Identification of Opaque Sulfide Inclusions in Rubies from Mogok, Myanmar and Montepuez, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Photomicrography
2.2.2. Inclusion Analysis
3. Geological Setting
3.1. Geologogical Setting and Formation of Mogok Rubies
3.2. Geological Setting and Formation of Mozambican Rubies
4. Inclusion Analysis
4.1. Literature Studies
- 8.
- 9.
- 10.
- Orange, irregular masses identified as chromite [7]
4.2. Analytical Results
4.2.1. Imaging and Description
4.2.2. BSE Imaging
4.2.3. EPMA Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hughes, R.W.; Manorotkul, W.; Hughes, E.B. Ruby and Sapphire: A Gemologist’s Guide; Lotus Publishing: Chichester, UK; London, UK, 2017. [Google Scholar]
- Vertriest, W.; Saeseaw, S. A decade of Ruby from Mozambique: A review. Gems Gemol. 2019, 55. [Google Scholar] [CrossRef] [Green Version]
- Pardieu, V. Update on Mozambique ruby mining and trading. Gems Gemol. 2017, 53, 3. [Google Scholar]
- Vertriest, W.; Pardieu, V. Update on gemstone mining in Northern Mozambique. Gems Gemol. 2016, 52, 4. [Google Scholar] [CrossRef]
- Hughes, R.W. Red Rain: Mozambique Ruby Pours into the Market. Available online: http://www.lotusgemology.com/index.php/library/articles/316-red-rain-mozambique-ruby-pours-into-the-market (accessed on 10 February 2020).
- Hsu, T.; Lucas, A.; Pardieu, V. Mozambique: A Ruby Discovery for the 21st Century; GIA: Carlsbad, CA, USA, 2014. [Google Scholar]
- Pardieu, V.; Sangsawong, S.; Muyal, J.; Chauviré, B.; Massi, L.; Sturman, N. Rubies from the Montepuez Area (Mozambique); GIA: Carlsbad, CA, USA, 2013. [Google Scholar]
- Pardieu, V.; Jacquat, S.; Bryl, L.P.; Senoble, J.B. Rubies from northern Mozambique. InColor 2009, 12, 32–36. [Google Scholar]
- Vincent, P.; Rakotosona, N. Ruby and Sapphire Rush Near Didy, Madagascar. Available online: http://www.giathai.net/pdf/Didy_Madagascar_US.pdf (accessed on 22 February 2020).
- Rakontondrazafy, A.F.M.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Rakotosamizanay, S.; Andriamamonjy, A.; Ralantoarison, T.; Razanatseheno, M.; Offant, Y.; Garnier, V.; et al. Gem corundum deposits of Madagascar: A review. Ore Geol. Rev. 2008, 34, 135–154. [Google Scholar]
- Pardieu, V.; Wise, R.W. Ruby boom town. Colored Stone 2006, 19, 30–33. [Google Scholar]
- Hughes, R.W.; Pardieu, V.; Schorr, D. Sorcerers & Sapphires: A Vsit to Madagascar. Available online: https://lotusgemology.com/index.php/library/articles/161-sorcerers-sapphires-a-visit-to-madagascar (accessed on 22 February 2020).
