Ruby Deposits: A Review and Geological Classification
Abstract
:1. Introduction
2. Worldwide Ruby Deposits
3. The Mineralogical, Physical, and Chemical Properties of Ruby
3.1. Mineralogical and Physical Properties
3.2. The Trapiche Texture of Ruby
3.3. Chemical Composition and Geographic Origin of Ruby
4. Geological Environment and Age of Primary Ruby Deposits
5. Classification of Ruby Deposits
5.1. Genetic Classifications
5.2. An Enhanced Classification for Ruby Deposits
6. The Different Types of Ruby Deposits
6.1. Magmatic-Related (Type I)
6.1.1. Sub-Type IA: Metamorphic Rubies either as Xenocrysts or Xenoliths in Magmatic Rocks such as Alkali Basalts (See Table 3)
6.1.2. Sub-Type IB: Metamorphic Rubies as Xenocrysts in the Mbuji-Mayi Kimberlite (Democratic Republic of Congo; See Figure 2, Table 3)
- (a)
- The field of sample CO1 overlaps the plots of rubies from Andriba in Madagascar hosted in ultramafics [174], the Winza deposit in Tanzania located in amphibolite and metagabbro [120], high-grade Proterozoic orthoamphibolites of the Bamble area in Norway [43], and ultrahigh pressure ruby-rich garnetite layers in garnet lherzolite in the Sulu terrane of China [175].
- (b)
- The field of sample CO2 is defined by the very high Cr2O3 content of ruby up to 4.6 wt %. Chromium-rich ruby is rare and found in the Brazilian São Luiz alluvial deposit and in the Juina kimberlite [43,170], the Moses Rock Dyke kimberlite in Utah [176], the metagabbros at Karelia in Russia [41], and in the serpentinite at Hokitika in New Zealand [42].
- (c)
- The field of sample CO3 is comparable to the chemical composition of ruby-bearing garnetite xenolith in garnet peridotite from the Sulu terrane in China [175].
6.2. Metamorphic-Related (Type II)
6.2.1. Sub-Type IIA: Metamorphic Deposits Sensu Stricto with Two Different Types Formed in Amphibolite to Granulite Facies (See Table 3)
6.2.2. Sub-Type IIB: Metamorphic-Metasomatic Deposits Formed by Fluid–Rock Interaction and Metasomatism (See Table 3)
6.3. Sedimentary-Related (Type III): Placer Deposits
6.3.1. Sub-Type IIIA: Gem Placers in an Alkali Basalt Environment (Eastern Australia, Pailin-Chanthaburi-Trat, Eastern and Central Madagascar, and Others)
6.3.2. Sub-Type IIIB: Gem Placers in Metamorphic Environment in M-UMR (Montepuez, Mozambique) and Marble (Mogok Stone Track, Myanmar, and Others)
6.3.3. Sub-Type IIIC: Gem Placers with Ruby Originating from Multiple and Unknown Sources
7. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eichholz, D.E. Theophrastus, De Lapidibus; Oxford Clarendon Press: Oxford, UK, 1965. [Google Scholar]
- Littré, E. Tome Second. In Histoire Naturelle de Pline; Chez Firmin-Didot et Cie: Paris, France, 1877. [Google Scholar]
- Ernault, L. Marbode, Évêque de Rennes, Sa Vie et Ses Oeuvres; Hte Cailleres: Rennes, France, 1890; pp. 1035–1123. [Google Scholar]
- Albertus Magnus Liber Mineralium; Jacob Köbel: Oppenheim, Germany, 1518.
- Hughes, R.W. Ruby and Sapphire; RWH Publishing: Boulder, CO, USA, 1997. [Google Scholar]
- Pardieu, V. Thailand, the undisputed ruby kingdom: A brief history. InColor 2019, 42, 14–22. [Google Scholar]
- Themelis, T. The Heat Treatment of Ruby and Sapphire; Gemlab Inc.: New York, NY, USA, 1992. [Google Scholar]
- Shigley, J.E.; Dirlam, D.M.; Laurs, B.M.; Boehm, E.W.; Bosshart, G.; Larson, W.F. Gem localities of the 1990s. Gems Gemol. 2000, 36, 292–335. [Google Scholar] [CrossRef]
- Dussart, S. The version of field gemologist Vincent Pardieu. IGR Italian Gemol. Rev. 2019, 7, 58–64. [Google Scholar]
- Raden, A. Stoned: Jewelry, Obsession, and How Desire Shapes the World; Ecco: Manhattan, NY, USA, 2015. [Google Scholar]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of ruby. Gems Gemol. 2019, 55, 580–612. [Google Scholar] [CrossRef]
- Gübelin Gem Laboratory: The roots of origin determination. Jewel. News Asia 2006, 52–62.
- Gübelin Gem Laboratory: The limits of orgin determination. Jewel. News Asia 2006, 66–71.
- Gübelin Gem Laboratory: A hoolistic method to determining gem origin. Jewel. News Asia 2006, 118–126.
- McClure, S.F.; Moses, T.M.; Shigley, J.E. The geographic origin dilemma. Gems Gemol. 2019, 55, 457–462. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; ABC Edition: Zurich, Switzerland, 1986. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; Opinio Publishers: Basel, Switzerland, 1985; Volume 3. [Google Scholar]
- Sotheby’s Magnificient Jewels and Noble Jewels, Auction 502. 2005. Available online: http://www.sothebys.com (accessed on 20 June 2020).
- Pardieu, V. Ruby and Sapphire Rush near Didy, Madagascar. April–June 2012. Available online: https://www.gia.edu/doc/Ruby-and-Sapphire-Rush-Near-Didy-Madagascar.pdf (accessed on 20 June 2020).
- Peretti, A.; Hahn, L. Record-breaking discovery of ruby and sapphire at the Didy mine in Madagascar: Investigating the source. InColor 2013, 21, 22–35. [Google Scholar]
- Pardieu, V.; Jacquat, S.; Senoble, J.B.; Bryl, L.P.; Hughes, R.W.; Smith, M. Expedition Report to the Ruby Mining Sites in Northern Mozambique (Niassa and Cabo Delgado Provinces), Bangkok, GIA Laboratory. 2009. Available online: https://www.gia.edu/doc/Expedition-report-Ruby-mining-sites-Northern-Mozambique (accessed on 20 June 2020).
- Pardieu, V.; Jacquat, S.; Bryl, L.P.; Senoble, J.B. Rubies from northern Mozambique. InColor 2009, 12, 32–36. [Google Scholar]
- Pardieu, V.; Thanachakaphad, J.; Jacquat, S.; Senoble, J.B.; Bryl, L.P. Rubies from the Niassa and Cabo Delgado Regions of Northern Mozambique. A Preliminary Examination with an Updated Field Report Annex. Bangkok, GIA Laboratory. Available online: https://www.gia.edu/doc/Niassa_Mozambique_Ruby_September13_2009.pdf (accessed on 20 June 2020).
- Pardieu, V. Gemfields’ November 2017 ruby auction yields record results. InColor 2018, 37, 62–63. [Google Scholar]
- Simonet, C. The Montepuez ruby deposits, what’s next? InColor 2018, 37, 32–40. [Google Scholar]
- Vertriest, W.; Saeseaw, S. A decade of ruby from Mozambique: A review. Gems Gemol. 2019, 55, 162–183. [Google Scholar] [CrossRef] [Green Version]
- A Competent Persons Report on the Montepuez Ruby Project, Mozambique; SRK Consulting (UK) Limited: Cardiff, UK, 2015; 195p.
- Yager, Y.G.; Menzie, W.D.; Olson, D.W. Weight of Production of Emeralds, Rubies, Sapphires, and Tanzanite from 1995 through 2005. Open file Report 2008–1013; USGS: Reston, VA, USA, 2008. [Google Scholar]
- Themelis, T. Gems and Mines of Mogok; Ted Themelis: Bangkok, Thailand, 2008; ISBN 0940965-30-5. [Google Scholar]
- Peretti, A.; Schmetzer, K.; Bernhardt, H.J.; Mouawad, F. Rubies from Mong Hsu. Gems Gemol. 1995, 31, 2–26. [Google Scholar] [CrossRef]
- Streeter, E.W. Precious Stones and Gems, Their History Sources and Characteristics; George Bell & Son: London, UK, 1892. [Google Scholar]
- Rohtert, W.; Ritchie, M. Three parageneses of ruby and pink sapphire discovered at Fiskenæsset, Greenland. Gems Gemol. 2006, 42, 149–150. [Google Scholar]
- Fagan, A.J. True North Gems Greenland mining—The final lap. InColor 2015, 29, 36–49. [Google Scholar]
- Fagan, A.J. The Ruby and Pink Sapphire Deposits of SW Greenland: Geological Setting, Genesis, and Exploration Techniques. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2018. [Google Scholar]
- Smith, C.P.; Fagan, A.J.; Bryan, C. Ruby and pink sapphire from Aappaluttoq, Greenland. J. Gemmol. 2016, 35, 294–306. [Google Scholar] [CrossRef]
- Lucas, A.; Palke, A.; Vertriest, W. Mining rubies in Greenland. The Aappaluttoq ruby mine. InColor 2018, 37, 42–52. [Google Scholar]
- Vertriest, W.; Palke, A.C.; Renfro, N.D. Field gemology: Building a research collection and understanding the development of gem deposits. Gems Gemol. 2019, 55, 490–511. [Google Scholar] [CrossRef]
- Cesbron, F.; Lebrun, P.; Le Cléac’h, J.M.; Notari, F.; Grobon, C.; Deville, J. Corindons et spinelles. In Minéraux et Fossiles 15; Editions CEDIM: Paris, France, 2002. [Google Scholar]
- Bowles, J.F.W.; Howie, R.A.; Vaughan, D.J.; Zussman, J. Rock-Forming Minerals. Non-Silicates: Oxides, Hydroxides and Sulphides; The Geological Society: London, UK, 2011; Volume 5A. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, J. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits; Groat, L.A., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Short Course Series; Volume 44, pp. 29–112. [Google Scholar]
- Bindeman, I.N.; Serebryakov, N.S. Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belmorian belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth Planet. Sci. Lett. 2011, 306, 163–174. [Google Scholar] [CrossRef]
- Grapes, R.; Palmer, K. (Ruby-sapphire)-chromian mica-tourmaline rocks from Westland, New Zealand. J. Petrol. 1996, 37, 293–315. [Google Scholar] [CrossRef]
- Hutchinson, M.T.; Nixon, P.H.; Harley, S.L. Corundum inclusions in diamonds-discriminatory criteria and a corundum composition dataset. Lithos 2004, 77, 273–286. [Google Scholar] [CrossRef]
- Perretti, A. The Making of an International Color Standard by GRS: “Pigeon’s Blood” and “Royal Blue”. Definitions, Retroperspective and Future. 2015. Available online: http://www.pigeonsblood.com (accessed on 23 November 2019).
