | 34 |
Bas-5 | 8 | 5 | 33 | 6 | 19 | 29 |
Bas-10 | 8 | 10 | 33 | 6 | 19 | 24 |
Bas-15 | 8 | 15 | 33 | 6 | 19 | 19 |
Bas-20 | 8 | 20 | 33 | 6 | 19 | 14 |
Bas-25 | 8 | 25 | 33 | 6 | 19 | 9 |
Procedure | Conditions |
---|---|
Mixing | Pre-dispersion of aramid pulps for 10 s, then mixtures of powdery ingredients with pulps and fibers for 10 to 15 s, Chopper RPM: 28,000 |
Hot press molding | Temperature: 155 ± 5 °C, compression: 5 MPa, curing time: 6 min |
Heat treatment | Room temperature to 150 °C, 1 h; constant temperature of 150 °C, 1 h; 150 °C to 160 °C, 1 h; constant temperature of 160 °C, 1.5 h; 160 °C to 170 °C, 1 h; constant temperature of 170 °C, 1.5 h; 170 °C to 180 °C, 1 h; constant temperature of 180 °C, 3 h; 180 °C to room temperature, 1.5 h |
Content of Basalt Fiber (wt%) | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|
Density (g/cm3) | 1.94 | 2.00 | 2.16 | 2.29 | 2.27 | 1.99 |
Rockwell hardness (HRM) | 45.4 | 46 | 27.4 | 68 | 75 | 41.6 |
Thermal expansion coefficient (%) | 1.34 | 1.73 | 1.95 | 2.10 | 2.85 | 2.06 |
Temperature (°C) | 100 | 150 | 200 | 250 | 300 | 350 |
---|---|---|---|---|---|---|
μ | 0.25–0.65 | 0.25–0.70 | 0.25–0.70 | 0.25–0.70 | 0.25–0.70 | 0.25–0.70 |
V/10−7cm3·(Nm)−1 | ≤0.50 | ≤0.70 | ≤1.00 | ≤1.50 | ≤2.00 | ≤2.50 |
Parameters | Bas-0 | Bas-5 | Bas-10 | Bas-15 | Bas-20 | Bas-25 |
---|---|---|---|---|---|---|
0.765 | 0.588 | 0.670 | 0.761 | 0.738 | 0.637 | |
Rank (μ) | 1 | 6 | 4 | 2 | 3 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Ouyang, J.; Yang, H.; Tan, Q. Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites. Minerals 2020, 10, 490. https://doi.org/10.3390/min10060490
Zhao X, Ouyang J, Yang H, Tan Q. Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites. Minerals. 2020; 10(6):490. https://doi.org/10.3390/min10060490
Chicago/Turabian StyleZhao, Xiaoguang, Jing Ouyang, Huaming Yang, and Qi Tan. 2020. "Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites" Minerals 10, no. 6: 490. https://doi.org/10.3390/min10060490
APA StyleZhao, X., Ouyang, J., Yang, H., & Tan, Q. (2020). Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites. Minerals, 10(6), 490. https://doi.org/10.3390/min10060490