- Schwarz, D.; Schmetzer, K. Rubies from the Vatomandry area, eastern Madagascar. J. Gemmol. 2001, 27, 409–416. [Google Scholar] [CrossRef]
- Abduriyim, A.; Kitawaki, H. New geological origin: Ruby from Winza of Tanzania. Gemmology 2008, 8, 4–7. [Google Scholar]
- Keller, P.C. The rubies of Burma: A review of the Mogok Stone Tract. Gems Gemol. 1983, 19, 209–219. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, L.; Yui, T.-F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for gem color and genesis. Miner. Depos. 2015, 50, 25–39. [Google Scholar] [CrossRef]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and FTIR Spectroscopy; GIA: Carlsbad, CA, USA, 2018. [Google Scholar]
- Pardieu, V.; Saeseaw, S.; Detroyat, S.; Raynaud, V.; Sangsawong, S.; Bhurisom, T.; Engniwat, S.; Muyal, J. “Low Temperature” Heat Treatment of Mozambique Ruby; GIA: Carlsbad, CA, USA, 2015. [Google Scholar]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of ruby. Gems Gemol. 2019, 55, 580–613. [Google Scholar] [CrossRef]
- Kiefert, L.; Karampelas, S. Use of the Raman spectrometer in gemmological laboratories: Review. Spectrochim. Acta A 2011, 80, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; ABC Edition: Zürich, Switzerland, 1986; p. 532. [Google Scholar]
- Vertriest, W.; Palke, A.C.; Renfro, N.D. Field gemology: Building a research collection and understanding the development of gem deposits. Gems Gemol. 2019, 55, 580. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF-A package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Les gisements de corindon: Classification et genèse. Règne Miner. 2004, 55, 7–47. [Google Scholar]
- Iyer, L.A.N. The geology and gem-stones of the Mogok stone tract, Burma. Geol. Surv. India-Mem. 1953, 82, 8–100. [Google Scholar]
- Themelis, T. Gems and Mines of Mogok; Self-published: Bangkok, Thailand, 2008. [Google Scholar]
- Chhibber, H.L. The Geology of Burma; MacMillan and Co.: London, UK, 1934; p. 538. [Google Scholar]
- Thu, Y.K.; Win, M.M.; Enami, M.; Tsuboi, M. Ti–rich biotite in spinel and quartz–bearing paragneiss and related rocks from the Mogok metamorphic belt, central Myanmar. J. Miner. Petrol. Sci. 2016, 111, 270–282. [Google Scholar]
- Thu, K. The Igneous Rocks of the Mogok Stone Tract: Their Distributions, Petrography, Petrochemistry, Sequence, Geochronology and Economic Geology; University of Yangon: Yangon, Myanmar, 2007. [Google Scholar]
- Searle, M.; Garber, J.; Hacker, B.; Htun, K.; Gardiner, N.; Waters, D.; Robb, L. Timing of syenite-charnockite magmatism and ruby and sapphire metamorphism in the mogok valley region, Myanmar. Tectonics 2020, 39, 39. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Ohnenstetter, D.; Banks, D.; Branquet, Y.; Feneyrol, J.; Fallick, A.E.; Martelat, J.-E. The role of evaporites in the formation of gems during metamorphism of carbonate platforms: A review. Miner. Depos. 2017, 53, 1–20. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Hoang, V.Q.; Lhomme, T.; Maluski, H.; Pecher, A.; et al. Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34, 169–191. [Google Scholar] [CrossRef]