- Smith, C.P.; Surdez, N. The Mong Hsu ruby: A new type of Burmese ruby. Jewelsiam 1994, 5, 82–98. [Google Scholar]
- Sunagawa, I. Crystals: Growth, Morphology and Perfection; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Sunagawa, I.; Bernhardt, H.-J.; Schmetzer, K. Texture formation and element partitioning in trapiche ruby. J. Cryst. Growth 1999, 206, 322–330. [Google Scholar] [CrossRef]
- Hänni, H.A.; Schmetzer, K. New rubies from the Morogoro Area, Tanzania. Gems Gemol. 1991, 27, 156–167. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Hofmeister, W.; Häger, T.; Mertz-Kraus, R.; Buhre, S.; Saul, J. Morphological and chemical evolution of corundum (ruby and sapphire): Crystal ontogeny reconstructed by EMPA, LA-ICPMS, and Cr3+ Raman mapping. Am. Mineral. 2016, 101, 2716–2722. [Google Scholar] [CrossRef]
- McKague, H.L. Trapiche emeralds from Colombia. Gems Gemol. 1964, 11, 210–213. [Google Scholar]
- Schmetzer, K.; Hänni, H.A.; Bernhard, H.J.; Schwarz, D. Trapiche rubies. Gems Gemol. 1996, 32, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Schmetzer, K.; Beili, Z.; Yan, G.; Bernhard, H.J.; Hänni, H.A. Element mapping of trapiche rubies. J. Gemmol. 1999, 26, 289–301. [Google Scholar] [CrossRef]
- Win, K.K. Trapiche of Myanmar. Austr. Gemmol. 2005, 22, 269–270. [Google Scholar]
- Schmetzer, K.; Bernhardt, H.J.; Hainschwang, T. Chemical and growth zoning in trapiche tourmaline from Zambia—A re-evaluation. J. Gemmol. 2011, 32, 151–173. [Google Scholar] [CrossRef]
- Koivula, J.I.; Kammerling, R.C.; Fritsch, E. Gem News: “Trapiche” purple-pink sapphire. Gems Gemol. 1994, 30, 197. [Google Scholar]
- Kiefert, L. Unusual trapiche sapphire. Gems Gemol. 2012, 48, 229. [Google Scholar]
- Pignatelli, I.; Giuliani, G.; Morlot, C.; Pham, V.L. The texture and chemical composition of trapiche ruby from Khoan Thong, Luc Yen mining district, northern Vietnam. J. Gemmol. 2019, 36, 726–745. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Schwarz, D. Rubis trapiches de Mong Hsu, Myanmar. Rev. Ass. Fr. Gemmol. AFG 2002, 144, 5–12. [Google Scholar]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Blanc, P.; Schwarz, D. Trace-element contents and cathodoluminescence of “Trapiche” rubies from Mong Hsu (Myanmar): Geological significance. Miner. Petrol. 2002, 76, 179–193. [Google Scholar] [CrossRef]
- Peretti, A.; Mullis, J.; Mouawad, F. The role of fluoride in the formation of color zoning in rubies from Mong Hsu (Myanmar, Burma). J. Gemmol. 1996, 25, 3–19. [Google Scholar] [CrossRef]
- Pignatelli, I.; Giuliani, G.; Ohnenstetter, D.; Agrosi, G.; Mathieu, S.; Morlot, C.; Branquet, Y. Colombian trapiche emeralds: Recent advances in understanding their formation. Gems Gemol. 2015, 51, 222–259. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Pignatelli, I.; Schwarz, D. Fluid inclusions study of trapiche and non-trapiche rubies from Mong Hsu deposit, Myanmar. Can. Mineral. 2018, 56, 1–13. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Banks, D.; Lhomme, T.; Ohnenstetter, D. Fluid inclusions in ruby from Asian marble deposits: Genetic implications. Eur. J. Mineral. 2015, 27, 393–404. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Ohnenstetter, D.; Banks, D.; Branquet, Y.; Feneyrol, J.; Fallick, A.E.; Martelat, J.-E. The role of evaporites in the formation of gems during metamorphism of carbonate platforms: A review. Mineral. Depos. 2018, 53, 1–20. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Hoàng, Q.V.; Lhomme, T.; Maluski, H.; Pêcher, A.; et al. Marble-hosted ruby deposits from central and southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34, 169–191. [Google Scholar] [CrossRef]
- Garnier, V. Les Gisements de Rubis Associés aux Marbres de l’Asie Centrale et du Sud-est: Genèse et Caractérisation Isotopique. Ph.D. Thesis, University of Nancy, Nancy, France, 2003. [Google Scholar]
- Muhlmeister, S.; Fritsch, E.; Shigley, J.E.; Devouard, B.; Laurs, B.M. Separating natural and synthetic rubies on the basis of trace-element chemistry. Gems Gemol. 1998, 34, 80–101. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Schwarz, D.; Jobbins, E.A.; Coenraads, R.R.; Webb, G. Distinctive gem corundum suites from discrete basalt fields: A comparative study of Barrington, Australia, and West Pailin, Cambodia, gemfields. J. Gemmol. 1998, 26, 65–85. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Coenraads, R.R.; Abduriyim, A.; Meffre, S.; Hoskin, P.W.O.; Giuliani, G.; Beattie, R.; Wuhrer, R.; Sutherland, G.B. Corundum (sapphire) and zircon relationships, Lava Plains gem fields, NE Australia: Integrated mineralogy, geochemistry, age determination, genesis and geographic typing. Mineral. Mag. 2015, 79, 545–581. [Google Scholar] [CrossRef]
- Peucat, J.J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B. Ga/Mg ratios as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos 2007, 98, 261–274. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Abduriyim, A. Geographic typing of gem corundum: A text case from Australia. J. Gemmol. 2009, 31, 203–210. [Google Scholar] [CrossRef]
- Giuliani, G.; Caumon, G.; Rakotosamizanany, S.; Ohnenstetter, D.; Rakotondrazafy, A.F.M. Classification chimique des corindons par analyse factorielle discriminante: Application à la typologie des gisements de rubis et saphirs. Rev. Ass. Fr. Gemmol. AFG 2014, 188, 14–22. [Google Scholar]
- Sutherland, F.L.; Schwarz, D. Origin of gem corundums from basaltic fields. Austr. Gemmol. 2001, 21, 30–33. [Google Scholar]
- Sutherland, F.L.; Hoskin, P.W.O.; Fanning, C.M.; Coenraads, R.R. Models of corundum origin from alkali basaltic terrains: A reappraisal. Contrib. Mineral. Petrol. 1998, 133, 356–372. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Coenraads, R.R.; Schwarz, D.; Raynor, L.R.; Barron, B.J.; Webb, G.B. Al-rich diopside in alluvial ruby and corundum-bearing xenoliths, Australian and SE Asian basalt field. Mineral. Mag. 2003, 67, 717–732. [Google Scholar] [CrossRef]
- Abduriyim, A.; Kitawaki, H. Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology. Gems Gemol. 2006, 42, 98–118. [Google Scholar] [CrossRef] [Green Version]
- Rakotosamizanany, S.; Giuliani, G.; Ohnenstetter, D.; Rakotondrazafy, A.F.M.; Fallick, A.E.; Paquette, J.-L.; Tiepolo, M. Chemical and oxygen isotopic compositions, age and origin of gem corundums in Madagascar alkali basalts. J. S. Afr. Earth Sci. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Arlabosse, J.-M.; Delaunay, A.; Lenne, N. Les rubis de Vatomandry—Madagascar. Rev. Ass. Fr. Gemmol. AFG 2018, 203, 6–15. [Google Scholar]
- Uher, P.; Giuliani, G.; Szakall, S.; Fallick, A.E.; Strunga, V.; Vaculovic, D.; Ozdin; Greganova, M. Sapphires related to alkali basalts from the Cerová Highlands, Western Carpathians (southern Slovakia): Composition and origin. Geol. Carpathica 2012, 63, 71–82. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Garnier, V.; Fallick, A.E.; Rakotondrazafy, A.F.M.; Schwarz, D. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits; Groat, L.A., Ed.; Mineralogical Association of Canada: Yellowknife, NT, Canada, 2007; Short Course Series; Volume 37, pp. 27–78. [Google Scholar]
- Sutherland, F.L.; Graham, I.T.; Harris, S.J.; Coldham, T.; Powell, W.; Belousova, E.A.; Martin, L. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia. Lithos 2017, 278–281, 347–360. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Giuliani, G.; Fallick, A.E.; Garland, M.; Webb, G.B. Sapphire-ruby characteristics, West Pailin, Cambodia: Clues to their origin based on trace element and O isotope analysis. Austr. Gemmol. 2009, 23, 373–432. [Google Scholar]
- Keulen, N.; Thomsen, T.B.; Schumacher, J.C.; Poulsen, M.D.; Kalvig, P.; Vennemann, T.; Salimi, R. Formation, origin and geographic typing of corundum (ruby and pink sapphire) from the Fiskenaæsset complex, Greenland. Lithos 2020, 366–367. [Google Scholar] [CrossRef]
- Giuliani, G.; Pivin, M.; Fallick, A.E.; Ohnenstetter, D.; Song, Y.; Demaiffe, D. Geochemical and oxygen isotope signatures of mantle corundum megacrysts from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China. C.R. Geosciences 2015, 347, 24–34. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Khin, Z.; Meffre, S.; Giuliani, G.; Fallick, A.E.; Webb, G.B. Gem-corundum megacrysts from east Australian basalt fields: Trace elements, oxygen isotopes and origins. Austr. J. Earth Sci. 2009, 56, 1003–1022. [Google Scholar] [CrossRef]
- Sutherland, L.; Graham, I.; Harris, S.; Khin, Z.; Meffre, S.; Coldham, T.; Coenraads, R.; Sutherland, G. Rubis australasiens. Rev. Ass. Fr. Gemmol. AFG 2016, 197, 13–20. [Google Scholar]
- Khin, Z.; Sutherland, F.L.; Yui, T.F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok gemfield, Myanmar: Implications for gem color and genesis. Mineral. Depos. 2015, 50, 25–39. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Khin, Z.; Meffre, F.; Thompson, J.; Goemann, K.; Kyaw, T.; Than, T.N.; Mhod, Z.M.; Harris, S.I. Diversity in ruby chemistry and its inclusions: Intra and inter-continental comparisonsfrom Myanmar and Eastern Australia. Minerals 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Pardieu, V. Concise field report Volume 1: Pailin, Cambodia, Dec 2008-Feb 2009, Bangkok, GIA Laboratory. 2009. Available online: https://www.gia.edu/doc/Field-ReportPailin,pdf (accessed on 25 June 2020).
- Pardieu, V. Field gemology. The evolution of data collection. InColor 2020, 46, 100–106. [Google Scholar]
- Groat, L.A.; Giuliani, G.; Stone-Sundberg, J.; Sun, Z.; Renfro, N.D.; Palke, A.C. A review of analytical methods used in geographic origin determination of gemstones. Gems Gemol. 2019, 55, 512–535. [Google Scholar] [CrossRef] [Green Version]
- Stone-Sundberg, J.; Thomas, T.; Sun, Z.; Guan, Y.; Cole, Z.; Equall, R.; Emmett, J.L. Accurate reporting of key trace elements in ruby and sapphire using matrix-matched standards. Gems Gemol. 2017, 53, 438–451. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Garnier, V.; France-Lanord, C.; Ohnenstetter, D.; Schwarz, D. Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology 2005, 33, 249–252. [Google Scholar] [CrossRef]
- Rakotosamizanany, S. Les Corindons Gemmes Dans Les Basaltes Alcalins et Leurs Enclaves à Madagascar: Significations Pétrologique et Métallogénique. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2009. [Google Scholar]
- Voudouris, P.; Mavrogonatos, C.; Graham, I.; Giuliani, G.; Melfos, V.; Karampelas, S.; Karantoni, V.; Wang, K.; Tarantola, A.; Khin, Z.; et al. Gem Corundum deposits of Greece: Geology, mineralogy and genesis. Minerals 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Fanka, A.; Sutthirat, C. Petrochemistry, mineral chemistry, and pressure-temperature model of corundum-bearing amphibolite from Montepuez, Mozambique. Arab. J. Sci. Eng. 2018, 43, 3751–3767. [Google Scholar] [CrossRef]
- Morishita, T.; Arai, S.; Gervilla, F. High pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: Significance of sapphirine- and corundum-bearing assemblages. Lithos 2001, 57, 143–161. [Google Scholar] [CrossRef]
- Pham, V.L.; Hoàng, Q.V.; Garnier, V.; Giuliani, G.; Ohnenstetter, D. Marble-hosted ruby from Vietnam. Can. Gemmol. 2004, 25, 83–95. [Google Scholar]
- Ishimaru, S.; Arai, S.; Miura, M.; Shmelev, V.; Pushkarev, E. Ruby-bearing feldspathic dyke in peridotite from Ray-Iz ophiolite, the Polar Urals: Implications for mantle metasomatism and origin of ruby. J. Mineral. Petrol. Sci. 2015, 110, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Andriamamonjy, S.A. Les corindons associés aux roches métamorphiques du Sud ouest de Madagascar: Le gisement de saphir de Zazafotsy. Master Thesis, Université d’Antananarivo, Tananarive, Madagascar, 2006. [Google Scholar]
- Kongsomart, B.; Vertriest, W.; Weeramonkhonlert, V. Preliminary observations on facet-grade ruby from Longido, Tanazania. Gems Gemol. 2017, 53, 472–473. [Google Scholar]
- Krebs, M.Y.; Pearson, D.G.; Fagan, A.J.; Bussweiler, Y.; Sarkar, C. The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland. Chem. Geol. 2019, 523, 42–58. [Google Scholar] [CrossRef]
- Harlow, G.E.; Bender, W. A study of ruby (corundum) compositions from the Mogok Belt, Myanmar: Searching for chemical fingerprints. Am. Mineral. 2013, 98, 1120–1132. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Litvinenko, A.K.; Hofmeister, W.; Häger, T.; Jacob, D.E.; Nasriddinov, Z.Z. Rubies and sapphires from Snezhnoe, Tajikistan. Gems Gemol. 2015, 51, 160–175. [Google Scholar] [CrossRef]
- Palke, A.C.; Wong, J.; Verdel, C.; Avila, J.N. A common origin for Thai/Cambodian rubies and blue and violet sapphires from Yogo Gulch, Montana, USA? Am. Mineral. 2018, 103, 469–479. [Google Scholar] [CrossRef]
- Graham, I.; Sutherland, L.; Khin, Z.; Nechaev, V.; Khanchuk, A. Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geol. Rev 2008, 34, 200–215. [Google Scholar] [CrossRef]
- Stern, R.J.; Tsujimori, T.; Harlow, G.; Groat, L. Plate tectonic gemstones. Geology 2013, 41, 723–726. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Saphirs et rubis. Classification des gisements de corindon. Le Règne Minéral 2004, 55, 4–47. [Google Scholar]
- Emmett, J.L.; Stone-Sundberg, J.; Guan, Y.; Sun, Z. The role of silicon in the color of gem corundum. Gems Gemol. 2017, 53, 42–47. [Google Scholar] [CrossRef]
- Simonet, C.; Fritsch, E.; Lasnier, B. A classification of gem corundum deposits aimed towards gem exploration. Ore Geol. Rev. 2008, 34, 127–133. [Google Scholar] [CrossRef]
- Kissin, A.J. Ruby and sapphire from the southern Ural Mountains, Russia. Gems Gemol. 1994, 30, 243–252. [Google Scholar] [CrossRef]
- Okrusch, M.; Bunch, T.E.; Bank, H. Paragenesis and petrogenesis of a corundum-bearing marble at Hunza (Kashmir). Mineral. Depos. 1976, 11, 278–297. [Google Scholar] [CrossRef]
- Dzikowski, T.J.; Cempirek, J.; Groat, L.A.; Dipple, G.M.; Giuliani, G. Origin of gem corundum in calcite marble: The Revelstoke occurrence in the Canadian Cordillera of British Columbia. Lithos 2014, 198–199, 281–297. [Google Scholar] [CrossRef]
- Balmer, W.A.; Hauzenberger, C.A.; Fritz, H.; Sutthirat, C. Marble-hosted ruby deposits of the Morogoro region, Tanzania. J. Afr. Earth. Sci. 2017, 134, 626–643. [Google Scholar] [CrossRef]
- Litvinenko, A.K. Nuristan-South Pamir province of Precambrian gems. Geol. Ore Depos. 2004, 46, 263–268. [Google Scholar]
- Garde, A.; Marker, M. Corundum crystals with blue-red color zoning near Kangerdluarssuk, Sukkertoppen district, West Greenland. Rep. Gronl. Geol. Unders. 1988, 140, 46–49. [Google Scholar]
- Key, R.M.; Ochieng, J.O. The growth of rubies in south-east Kenya. J. Gemmol. 1991, 22, 484–496. [Google Scholar] [CrossRef]
- Simonet, C. Géologie des Gisements de Saphir et de Rubis. L’exemple de la John Saul Mine, Mangari, Kenya. Ph.D. Thesis, Université de Nantes, Nantes, France, 2000. [Google Scholar]
- Mercier, A.; Debat, P.; Saul, J.M. Exotic origin of the ruby deposits of the Mangari area in SE Kenya. Ore Geol. Rev. 1999, 14, 83–104. [Google Scholar] [CrossRef]
- Schwarz, D.; Pardieu, V.; Saul, J.M.; Schmetzer, K.; Laurs, B.M.; Giuliani, G.; Klemm, L.; Malsy, A.K.; Hauzenberger, C.; Du Toit, G.; et al. Ruby and sapphires from Winza (Central Tanzania). Gems Gemol. 2008, 44, 322–347. [Google Scholar] [CrossRef] [Green Version]
- Tenthorey, E.A.; Ryan, J.G.; Snow, E.A. Petrogenesis of sapphirine-bearing metatroctolites from the Buck Creek ultramafic body, southern Appalachians. J. Metam. Geol. 1996, 14, 103–114. [Google Scholar]
- Nicollet, C. Saphirine et staurotide riche en magnésium et chrome dans les amphibolites et anorthosites à corindon du Vohibory Sud, Madagascar. Bull. Minéral. 1986, 109, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Kröner, A. Late Precambrian plate tectonics and orogeny: A need to redefine the term Pan-African. In African Geology; Klerkx, J., Michot, J., Eds.; Tervuren, Musée Royal de l’Afrique Centrale: Tervuren, Belgium, 1984; pp. 23–28. [Google Scholar]
- Le Goff, E.; Deschamps, Y.; Guerrot, C. Tectonic implications of new single zircon Pb-Pb evaporation data in the Lossogonoi and Longido ruby-districts, Mozambican metamorphic Belt of north-eastern Tanzania. Comptes Rendus Geosci. 2010, 342, 36–45. [Google Scholar] [CrossRef]
- Jöns, N.; Schenk, V. Relics of the Mozambique Ocean in the central East African Orogen: Evidence from the Vohibory Block of Southern Madagascar. J. Metam. Geol. 2008, 26, 17–28. [Google Scholar] [CrossRef]
- Bingen, B.; Jacobs, J.; Viola, G.; Henderson, I.H.C.; Skår, Ø.; Boyd, R.; Thomas, R.J.; Solli, A.; Key, R.M.; Daudi, E.X.F. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res. 2009, 170, 231–255. [Google Scholar] [CrossRef]
- Paquette, J.L.; Nédelec, A.; Moine, B.; Rakotondrazafy, A.F.M. U-Pb single zircon Pb-evaporation and Sm-Nd isotopic study of a granulite domain in SE Madagascar. J. Geol. 1994, 102, 523–538. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Rakotondrazafy, A.F.M.; Ohnenstetter, D.; Andriamamonjy, A.; Rakotosamizanany, S.; Ralantoarison, T.; Razanatseheno, M.M.; Dunaigre, C.; Schwarz, D. Oxygen isotope systematics of gem corundum deposits in Madagascar: Relevance for their geological origin. Mineral. Depos. 2007, 42, 251–270. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Rošel, D.; Häger, T.; Mertz-Kraus, R.; Saul, J.M. LA-ICP-MS U–Pb dating of rutile inclusions within corundum (ruby and sapphire): New constraints on the formation of corundum deposits along the Mozambique belt. Mineral. Depos. 2017, 52, 641–649. [Google Scholar] [CrossRef]
- Meert, J.G.; Van Der Voo, R.; Ayub, S. Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana. Precambrian Res. 1995, 74, 225–244. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Maluski, H.; Ohnenstetter, D.; Phan, T.T.; Hoàng, Q.V.; Pham, V.L.; Vu, V.T.; Schwarz, D. Ar-Ar ages in phlogopites from marble-hosted ruby deposits in northern Vietnam: Evidence for Cenozoic ruby formation. Chem. Geol. 2002, 188, 33–49. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Maluski, H.; Deloule, E.; Phan, T.T.; Pham, V.L.; Hoang, Q.V. Age and significance of ruby-bearing marbles from the Red River shear zone, northern Vietnam. Can. Mineral. 2004, 43, 1315–1329. [Google Scholar] [CrossRef]