- Kievlenko, E.Y. Geology of Gems; Ocean Pictures Ltd.: Littleton, CO, USA, 2003. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.; Groat, L.; Fagan, A.J. Chapter 2: The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Groat, L., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014. [Google Scholar]
- Garnier, V.; Maluski, H.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can. J. Earth Sci. 2006, 43, 509–532. [Google Scholar] [CrossRef]
- Bingen, B.; Jacobs, J.; Viola, G.; Henderson, I.H.C.; Skar, O.; Boyd, R.; Thomas, R.J.; Solli, A.; Key, R.M.; Daudi, E.X.F. Geochronology of the Precambrian crust in the Mozambique Belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res. 2009, 170, 231–255. [Google Scholar] [CrossRef]
- Meert, J.G. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 2003, 362, 1–40. [Google Scholar] [CrossRef]
- Muhongo, S. Anatomy of the Mozambique Belt of eastern and southern Africa: Evidence from Tanzania. Gondwana Res. 1999, 2, 369–375. [Google Scholar] [CrossRef]
- Pardieu, V.; Thanachakaphad, J.; Jacquat, S.; Senoble, J.B.; Bryl, L.P. Rubies from the Niassa and Cabo Delgado Regions of Northern Mozambique; GIA Laboratory: Carlsbad, CA, USA, 2009; pp. 5–16. [Google Scholar]
- Boyd, R.; Nordgulen, O.; Thomas, B.; Bingen, B.; Bjerkgård, T.; Grenne, T.; Henderson, I.; Melezhik, V.; Sandstad, J.; Solli, A.; et al. The geology and geochemistry of the East African orogen in northeastern Mozambique. S. Afr. J. Geol. 2010, 113, 87–129. [Google Scholar] [CrossRef] [Green Version]
- Fanka, A.; Sutthirat, C. Petrochemistry, mineral chemistry, and pressure–temperature model of corundum-bearing amphibolite from Montepuez, Mozambique. Arab. J. Sci. Eng. 2018, 43, 3751–3767. [Google Scholar] [CrossRef]
- Lebas, M.J.; Lemaitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic-rocks based on the total alkali silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar]
- Gübelin, E.J. On the nature of mineral inclusions in gemstones—Parts 1 and 2. Gems Gemol. 1969, 13, 42–56. [Google Scholar]
- Gübelin, E.J. Inclusions as a Means of Gemstone Identification; GIA: Los Angeles, CA, USA, 1953; p. 220. [Google Scholar]
- Gübelin, E.J. On the nature of mineral inclusions in gemstones. J. Gemmol. 1969, 11, 149–192. [Google Scholar] [CrossRef]
- Gübelin, E.J. Internal World of Gemstones; reprinted 1983 ed.; ABC Verlag: Zürich, Switzerland, 1973; p. 234. [Google Scholar]
- Fritsch, E.; Rossman, G.R. New technologies of the 1980s: Their impact on gemology. Gems Gemol. 1990, 26, 64–75. [Google Scholar] [CrossRef]
- Kammerling, R.C.; Scarratt, K.; Bosshart, G.; Jobbins, E.A.; Kane, R.E.; Gubelin, E.J.; Levinson, A.A. Myanmar and its gems—An update. J. Gemmol. 1994, 24, 3–40. [Google Scholar] [CrossRef]
- Renfro, N.; Koivula, J. Vesuvianite in burmese ruby. Gems Gemol. 2017, 51, 469. [Google Scholar]
- Leelawathanasuk, T.; Pisutha-Arnond, V.; Atichat, W.; Sutthirat, C.; Wathanakul, P.; Sriprasert, B. Some characteristics of “Mozambique ruby”. In 31st International Gemmological Congress—Abstracts; IGC: Arusha, Tanzania, 2009; pp. 33–34. [Google Scholar]
- Searle, M.P.; Noble, S.R.; Cottle, J.M.; Waters, D.J.; Mitchell, A.H.G.; Hlaing, T.; Horstwood, M.S.A. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics 2007, 26, 26. [Google Scholar] [CrossRef]
- Yonemura, K.; Osanai, Y.; Nakano, N.; Adachi, T.; Charusiri, P.; Zaw, T. EPMA U-Th-Pb monazite dating of metamorphic rocks from the Mogok Metamorphic Belt, central Myanmar. J. Mineral. Petrol. Sci. 2013, 108, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Myat Phyo, M.; Franz, L.; Capitani, C.; Balmer, W.; Krzemnicki, M.; Christian, C. Petrology and PT-conditions of quartz- and nepheline-bearing gneisses from Mogok Stone Tract, Myanmar. In Proceedings of the 15th Swiss Geoscience Meeting, Davos, Switzerland, 17–18 November 2017. [Google Scholar] [CrossRef]
- Goldstein, T.; Aizenshtat, Z. Thermochemical sulfate reduction a review. J. Therm. Anal. Calorim. 1994, 42, 241–290. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Banks, D.; Hoang, V.Q.; Lhomme, T.; Pironon, J.; Garnier, V.; Phan, T.T.; Pham, L.V.; Ohnenstetter, D.; et al. CO2-H2S-S8-AlO(OH)-bearing fluid inclusions in ruby from marble-hosted deposits in Luc Yen area, North Vietnam. Chem. Geol. 2003, 194, 167–185. [Google Scholar] [CrossRef]
- Hoang, V.Q.; Giuliani, G.; Phan, T.T.; Pham, L.V. Fluid inclusion on ruby from the Yen Bai Province. In Geo- and Material-Science on Gem Minerals of Vietnam; GIA: Carlsbad, CA, USA, 2003; pp. 136–144. [Google Scholar]
- Phyo, M.M.; Bieler, E.; Franz, L.; Balmer, W.; Krzemnicki, M.S. Spinel from mogok, myanmar—A detailed inclusion study by raman microspectroscopyand scanning electron microscopy. J. Gemmol. 2019, 36, 418–435. [Google Scholar] [CrossRef]
- Malsy, A.; Klemm, L. Distinction of gem spinels from the Himalayan mountain belt. Chimia 2010, 64, 741–746. [Google Scholar] [CrossRef]
- Ottaway, T.; Wicks, F.; Bryndzia, L.; Spooner, E. Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature 1994, 369, 552–554. [Google Scholar] [CrossRef]
- Bard, J.P. Microtextures of Igneous and Metamorphic Rocks; Springer Netherlands: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Tomkins, A.G.; Pattison, D.R.M.; Frost, B.R. On the initiation of metamorphic sulfide anatexis. J. Petrol. 2006, 48, 511–535. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.; Mavrogenes, J.; Tomkins, A. Partial melting of sulfide ore deposits during medium- and high-grade metamorphism. Can. Mineral. 2002, 40, 1–18. [Google Scholar] [CrossRef]
- Craig, J.R.; Kullerud, G. The Cu-Fe-Ni-S system. Carnegie Inst. Wash. Yearb. 1968, 66, 413–417. [Google Scholar]
- Peregoedova, A.; Ohnenstetter, M. Collectors of Pt, Pd and Rh in a S-poor Fe-Ni-Cu sulfide system at 760 °C: Experimental data and application to ore deposits. Can. Mineral. 2002, 40, 527–561. [Google Scholar] [CrossRef]
- Sugaki, A.; Kitakaze, A. High form of pentlandite and its thermal stability. Am. Mineral. 1998, 83, 133–140. [Google Scholar] [CrossRef]