- Garnier, V.; Maluski, H.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Ar-Ar and U-Pb ages of marble hosted ruby deposits from central and south East Asia. Can. J. Earth Sci. 2006, 43, 1–23. [Google Scholar] [CrossRef]
- Litvinenko, A.K.; Sorokina, E.S.; Häger, T.; Kostitsyn, Z.A.; Botcharnikov, R.E.; Somsikova, T.; Romashova, T.V.; Hofmeister, W. Petrogenesis of the Snezhnoe ruby deposit, Central Pamir. Minerals 2020, 10, 478. [Google Scholar] [CrossRef]
- Khin, Z.; Sutherland, F.L.; Graham, I.; McGee, B. Dating zircon inclusions in gem corundums from placer deposits, as a guide to their origin. In Proceedings of the 33rd International Geological Congress (IGC), Oslo, Norway, 6–14 August 2008. [Google Scholar]
- Sutherland, F.L.; Fanning, C.M. Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K-Ar ages and zircon fission track and U/Pb isotope dating. Austral. J. Earth Sci. 2001, 48, 221–237. [Google Scholar] [CrossRef]
- Graham, I.T.; Sutherland, F.L.; Webb, G.B.; Fanning, C.M. Polygenetic corundums from New South Wales gemfields. In Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins; Khanchuk, A.I., Gonevchuk, A.N., Mitrokhin, I.F., Simanenko, N.J., Cook, Seltmann, R., Eds.; Falnulka: Vladivostok, Russia, 2004; pp. 336–339. [Google Scholar]
- Dill, H.G. Gems and placers—A genetic relationship par excellence. Minerals 2018, 8, 470–513. [Google Scholar]
- Rhamdohr, R.; Milisenda, C.C. Neue Vorkommen von Saphir-Seifenlagerstätten auf Nosy-Bé, Madagaskar. Z Dt. Gemmol. Ges. 2004, 53, 143–158. [Google Scholar]
- Giuliani, G.; Groat, L. Geology of corundum and emerald gem deposits: A review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef] [Green Version]
- Ozerov, K. Form of corundum crystals as dependent upon chemical composition of medium. Dolk. Akad. Nauk SSSR 1945, XLVII, 49–52. [Google Scholar]
- Schwarz, D. Aus Basalten, Marmoren und Pegmatiten. Spezielle Ursachen formten in der Erdkruste edle Rubine und Saphire. In Rubin, Saphir, Korund: Schön, Hart, Selten, Kostbar; Weise, C., Ed.; ExtraLapis: München, Germany, 1998; Volume 15, pp. 5–9. [Google Scholar]
- Kievlenko, E.Y. Geology of Gems; Ocean Pictures Ltd.: Littleton, CO, USA, 2003. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Feneyrol, J. Geographic origin of gems linked to their geographical history. InColor 2012, 19, 16–27. [Google Scholar]
- Sutthirat, C.; Saminpanya, S.; Droop, G.T.R.; Henderson, C.M.B.; Manning, D.A.C. Clinopyroxene-corundum assemblages from alkali-basalt and alluvium, eastern Thailand: Constraints on the origin of Thai rubies. Mineral. Mag. 2001, 65, 277–295. [Google Scholar] [CrossRef]
- Saminpanya, S.; Sutherland, F.L. Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing minerals. Eur. J. Mineral. 2001, 23, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, L.C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R.O.C.; Wirth, R.; Geisler, T.; Nagel, T. Petrogenesis of alkaline basalt-hosted sapphire megacrysts. Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge volcanic field, Germany. Contrib. Mineral. Petrol. 2017, 172. [Google Scholar] [CrossRef] [Green Version]
- Promwongan, S.; Sutthirat, C. Mineral inclusions in ruby and sapphire from the Bo Welu gem deposit in Chanthaburi, Thailand. Gems Gemol. 2019, 55, 354–369. [Google Scholar]
- Promwongan, S.; Sutthirat, C. An update on mineral inclusions and their composition in ruby from the Bo Rai gem field in Trat Province, eastern Thailand. J. Gemmol. 2019, 36, 634–645. [Google Scholar] [CrossRef]
- Palke, A.C.; Hapeman, J.R. Rubies from Rock Creek, Montana. Gems Gemol. 2019, 55, 286–288. [Google Scholar]
- Yui, T.F.; Khin, Z.; Limkatrun, P. Oxygen isotope composition of the Denchai sapphire, Thailand; a clue to its enigmatic origin. Lithos 2003, 67, 153–161. [Google Scholar] [CrossRef]
- Yui, T.F.; Wu, C.-M.; Limkatrun, P.; Sricharn, W.; Boonsoong, A. Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos 2006, 86, 197–211. [Google Scholar] [CrossRef]
- Vysotskiy, S.V.; Nechaev, V.P.; Kissin, A.Y.; Yakovenko, V.V.; Ignat’ev, A.V.; Velivetskaya, T.A.; Sutherland, F.L.; Agoshkov, A.I. Oxygen isotopic composition as an indicator of ruby and sapphire origin: A review of Russian occurrences. Ore Geol. Rev. 2015, 68, 164–170. [Google Scholar] [CrossRef]
- Sutthirat, C.; Hauzenberger, C.; Chualaowanich, T.; Assawincharoenkij, T. Mantle and deep crustal xenoliths in basalts from the Bo Rai ruby deposit, eastern Thailand: Original source of basaltic ruby. J. Asian Earth Sci. 2018, 164, 366–379. [Google Scholar] [CrossRef]
- Khin, Z.; Sutherland, F.L.; Dellapasqua, F.; Ryan, C.G.; Yui, T.Z.; Mernagh, T.P.; Duncan, D. Contrasts in gem corundum characteristics, eastern Australian basaltic fields: Trace elements, fluid/melt inclusions and oxygen isotopes. Mineral. Mag. 2006, 70, 669–687. [Google Scholar]
- Vertriest, W.; Palke, A. Identification of opaque sulphide inclusions in rubies from Mogok, Myanmar and Montepuez, Mozambique. Minerals 2020, 10, 492. [Google Scholar] [CrossRef]
- Limkatrun, P.; Khin, Z.; Ryan, C.G.; Mernagh, T.P. Formation of the Denchai gem sapphires, northern Thailand: Evidence from mineral chemistry and fluid/melt inclusion characteristics. Mineral. Mag. 2001, 65, 725–735. [Google Scholar]
- Palke, A.C.; Renfro, N.D.; Berg, R.B. Melt inclusions in alluvial sapphires from Montana, USA: Formation of sapphires as restitic component of lower crustal melting? Lithos 2017, 278–281, 43–53. [Google Scholar] [CrossRef]
- Herzberg, C.T. Pyroxene geothermometry and geobarometry: Experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmochim. Acta 1978, 42, 945–957. [Google Scholar] [CrossRef]
- Irvin, A.J. Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. J. Petrol. 1974, 15, 1–40. [Google Scholar] [CrossRef]
- Rakotosamizanany, S.; Giuliani, G.; Ohnenstetter, D.; Rakotondrazafy, A.F.M.; Fallick, A.E. Les gisements de saphirs et de rubis associés aux basaltes alcalins de Madagascar: Caractéristiques géologiques et minéralogiques. 1ère partie: Caractéristiques géologiques des gisements. Rev. Assoc. Fr. Gemmol. AFG 2009, 169, 13–21. [Google Scholar]
- Rakotosamizanany, S.; Giuliani, G.; Ohnenstetter, D.; Rakotondrazafy, A.F.M.; Fallick, A.E. Les gisements de saphirs et de rubis associés aux basaltes alcalins de Madagascar: Caractéristiques géologiques et minéralogiques. 2ème partie: Caractéristiques minéralogiques. Rev. Assoc. Fr. Gemmol. AFG 2009, 170, 9–18. [Google Scholar]
- Rakotosamizanany, S. Les corindons gemmes associés au magmatisme basaltique de Madagascar. In Rapport Final du Projet de Gouvernance des Ressources Minérales (PGRM) de Madagascar; PGRM: Antananarivo, Madagascar, 2008. [Google Scholar]
- Rakotondrazafy, A.F.M.; Giuliani, G.; Fallick, A.E.; Ohnenstetter, D.; Andriamamonjy, A.; Rakotosamizanany, S.; Ralantoarison, T.; Razanatseheno, M.; Offant, Y.; Garnier, V.; et al. Gem corundum deposits in Madagascar: A review. Ore Geol. Rev. 2008, 34, 134–154. [Google Scholar] [CrossRef]
- Promprated, P.; Taylor, L.A.; Neal, C. R Petrochemistry of mafic granulite xenoliths from the Chantaburi basaltic field: Implications for the nature of the lower crust beneath Thailand. Int. Geol. Rev. 2003, 45, 383–406. [Google Scholar] [CrossRef]
- Kornprobst, J.; Piboule, M.; Roden, M.; Tabit, A. Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): Original plagioclase-rich gabbros recrystallized at depth within the mantle? J. Petrol. 1990, 31, 717–745. [Google Scholar] [CrossRef]
- Chetouani, K.; Bodinier, J.-L.; Garrido, C.J.; Marchesi, C.; Amri, I.; Targuisti, K. Spatial variability of pyroxenite layers in the Beni Bousera orogenic peridotite (Morocco) and implications for their origin. Comptes Rendus Geoscience 2016, 348, 619–629. [Google Scholar] [CrossRef]
- Mattey, D.; Lowry, D.; Macpherson, C.G. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 1994, 128, 231–241. [Google Scholar] [CrossRef]
- Watt, G.; Harris, J.W.; Harte, B.; Boyd, S.R. A high-chromium corundum (ruby) inclusion in diamond from the São Luiz alluvial mine, Brazil. Mineral. Mag. 1994, 58, 490–493. [Google Scholar] [CrossRef]
- Hutchinson, M.T.; Hursthouse, M.B.; Light, M.E. Mineral inclusions in diamonds: Associations and chemical distinctions around the 670 km discontinuity. Contrib. Mineral. Petrol. 2001, 142, 119–126. [Google Scholar] [CrossRef]
- Hutchinson, M.T. Constitution of the Deep Transition Zone and Lower Mantle shown by Diamonds and their Inclusions. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK.
- Pivin, M.; Femenias, O.; Demaiffe, D. Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 2009, 112S, 951–960. [Google Scholar] [CrossRef]
- Pivin, M. La Suite Complexe des Mégacristaux des Kimberlites de Mbuji-Mayi en République Démocratique du Congo: Témoins du Métasomatisme dans le Manteau Lithosphérique Sous-Continental Archéen du Craton du Congo-Kasaï. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgique, 2012. [Google Scholar]
- Ratrimo, V. Les indices à corindons gemmes du socle précambrien de Madagascar. In Rapport Final du Projet de Gouvernance des Ressources Minérales (PGRM) de Madagascar; PGRM: Antananarivo, Madagascar, 2008. [Google Scholar]
- Zhang, R.Y.; Liou, J.G.; Zheng, J.P. Ultrahigh pressure corundum rich-garnetite in garnet peridotite, Sulu terrane, China. Contrib. Mineral. Petrol. 2004, 147, 21–31. [Google Scholar] [CrossRef]
- Padovani, E.R.; Tracey, R. A pyrope-spinel (alkremite) xenolith from Moses Rock Dyke: First known North American occurrence. Am. Mineral. 1981, 66, 741–745. [Google Scholar]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef] [Green Version]
- Eggler, D.H.; McCallum, M.E.; Smith, C.B. Megacryst assemblage in kimberlite from Northern Colorado and Southern Wyoming: Petrology, geothermometry-barometry and areal distribution. In The Mantle Sample: Inclusion in Kimberlites and other Volcanics; Boyd, F.R., Meyer, H.O.A., Eds.; Books Series Special Publication; American Geophysical Union: Washington, DC, USA, 1979; pp. 213–226. ISBN 9780875902135. Online ISBN 9781118664858. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Ohnenstetter, D.; Pégère, G. Oxygen isotopes of sapphire from the French Massif Central: Implications for the origin of gem corundum in basaltic fields. Mineral. Depos. 2009, 44, 221–231. [Google Scholar] [CrossRef]
- Dirlam, D.M.; Misiorowski, E.B.; Tozer, R.; Stark, K.B.; Bassett, A.M. Gem wealth of Tanzania. Gems Gemol. 1992, 28, 80–102. [Google Scholar] [CrossRef]
- Le Goff, E.; Deschamps, Y.; Cocherie, A.; Guerrot, C.; Ketto, D. Structural, petrological and geochronological constraints of the Tanzanian ruby belt. In Proceedings of the 22ème RST Meeting Nancy. University of Nancy, Nancy, France, 21–24 April 2008. [Google Scholar]
- Saul, J. Chronique de la découverte de trois mines historiques de gemmes en Afrique de l’Est. Le Règne Minéral 2013, 2, 89–92. [Google Scholar]
- Haapala, I.; Siivola, J.; Ojanperä, P.; Yletyunen, V. Red corundum, sapphirine and kornerupine from Kittilä, Finnish Lapland. Bull. Geol. Soc. Finland 1971, 43, 221–231. [Google Scholar] [CrossRef]
- Janardhanan, A.; Leake, B.E. Sapphirine in the Sittampundi complex, India. Mineral. Mag. 1974, 39, 901–902. [Google Scholar] [CrossRef]
- Forestier, F.; Lasnier, B. Découverte de niveaux d’amphibolites à pargasite, anorthite, corindon et saphirine dans les schistes cristallins du Haut-Allier. Contrib. Mineral. Petrol. 1969, 23, 194–235. [Google Scholar] [CrossRef]
- Wang, K.; Graham, I.; Martin, L.; Voudouris, P.; Giuliani, G.; Lay, A.; Harris, J.H.; Fallick, A.E. Fingerprinting Paranesti rubies through oxygen isotopes. Minerals 2019, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Barot, N.; Harding, R.R. Pink corundum from Kitui, Kenya. J. Gemmol. 1994, 24, 165–172. [Google Scholar] [CrossRef]
- Andreoli, M.A.G. Petrochemistry, tectonic evolution and metasomatic mineralizations of Mozambique belt granulites from Malawi and Tete (Mozambique). Precambrian Res. 1994, 25, 161–186. [Google Scholar]
- Henn, U.; Bank, H.; Bank, F.H. Red and orange corundum (ruby and padparadscha) from Malawi. J. Gemmol. 1990, 22, 83–89. [Google Scholar] [CrossRef]
- McColl, D.; Warren, R.G. The first discovery of ruby in Australia. Aust. Mineral. 1979, 26, 121–125. [Google Scholar]
- Mortimer, G.E.; Cooper, J.A.; James, P.R. U-Pb and Rb-Sr geochronology and geological evolution of the Harts Range ruby mine area of the Arunta Inlier, central Australia. Lithos 1987, 20, 445–467. [Google Scholar] [CrossRef]
- Aboosally, S. Update on production in Pakistan, Afghanistan. Jew. News Asia 1999, 1, 60–64. [Google Scholar]
- Morishita, T.; Kodera, T. Finding of corundum-bearing gabbro boulder possibly derived from the Horoman peridotite complex, Hokkaido, northern Japan. J. Mineral. Petrol. 1998, 93, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Pratt, J.H. The occurrence and distribution of corundum in the United States. Geol. Surv. Bull. 1901, 180, 98. [Google Scholar]
- Senoble, J.B. An expedition to Tanzania’s new ruby deposit in Winza. InColor 2008, 44–45. Available online: https:www.gemstone.org/incolor/Incolor07/index.html#44 (accessed on 27 June 2020).
- Peretti, A.; Peretti, F.; Kanpraphai, A.; Bieri, W.; Hametner, C.; Günther, D. Winza rubies identified. Contrib. Gemol. 2008, 7, 1–97. [Google Scholar]
- Pardieu, V.; Chauviré, B. Les rubis du Mozambique. Le Règne Minéral 2013, 2, 101–108. [Google Scholar]
- Nicollet, C. Crustal evolution of the granulites of Madagascar. In Granulites and Crustal Evolution; Vielzeuf, D., Vidal, P., Eds.; Springer: Berlin, Germany, 1990; pp. 291–310. [Google Scholar]
- Pardieu, V.; Sangsawong, S.; Chauviré, B.; Massi, L.; Sturman, N. Rubies from the Montepuez area (Mozambique), Bangkok, GIA Laboratory. 2013. Available online: https://www.gia.edu/doc/GIA_Ruby_Montepuez_Mozambique.pdf (accessed on 25 June 2020).
- Vertriest, W.; Pardieu, V. Update on gemstone mining in northern Mozambique. Gems Gemol. 2016, 52, 404–409. [Google Scholar] [CrossRef]
- Norconsult Consortium Mineral Resources Managemant Capacity Building Project, Republic of Mozambique; Component 2: Geological Infrastructure Development Project, Geological Mapping Lot 1; Geophysical Interpretation; Report no. B4; National Directorate of Geology: Maputo, Republic of Mozambique, 2007.
- Norconsult Consortium Mineral Resources Managemant Capacity Building Project, Republic of Mozambique; Component 2: Geological Infrastructure Development Project, Geological Mapping Lot 1; Sheet Explanation: 32 sheets; Scale: 1: 250000; Report no. B6.f; National Directorate of Geology: Maputo, Republic of Mozambique, 2007.
- Boyd, R.; Nordgulen, O.; Thomas, R.J.; Bingen, B.; Bjerkgard, T.; Grenne, T.; Henderson, I.; Melezhik, V.A.; Often, M.; Sandstad, J.S.; et al. The geology and geochemistry of the East African Orogen in Northeastern Mozambique. S. Afr. J. Geol. 2010, 113, 87–129. [Google Scholar] [CrossRef] [Green Version]
- Viola, G.; Henderson, I.H.C.; Bingen, B.; Thomas, R.J.; Somethurst, M.A.; de Azavedo, S. Growth and collapse of a deeply eroded orogen: Insights from structural, geological and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics 2008, 27, 1–31. [Google Scholar] [CrossRef]
- Stern, R.J. Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annual Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Smith, C.P.; Gübelin, E.J.; Bassett, A.M.; Manandhar, M.N. Rubies and fancy-color sapphires from Nepal. Gems Gemol. 1997, 33, 24–41. [Google Scholar] [CrossRef]
- Bowersox, G.W.; Foord, E.E.; Laurs, B.M.; Shigley, J.E.; Smith, C.P. Ruby and sapphire from Jegdalek, Afghanistan. Gems Gemol. 2000, 36, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Pêcher, A.; Giuliani, G.; Garnier, V.; Maluski, H.; Kausar, A.B.; Malik, R.M.; Muntaz, H.R. Geology and Geochemistry of the Nangimali ruby deposit area, Nanga-Parbat Himalaya (Azad Kashmir, Pakistan). J. Asian Earth Sci. 2002, 21, 265–282. [Google Scholar] [CrossRef]
- Pham, V.L.; Pardieu, V.; Giuliani, G. Update on gemstone mining in Luc Yen, Vietnam. Gems Gemol. 2014, 49, 233–245. [Google Scholar]
- Dunn, P.; Frondel, C. An uncommon margarite/corundum assemblage from Sterling Hill, New Jersey. Mineral. Rec. 1990, 21, 425–427. [Google Scholar]
- Dzikowski, T.J.; Groat, L.A.; Dipple, G.M.; Marshall, D. Origin of the Revelstoke carbonate-hosted gem corundum occurrence, British Columbia, Canada. In Proceedings of the International Mineralogical Association Conference, Budapest, Hungaria, 21–27 August 2010. [Google Scholar]
- Kyaw, T. The Igneous Rocks of the Mogok Stone Tract: Their Distributions, Petrography, Petrochemistry, Sequence, Geochronology and Economic Geology. Ph.D. Thesis, University of Yangon, Yangon, Myanmar, 2007. [Google Scholar]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G. L’aspidolite fluorée: Rôle des évaporites dans la genèse du rubis des marbres de Nangimali (Azad-Kashmir, Pakistan). Comptes Rendus Geoscience 2004, 336, 1245–1253. [Google Scholar] [CrossRef]
- Gordon, S.G. Desilicated pegmatites. Proc. Acad. of Nat. Sci. Phila. 1921, 73, 169–192. Available online: https://www.jstor.org/stable/4063801 (accessed on 17 May 2020).