- Institute, S.S.G. New Rubies from Montepuez, Mozambique; GIA: Carlsbad, CA, USA, 2010; p. 17. [Google Scholar]
- Schwarz, D.; Pardieu, V.; Saul, J.M.; Schmetzer, K.; Laurs, B.M.; Giuliani, G.; Klemm, L.; Malsy, A.K.; Erel, E.; Hauzenberger, C.; et al. Rubies and sapphires from Winza, central Tanzania. Gems Gemol. 2008, 44, 322–347. [Google Scholar] [CrossRef] [Green Version]
- Nicollet, C. Saphirine et staurotide riche en magnésium et chrome dans les amphibolites et anorthosites à corindon du Vohibory Sud, Madagascar. Bull. Mineral. 1986, 109, 599–612. [Google Scholar] [CrossRef] [Green Version]
GIA CSRC Sample Number | Number | Country of Origin | Area | Mining Area | |
---|---|---|---|---|---|
100321364740 | A1 | Myanmar | Mogok | Baw Lon Gyi | |
100315602328 | A2 | Myanmar | Mogok | Baw Lon Gyi | |
100322689933 | A3 | Myanmar | Mogok | Baw Lon Gyi | |
100318470512 | A4 | Myanmar | Mogok | Sin Kwa | |
100309935280 | A5 | Myanmar | Mogok | Sin Kwa | |
100327146806 | A6 | Myanmar | Mogok | Baw Lon Gyi | |
100319160887 | B1 | Mozambique | Montepuez | Mugloto | |
100327146596 | B2 | Mozambique | Montepuez | Mugloto | |
100319160890 | B3 | Mozambique | Montepuez | Mugloto | |
100319160927 | B4 | Mozambique | Montepuez | Mugloto |
Elements | Standard Number | Mineral | Mineral Code |
---|---|---|---|
Cu | St 129 | Copper | P-1012 |
S | St 1830 | MnS syn | P-698 |
Ni, S | St 1831 | NiS syn | P-699 |
Zn, S | St 1832 | ZnS syn | P-700 |
Pb, S | St 1833 | PbS syn | P-701 |
As, S | St 1835 | As2S3 syn | P-703 |
Co, S | St 1838 | Co9S8 syn | P-706 |
Fe, S | St 1853 | FeS2 mac | P-1004 |
Mogok | S | Fe | Cu | As | Co | Ni | Zn | Pb | Elemental Totals |
---|---|---|---|---|---|---|---|---|---|
A1 | 38.66 | 59.14 | 0.00 | 0.00 | 0.13 | 0.03 | 0.01 | 0.20 | 98.19 |
A2 | 38.58 | 59.28 | 0.00 | 0.00 | 0.14 | 0.06 | 0.10 | 0.16 | 98.31 |
A3 | 38.68 | 59.51 | 0.01 | 0.00 | 0.12 | 0.15 | 0.10 | 0.18 | 98.75 |
A4 | 38.72 | 58.91 | 0.00 | 0.00 | 0.11 | 0.15 | 0.06 | 0.20 | 98.14 |
A4—herringbone | 41.96 | 43.18 | 0.00 | 0.00 | 0.09 | 0.58 | 0.03 | 0.18 | 86.01 |
A5 | 33.21 | 10.70 | 0.00 | 0.00 | 0.02 | 0.00 | 53.95 | 0.06 | 97.94 |
A6—dark phase | 53.34 | 46.76 | 0.00 | 0.00 | 0.07 | 0.00 | 0.03 | 0.24 | 100.45 |
A6—light phase | 38.75 | 59.49 | 0.00 | 0.00 | 0.12 | 0.22 | 0.04 | 0.18 | 98.80 |
Mozambique | |||||||||
B1–1 | 32.82 | 28.74 | 0.05 | 0.00 | 1.22 | 34.43 | 0.05 | 0.16 | 97.46 |
B1–2 | 34.77 | 29.27 | 32.55 | 0.00 | 0.05 | 0.00 | 0.02 | 0.17 | 96.85 |
B1–3 | 36.22 | 60.97 | 0.01 | 0.00 | 0.14 | 0.02 | 0.08 | 0.19 | 97.63 |
B1–4 | 34.22 | 40.43 | 0.04 | 0.00 | 0.17 | 22.52 | 0.09 | 0.15 | 97.62 |
B1–5 | 35.95 | 61.78 | 0.01 | 0.00 | 0.13 | 0.00 | 0.08 | 0.15 | 98.11 |
B2–1 | 34.02 | 28.89 | 32.33 | 0.00 | 0.06 | 0.00 | 0.09 | 0.16 | 95.56 |
B2–2 | 39.14 | 58.43 | 0.13 | 0.00 | 0.12 | 0.16 | 0.14 | 0.16 | 98.27 |
B2–3 | 33.19 | 30.28 | 0.07 | 0.00 | 1.22 | 32.51 | 0.21 | 0.14 | 97.61 |
B2–4 | 32.72 | 29.16 | 0.11 | 0.00 | 1.27 | 34.54 | 0.00 | 0.16 | 97.96 |