- Lawson, A.C. Plumasite, an oligoclase corundum rock, near Spanish Peak, California University of California. Pub. Geol. Sci. 1903, 3, 219–229. [Google Scholar]
- Seifert, A.V.; Hyrsl, J. Sapphire and garnet from Kalalani, Tanga Province, Tanzania. Gems Gemol. 1999, 35, 108–120. [Google Scholar] [CrossRef]
- Meng, F.; Shmelev, V.R.; Kulikova, K.V.; Ren, Y. A red-corundum-bearing vein in the Rai-Iz ultramafic rocks, Polar Urals, Russia: The product of fluid activity in a subduction zone. Lithos 2018, 320–321, 302–314. [Google Scholar] [CrossRef]
- Simonet, C. Geology of the Yellow Mine (Taita-Taveta District, Kenya) and other yellow tourmaline deposits in East Africa. J. Gemmol. 2000, 27, 11–29. [Google Scholar] [CrossRef]
- Terekhov, E.N. REE distribution in corundum-bearing and other metasomatic rocks during the exhumation of metamorphic rocks of the belmorian belt of the Baltic Shield. Geochem. Int. 2007, 45, 364–380. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Schmitt, A.K.; Evans, D.A.D. Origin of the lowest-known δ18O silicate rock on Earth in Paleoproterozoic Karelian rift. Geology 2010, 38, 631–634. [Google Scholar] [CrossRef]
- Vysotskiy, S.V.; Ignat’ev, A.V.; Levitskii, V.I.; Nechaev, V.P.; Velivetskaya, T.A.; Yakovenko, V.V. Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in northern Karelia as an indicator of their unsual genesis. Geochem. Int. 2014, 52, 773–782. [Google Scholar] [CrossRef]
- Spiridonov, E.M. Gemstone deposits of the former Soviet Union. J. Gemmol. 1998, 26, 111–124. [Google Scholar] [CrossRef]
- Walker, R.J.; Prichard, H.M.; Ishiwatari, A.; Pimentel, M. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim. Cosmochim. Acta 2002, 66, 329–345. [Google Scholar] [CrossRef]
- Vakhrusheva, N.V.; Ivanov, K.S. The nature and age of plagioclasites in the ultrabasic Rai-Iz massif (Polar Urals). Dokl. Earth Sci. 2018, 480, 587–590. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.; Marshall, D.; Branquet, Y. Emerald deposits: A review and enhanced classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Glodny, J.; Austrheim, H.; Molina, J.F.; Rusin, A.; Seard, D. Rb/Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia. Geochim. Cosmochim. Acta 2003, 67, 4353–4373. [Google Scholar] [CrossRef]
- Bryanchaninova, N.I.; Makeev, A.B.; Zubkova, N.V.; Filipov, N.V. Sodium-strontium mica Na0.50Sr0.25Al2(Na0.25□0.75)Al1.25Si2.75O10(OH)2 from Rubinovyi Log. Dokl. Earth Sci. 2004, 395, 260–265. [Google Scholar]
- Korzhinskii, D.S. Theory of Metasomatic Zoning; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- Lacroix, A. Les Gisements de Phlogopites de Madagascar et les Pyroxénites qui les Renferment: Ann. Géol. Serv. Min.; Imprimerie officielle: Tananarive, Madagascar, 1941. [Google Scholar]
- Lacroix, A. Minéralogie de Madagascar, tome 1; Challamel A.: Paris, France, 1922. [Google Scholar]
- Raith, M.M.; Rakotondrazafy, R.; Sengupta, P. Petrology of corundum-spinel-sapphirine-anorthite rocks (sakenites) from the type locality in Southern Madagascar. J. Metam. Geol. 2008, 26, 647–667. [Google Scholar] [CrossRef]
- Devouard, D.; Raith, M.M.; Rakotondrazafy, R.; El-Ghozzi, M.; Nicollet, C. Occurrence of musgravite in anorthite-corundum-spinel-sapphirine rocks (sakenites) from south Madagascar: Evidence for a high-grade metasomatic event. In Proceedings of the 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland, 1–6 September 2002. [Google Scholar]
- Keulen, N.; Kokfelt, T.F. The Homogenization Team. A Seamless, Digital, Internet-Based Geological Map of South-West and Southern West Geenland, 1:100.000, 61. Geological Survey of Danemark and Greenland. 2011, pp. 300–364. Available online: http://geuskort.geus.dk/gisfarm/svgrl.jsp (accessed on 5 September 2018).
- Keulen, N.; Schumacher, J.C.; Næraa, T.; Kokfelt, T.F.; Scherstén, A.; Szilas, K.; van Hinsberg, V.J.; Schlatter, D.M.; Windley, B.F. Meso- and Neoarchaean geological history of the Bjørnesund and Ravns Storø Supracrustal Belts, southern West Greenland: Settings for gold enrichment and corundum formation. Precambrian Res. 2014, 254, 36–58. [Google Scholar] [CrossRef]
- Polat, A.; Fryer, B.J.; Appel, P.W.U.; Kalvig, P.; Kerrich, R.; Dilek, Y.; Yang, Z. Geochemistry of anorthositic differentiated sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos 2011, 123, 50–72. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Szilas, K. Corundum formation by metasomatic reactions in Archean metapelite, southern West Greenland—Identification of exploration vectors for ruby deposits within high-grade greenstone belts. Geosci. Front. 2018, 9, 727–749. [Google Scholar] [CrossRef]
- Appel, C.C.; Appel, P.W.U.; Rollinson, H.R. Complex chromite textures reveal the history of an early Archaean layered ultramafic body in West Greenland. Mineral. Mag. 2002, 66, 1029–1041. [Google Scholar] [CrossRef]
- Poulsen, M.D.; Paulick, H.; Rosa, D.; van Hinsberg, V.J.; Petersen, J.; Thomsen, L.L. Follow-up on Ujarassiorit mineral hunt finds and outreach activities, South-East Greenland. In Review of Survey Activities 2014; Bennike, O., Garde, A.A., Watt, W.S., Eds.; Geological Survey of Denmark and Greenland Bulletin: Greenland, Danemark, 2015; Volume 33, pp. 53–56. Available online: www.geus.dk/publications/bull (accessed on 25 June 2020).
- Ralantoarison, L.T. Les Corindons Associés aux Roches Métamorphiques du Sud de Madagascar: Le Gisement de Saphirs de Sahambano (Sud-Est d’Ihosy). Master’s Thesis/Mémoire de DEA, Université d’Antananarivo, Antananarivo, Madagascar, 2006. [Google Scholar]
- Ralantoarison, T.; Offant, Y.; Andriamamonjy, A.; Giuliani, G.; Rakotondrazafy, A.F.M.; Ohnenstetter, D.; Schwarz, D.; Fallick, A.E.; Razanatseheno, M.; Rakotosamizanany, S.; et al. Les saphirs multicolores de Sahambano et Zazafotsy, région granulitique d’Ihosy, Madagascar. Rev. Assoc. Fr. Gemmol. AFG 2006, 158, 4–13. [Google Scholar]
- Andriamamonjy, S.A. Importance des fluides sur la métallogénie des gisements de saphirs et de rubis dans le domaine granulitique de haute température du Sud de Madagascar: Cas de Zazafotsy et d’Ambatomena. Ph.D. Thesis, Université d’Antananarivo, Antananarivo, Madagascar, 2010. [Google Scholar]
- Andriamamonjy, A.; Giuliani, G.; Ohnenstetter, D.; Rakotondrazafy, A.F.M.; Ralantoarison, T.; Ranatsenho, M.M.; Rakotosamizanany, S.; Fallick, A.E. Les corindons d’âge néoprotérozoïque de Madagascar. Le Règne Minéral 2013, 2, 109–117. [Google Scholar]
- Feneyrol, J.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Martelat, J.-M.; Monié, P.; Dubessy, C.; Rollion-Bard, C.; Le Goff, E.; Malisa, E.; et al. Worldwide tsavorite deposits: New aspects and perspectives. Ore Geol. Rev. 2013, 53, 1–25. [Google Scholar] [CrossRef]
- Malik, R.H. Geology and Ressource Potential of Kashmir Ruby Deposits; Unpublished Report; Azad-Kashmir Mineral and Industrial Development Corporation: Muzaffarabad (Azad-Kashmir), Pakistan, 1994. [Google Scholar]
- Ray, H.N.; MacRae, G.P.; Cain, L.J.; Malloch, K.R. New South Wales Industrial Minerals Data Base, 2nd ed.; Geological Survey of New South Wales: Sydney, Australia, 2013. [Google Scholar]
- Oakes, G.; Barron, L.M.; Lishmund, S.R. Alkali basalts and associated volcanoclastic rocks as a source of sapphire in Eastern Australia. Aust. J. Earth Sci. 1996, 43, 289–298. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Coenraads, R.R. An unusual ruby-sapphire-sapphirine-spinel assemblage from the Tertiary Barrington volcanic province, New South Wales. Austr. Mineral. Mag. 1996, 60, 623–638. [Google Scholar] [CrossRef]
- Webb, G.; Sutherland, F.L. Gemstones of New England. Austr. J. Mineral. 1998, 4, 115–121. [Google Scholar]
- Abduryiyim, A.; Sutherland, F.L.; Coldham, T. Past, present and future of Australian gem corundum. Austr. Gemmol. 2012, 24, 234–242. [Google Scholar]
- Vichit, P.; Vudhichativanich, S.; Hansawek, R. The distribution and some characteristics of corundum-bearing basalts in Thaïland. J. Geol. Soc. Thailand 1978, M4, 1–27. [Google Scholar]
- Liu, Y.; Lu, R. Ruby and sapphire from Muling, China. Gems Gemol. 2016, 52, 98–100. [Google Scholar]
- Sutherland, F.L.; Graham, I. Geology of the Barrington Tops Plateau; Its Rocks, Minerals and Gemstones, New South Wales, Australia; The Australian Museum Society: Sydney, Australia, 2003; p. 56. [Google Scholar]
- Birch, W.D. Gem corundum from the St Arnaud district, western Victoria, Australia. Austr. J. Mineral. 2008, 14, 73–78. [Google Scholar]
- Schwarz, D.; Schmetzer, K. Rubies from the Vatomandry area, eastern Madagascar. J. Gemmol. 2001, 27, 409–416. [Google Scholar] [CrossRef]
- Rasimanana, G. Caractérisations Géochimiques et Géochronologiques de Trois Épisodes Magmatiques (Crétacé, Miocène Terminal et Quaternaire) à Madagascar Liés aux Phénomènes de Rifting. Ph.D. Thesis, Université d’Orsay, Paris, France, 1996. [Google Scholar]
- Chapin, M.; Pardieu, V.; Lucas, A. Mozambique: A ruby discovery for the 21st century. Gems Gemol. 2015, 51, 44–54. [Google Scholar] [CrossRef]
- Hsu, T.; Lucas, A.; Pardieu, V. Mozambique: A Ruby Discovery for the 21st Century. GIA Research News. 2014. Available online: https://www.gia.edu/gia-news-research-mozambique-expedition-ruby-discovery-new-millennium (accessed on 25 June 2020).