B3–1 | 32.65 | 29.02 | 0.00 | 0.00 | 1.14 | 34.75 | 0.02 | 0.18 | 97.75 |
B3–2 | 38.11 | 58.95 | 0.07 | 0.00 | 0.12 | 0.40 | 0.18 | 0.15 | 97.99 |
B3–3 | 33.47 | 29.49 | 32.07 | 0.00 | 0.07 | 0.00 | 0.10 | 0.13 | 95.31 |
B4–1 | 38.63 | 58.50 | 0.00 | 0.00 | 0.13 | 0.93 | 0.11 | 0.19 | 98.49 |
B4–2 | 34.02 | 29.84 | 32.18 | 0.00 | 0.07 | 0.00 | 0.03 | 0.18 | 96.31 |
Mogok | S | Fe | Cu | Co | Ni | Zn | Mineral Name | Mineral Formula |
---|---|---|---|---|---|---|---|---|
A1 | 1.00 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.88S |
A2 | 1.00 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.88S |
A3 | 1.00 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.88S |
A4 | 1.00 | 0.87 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.87S |
A5 | 1.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.80 | sphalerite | (Fe0.18, Zn0.80)S |
A6— dark phase | 1.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | pyrite | FeS2 |
A6— light phase | 1.00 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.88S |
Mozambique | ||||||||
B1–1 | 1.00 | 0.50 | 0.00 | 0.02 | 0.57 | 0.00 | pentlandite | (Fe4, Ni4.56 Co0.16)S8 |
B1–2 | 1.00 | 0.48 | 0.47 | 0.00 | 0.00 | 0.00 | chalcopyrite | Cu0.47Fe0.48S |
B1–3 | 1.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.97S |
B1–4 | 1.00 | 0.68 | 0.00 | 0.00 | 0.36 | 0.00 | ?Fe-rich pentlandite? | |
B1–5 | 1.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.99S |
B2–1 | 1.00 | 0.49 | 0.48 | 0.00 | 0.00 | 0.00 | chalcopyrite | Cu0.48Fe0.49S |
B2–2 | 1.00 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | pyrrhotite | Fe0.86S |
B2–3 | 1.00 | 0.52 | 0.00 | 0.02 | 0.53 | 0.00 | pentlandite | (Fe4.16, Ni4.24 Co0.16)S8 |
B2–4 | 1.00 | 0.51 | 0.00 | 0.02 | 0.58 | 0.00 | pentlandite | (Fe4.04, Ni4.64, Co0.16)S8 |
B3–1 | 1.00 | 0.51 | 0.00 | 0.02 | 0.58 | 0.00 | pentlandite | (Fe4.04, Ni4.64, Co0.16)S8 |
B3–2 | 1.00 | 0.89 | 0.00 | 0.00 | 0.01 | 0.00 | pyrrhotite | Fe0.89S |
B3–3 | 1.00 | 0.51 | 0.48 | 0.00 | 0.00 | 0.00 | chalcopyrite | Cu0.48Fe0.51S |
B4–1 | 1.00 | 0.87 | 0.00 | 0.00 | 0.01 | 0.00 | pyrrhotite | Fe0.87S |
B4–2 | 1.00 | 0.50 | 0.48 | 0.00 | 0.00 | 0.00 | chalcopyrite | Cu0.48Fe0.50S |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertriest, W.; Palke, A. Identification of Opaque Sulfide Inclusions in Rubies from Mogok, Myanmar and Montepuez, Mozambique. Minerals 2020, 10, 492. https://doi.org/10.3390/min10060492
Vertriest W, Palke A. Identification of Opaque Sulfide Inclusions in Rubies from Mogok, Myanmar and Montepuez, Mozambique. Minerals. 2020; 10(6):492. https://doi.org/10.3390/min10060492
Chicago/Turabian StyleVertriest, Wim, and Aaron Palke. 2020. "Identification of Opaque Sulfide Inclusions in Rubies from Mogok, Myanmar and Montepuez, Mozambique" Minerals 10, no. 6: 492. https://doi.org/10.3390/min10060492
APA StyleVertriest, W., & Palke, A. (2020). Identification of Opaque Sulfide Inclusions in Rubies from Mogok, Myanmar and Montepuez, Mozambique. Minerals, 10(6), 492. https://doi.org/10.3390/min10060492