- Kane, R.E.; Kammerling, R.C. Status of ruby and sapphire mining in the Mogok Stone Tract. Gems Gemol. 1992, 28, 152–174. [Google Scholar] [CrossRef]
- Kammerling, R.C.; Scarratt, K.; Bosshart, G.; Jobbins, E.A.; Kane, R.E.; Gübelin, E.J.; Levinson, A.A. Myanmar and its gems-an update. J. Gemmol. 1994, 24, 3–40. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D.; Kausar, A.B. Les gisements de rubis associés aux marbres de l’Asie centrale et du Sud-est. Le Règne Minéral 2006, 67, 17–48. [Google Scholar]
- Kane, R.E.; McClure, S.F.; Kammerling, R.C.; Khoa, N.D.; Mora, C.; Repetto, S.; Khai, N.D.; Koivula, J.I. Rubies and fancy sapphires from Vietnam. Gems Gemol. 1991, 27, 136–155. [Google Scholar] [CrossRef]
- Keller, P. Gemstones of East Africa; Geoscience Press: Phoenix, AZ, USA, 1992. [Google Scholar]
- Henn, U.; Milisenda, C.C. Neue Edelsteinvorkommen in Tansania: Die region Tunduru-Zongea. Z Deut. Gemmol. Gesell. 1997, 46, 29–43. [Google Scholar]
- Pardieu, V.; Vertriest, W.; Weeramonkhonlert, V.; Raynaud, V.; Atikarnsakul, U.; Perkins, R. Sapphires from the Gem Rush Bemainty Area, Ambatondrazaka (Madagascar). GIA Research News. 2017. Available online: https://www.gia.edu/gia-news-research/sapphires-gem-rushbemainty-ambatondrazaka-Madagascar (accessed on 20 June 2020).
- Pardieu, V.; Sangsawong, S.; Detroyat, S. Gem News International: Rubies from a new deposit in Zahamena National Park, Madagascar. Gems Gemol. 2015, 51, 454–456. [Google Scholar]
- Thirangoon, K. Ruby and Pink Sapphire from Aappaluttoq, Greenland: Status of Ongoing Research, GIA, Bangkok, Thailand. 2009. Available online: https://www.gia.edu/gia-news-research-nr32309 (accessed on 20 June 2020).
- Palke, A.C. Coexisting rubies and blue sapphires from major world deposits: A brief review of their mineralogical properties. Minerals 2020, 10, 472. [Google Scholar] [CrossRef]
- Palke, A.C.; Breeding, C.M. The origin of needle-like inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation. Am. Mineral. 2017, 102, 1451–1461. [Google Scholar] [CrossRef]
- Franz, G.; Vyshnevskyi, O.; Taran, M.; Khomenko, V.; Wiedenbeck, M.; Schiperski, F.; Nissen, J. A new emerald occurrence from Kruta Balka, Western Peri-Azovian region, Ukraine: Implications for understanding the crystal chemistry of emerald. Am. Mineral. 2020, 105, 162–181. [Google Scholar] [CrossRef]
Type of Deposit | Deposit | Color Corundum | Country | Al2O3 | MgO | TiO2 | V2O3 (in wt %) | Cr2O3 | FeO | Ga2O3 | Total | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type IA | Somiakatra | deep red | Madagascar | 98.16 | na | 0.03 | 0.060 | 0.858 | 0.52 | 0.01 | 99.64 | [94] |
pink | 98.75 | na | 0.01 | 0.000 | 0.243 | 0.26 | 0.01 | 99.28 | ||||
Type IB | Mbuji Mayi | fuchsia | RDC | 93.76 | 0.01 | 0.01 | 0.029 | 5.641 | 0.47 | 0.01 | 99.94 | [84] |
Type IIA1 | Paranesti | red | Greece | 97.58 | bdl | 0.01 | 0.010 | 2.650 | 0.39 | 0.07 | 100.71 | [95] |
Montepuez | red | Mozambique | 99.38 | bdl | 0.01 | na | 0.080 | 0.45 | bdl | 99.92 | [96] | |
Vohitany | red | Madagascar | 99.06 | 0.01 | 0.01 | 0.000 | 0.219 | 0.59 | 0.01 | 99.90 | [72] | |
Ronda | red | Spain | 99.33 | 0.02 | 0.01 | na | 0.120 | 0.19 | na | 99.67 | [97] | |
Type IIA2 | Luc Yen | red to pink | Vietnam * | 99.42 | 0.02 | 0.02 | 0.010 | 0.370 | 0.02 | 0.01 | 99.87 | [98] |
Mogok | red | Myanmar | 99.01 | 0.00 | 0.01 | 0.047 | 0.794 | 0.01 | 0.01 | 99.88 | [72] | |
Mong Hsu | red | 99.20 | 0.01 | 0.08 | 0.041 | 0.521 | 0.00 | 0.00 | 99.85 | |||
Nangimali | pink | Pakistan | 99.85 | 0.01 | 0.02 | 0.005 | 0.055 | 0.00 | 0.01 | 99.94 | ||
Type IIB1 | Anavoha | pink | Madagascar | 98.76 | 0.00 | 0.00 | 0.002 | 0.023 | 0.45 | 0.00 | 99.25 | |
Naxos | pink | Greece | 100.70 | 0.35 | 0.27 | 0.090 | 0.180 | 0.40 | 0.15 | 102.14 | [95] | |
Polar Urals | red | Russia | 95.16 | bdl | bdl | na | 3.860 | 0.44 | na | 99.46 | [99] | |
John Saul (Kimbo) | pink | Kenya | 100.09 | 0.03 | 0.04 | 0.016 | 0.595 | 0.00 | 0.04 | 100.80 | [72] | |
Type IIB2 | Zazafotsy | red | Madagascar | 98.63 | 0.01 | 0.03 | 0.005 | 0.188 | 0.30 | 0.01 | 99.17 | [100] |
Hokitika | red | New Zealand | 90.65 | na | bdl | 0.050 | 9.050 | 0.18 | na | 99.93 | [42] | |
Type IIIA | Vatomandry | red | Madagascar | 98.43 | 0.02 | 0.04 | 0.040 | 0.761 | 0.52 | 0.02 | 99.83 | [94] |
pink | 99.29 | 0.03 | 0.04 | 0.005 | 0.161 | 0.44 | 0.02 | 99.99 | ||||
red brown | 97.68 | 0.03 | 0.04 | 0.053 | 0.561 | 0.63 | 0.03 | 99.02 | ||||
Antsabotraka | red brown | 99.48 | 0.02 | 0.02 | 0.010 | 0.130 | 0.39 | 0.02 | 100.06 | |||
Ambatomainty | red brown | 99.50 | 0.03 | 0.02 | 0.012 | 0.127 | 0.21 | 0.01 | 99.91 | |||
Macquarie | red | Australia | 99.07 | 0.09 | bdl | na | 0.450 | 0.22 | na | 99.83 | [75] | |
Type IIIB | Ilakaka | pink | Madagascar | 99.28 | 0.01 | 0.01 | 0.001 | 0.178 | 0.29 | bdl | 99.77 | [72] |
Quy Chau | red to pink | Vietnam ¤ | 99.28 | 0.00 | 0.03 | 0.020 | 0.580 | 0.06 | 0.01 | 99.98 | [98] | |
Luc Yen | red to pink | Vietnam ¤ | 99.76 | 0.00 | 0.01 | 0.070 | 0.540 | 0.01 | 0.01 | 100.40 |
Type of Deposit | Deposit or Mining District | Country | Mg | Ti | V (in ppma) | Fe | Ga | Cr | Number of Analyses | References |
---|---|---|---|---|---|---|---|---|---|---|
Type IIA1 | Longido | Tanzania | (7–42) | np | (3–25) | (62–544) | (6–10) | (1604–5059) | 16 | [101] |
in M-UMR | Winza | (0–118) | np | (0–1) | (405–1596) | (4–11) | (161–1094) | 14 | ||
Chimwadzulu | Malawi | (10–39) | np | (1–10) | (953–2760) | (5–15) | (269–1816) | 18 | ||
Type IIB1 | Aappaluttoq | Greenland | (2–81) | (15–210) | (0.1–14) | (655–2516) | (0.7–25) | (50–2871) | 17 | [102] |
Type IIA2 | Mogok (Mo) | Myanmar | (5–75) | (7–80) | (48–1089) | (bdl-301) | (2–51) | np | 65 = Mo + MH | [11] |
in marble | Dattaw (Mo) | (bdl) | (105–702) | (66–97) | (bdl-237) * | (32–42) | (105–702) | 4 | [103] | |
Kadoke Tat (Mo) | (bdl–25) | (bdl-580) | (150–1472) | (bld-644) * | (11–140) | (61–2963) | 13 | |||
Baw-Padan (Mo) | (33–40) | (70–74) | (206–347) | (270–442) | (106–166) | (29–2339) | 2 | [87] | ||
Namya | (bdl–66) | (79–739) | (184–489) | (bdl-234) * | (23–107) | (479–6864) | 12 | [103] | ||
Mong Hsu (MH**) | (48–115) | (778–1815) | (324–417) | (bdl-29) | (66–89) | (2026–7015) | 65 = Mo + MH | [88] | ||
not precise | Vietnam | (1–130) | (bdl-1214) | (2–214) | (bdl-28) | (1–122) | np | 93 | [11] | |
Jegdalek | Afghanistan | (7–380) | (9–486) | (4–135) | (bdl-1128) | (5–35) | np | 74 | ||
Snezhnoe | Tajikistan | (6–58) | (bdl–579) | (24–112) | (bdl-155) | (14–28) | np | 48 | ||
(4–72) | (6–75) | (51–122) | Bdl * | (61–83) | (1696–4204) | 6 | [104] | |||
Type IIIA | Pailin | Cambodia | (97–258) | (32–128) | (5–22) | (818–1935) | (5–11) | np | 34 | [11] |
in alkali | (118–226) | (95–210) | (16–33) | (2454–3620) | (18–34) | (450–7761) | 14 | [105] | ||
basalt | Chantaburi- | Thailand | (126–181) | (32–138) | (4–14) | (756–1442) | ((5–10) | np | 7 | [11] |
Trat | (102–163) | (81–219) | (9–30) | (2175–3794) | (16–32) | (955–2856) | 10 | [105] | ||
New England | Australia | (9–55) | (6–203) | (4–14) | (2560–3150) | (170–310) | (870–3370) | ? | [81] | |
Type IIIB | Mugloto | Mozambique | (11–50) | np | (2–7) | (851–2034) | (5–12) | (506–1737) | 14 | [101] |
in M-UMR | Maninge Nice | (19–47) | np | (1–6) | (261–402) | (6–9) | (1886–4941) | 5 | ||
Montepuez | (8–65) | (bdl-59) | (bdl–10) | (231–2154) | (5–14) | np | 85 | [11] | ||
Type IIIB | Zahamena | Madagascar | (13–61) | np | (10–100) | (284–1994) | (10–30) | (135–3922) | 14 | [101] |
in MetamR | Didy | (0–67) | np | (2–17) | (533–1274) | (3–17) | (32–2698) | 21 | ||
Andilamena | (19–53) | np | (4–29) | 559–1559) | (7–21) | (53–1569) | 14 |
Type of Deposit | Magmatic-Related | Metamorphic-Related | Sedimentary-Related * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Geological Environment | Magmatic | Metamorphic | Sedimentary | |||||||||
MetamorphicConditions | Amphibolite to Granulite or Eclogite Facies | Greenschist–Amphibolite–Granulite Facies | No Metamorphism | |||||||||
Host-Rocks | Magmatic and Metamorphic Rocks | Metamorphic Rocks | Detritic Rocks | |||||||||
Types of Deposit | TYPE I Magmatic-Metamorphic | Type IIA Metamorphic sensu-stricto | Type IIB Metamorphic-Metasomatism (Fluid-Rock Interaction) | TYPE III (Placers) | ||||||||
Sub-Types | TYPE IA | TYPE IB | TYPE IIA1 | TYPE IIA2 | Type IIB1 | Type IIB2 | Type IIIA | Type IIIB | ||||
Host-rock of Ruby | Alkali Basalt | Kimberlite * | Mafic-Ultramafic Rocks (M-UMR) * | Marble | Plumasite * or Metasomatite | Shear-Fault-fold in Gneiss, Schist, M-UMR | Rudites–Arenites–Lutites | |||||
Xenocryst-Xenolith | Xenocryst | "Verdite" | "Anyolite" | Metamorphosed | Mafic | Calc-Silicate Rocks | M-UMR | Marble | Alkali Basalt- | Metamorphic | ||
M-UMR | Gneiss | Kimberlite Fields | Environement | |||||||||
Corundum | Metamorphic (and magmatic?) ruby | Metamorphicruby | Ruby** | Ruby | Ruby | Ruby | Ruby* | Ruby** | Ruby | Ruby | Ruby** | |
Deposits Worldwide | All in alkali basalt environment with the presence of either disseminated ruby xenocrysts in volcanoclastics, epiclastics, diatremes, or in ruby-bearing xenoliths of pyroxenite and metagabbro (Antanifotsy, Soamiakatra*, Madagascar) | DRC (Mbuji-Mayi) | Zimbabwe | Tanzania | Tanzania (Winza). | India | Afghanistan (Jegdalek). | South Africa (Transvaal). | Tanzania (Mahenge ¤¤, | Madagascar (Sahambano *; | Australia (Lava Plains; | Sri Lanka (Ratnapura; |
xenocrysts | (O'Briens) | (Longido) | Madagascar (Andriba; | (Mysore). | Nepal (Chumar; Ruyil). | Zimbabawe (O'Briens). | Kitwalo and | Zazafotsy *; Ionaivo *, | Anakie fields; | Elahera, | ||
South Africa | Bekily-Vohibory (Ejeda; | Pakistan (Hunza valley; | Kenya (Mangare area, | Greyson mines). | Ambatomena **). | New England fields; | Polonnaruwa). | |||||
(Barberton) | Ianapera; Fotadrevo; | Batakundi; Nangimali). | Aqua; Penny lane; | India (Kerala). | Macquarie-Cudgegong; | Myanmar (Mogok; | ||||||
Anavoha, Gogogogo, | Tajikistan (Turakuloma**; | Rockland-John Saul mine; | Kenya (Mangare area). | Barrington Tops; | Mong Hsu). | |||||||
Maniry; Vohitany; | Badakhshan). | Hard Rock). | Tanzania (Morogoro, | Tumbarumba; | Madagascar (Ilakaka****; | |||||||
Ethiopia (Kibre mengist). | Myanmar (Mogok; | Tanzania (Umba-Kalalani). | Mahenge; | Western Melbourne | Andilamena; Didy; | |||||||
Kenya (Kitui; Mangare). | Mong Hsu). | Madagascar (Vohibory area - | Uluguru Mountains ***). | fields). | Zahamena). | |||||||
Malawi (Chimwadzulu). | China (Qinghai; | Bekily, Anavoha***; Vohitany; | China (Muling). | Vietnam (Luc Yen; | ||||||||
Mozambique (Montepuez; | Yuan Jiang). | Andilamena). | Thailand (Chantaburi- | Yen Bai; Quy Chau). | ||||||||
M'sawize; Ruambeze). | Vietnam (Luc Yen; | Russia (Polar Urals, Hit Island; | Trat); | Tanzania (Tunduru; | ||||||||
France (Brittany; Lozère; | Yen Bai; Quy Chau). | Karelia). | Cambodia (Pailin). | Songea; Winza; | ||||||||
French Massif Central, | Tanzania (Morogoro; | Australia (Poona ****; Harts Range¤). | Madagascar | Umba valley,. | ||||||||
Haut-Allier, Peygerolles). | Mahenge). | United-States (Corundum Hill). | (Ankaratra massif; | Morogoro; Mahenge). | ||||||||
Italy (Piemont). | Kenya (West Pokot). | France (Haut Allier, Chantel) | Vatomandry). | Mozambique (Montepuez; | ||||||||
Norway (Froland). | Canada (Revelstoke ***). | Greenland (Aappaluttoq; | Kenya (Baringo). | M'sawize; Ruambeze). | ||||||||
Finland (Kittilä). | Macedonia (Prilep). | Nuuk-Stovø); | Democratic Republic of | Malawi (Chimwadzulu). | ||||||||
Greece (Paranesti). | Switzerland | Kangerdluarssuk). | Congo (Mbuji-Mayi). | United-States | ||||||||
Pakistan (Dir). | (Campo Lungo). | India (Kerala) | Brazil (São Luis).*** | (North Carolina-Cowee | ||||||||
India (Orissa; Kerala). | France (Pyrenees). | United-States (North Carolina). | Creek) | |||||||||
New Zealand (Hokitika) | Russia (Urals). | |||||||||||
Spain (Alboran Sea) | Greece (Xanthi). | |||||||||||
New Zealand (Hokitika). | ||||||||||||
Remarks | *very rare economic deposit | *very rare occurrence | *including metamorphosed mafic-ultramafic rocks, mafic | * include pink corundum. | * desilicated -pegmatite or -gneiss | ***** ruby associated | * in biotitites with sapphires | * netotectonics and basins. | **** placers are hosted | |||
gneisses, and special cases of retromorphosed UMR as verdites | ** Al-rich metapelite or | and other -felsic metamorphic | with emerald. | ** circulation of fluids in MR | ** include pink sapphire. | by detritic rocks of | ||||||
and anyolite. | metabauxite intercalated | rocks. | ¤ in amphibolite. | **** circulation of fluids | *** inclusion of ruby | the Triassic Isalo | ||||||
** most of the time "corundum". | in marble | ** sometimes corundumite. | ¤¤metasomatism of | in folds hinge. | in diamond. | sedimentary serie, | ||||||
*** metapelite intercalated | *** rocks called sakenites by | mafic dyke in marble. | unknown origin for ruby. | |||||||||
in marble | Lacroix (1922). | |||||||||||
Economy | non-economic | carving, and gems | economic | non-economic | economic | economic | ±economic | economic | economic | |||
for some deposits | for some deposits | for some deposits | for some deposits | for most of the deposits |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliani, G.; Groat, L.A.; Fallick, A.E.; Pignatelli, I.; Pardieu, V. Ruby Deposits: A Review and Geological Classification. Minerals 2020, 10, 597. https://doi.org/10.3390/min10070597
Giuliani G, Groat LA, Fallick AE, Pignatelli I, Pardieu V. Ruby Deposits: A Review and Geological Classification. Minerals. 2020; 10(7):597. https://doi.org/10.3390/min10070597
Chicago/Turabian StyleGiuliani, Gaston, Lee A. Groat, Anthony E. Fallick, Isabella Pignatelli, and Vincent Pardieu. 2020. "Ruby Deposits: A Review and Geological Classification" Minerals 10, no. 7: 597. https://doi.org/10.3390/min10070597
APA StyleGiuliani, G., Groat, L. A., Fallick, A. E., Pignatelli, I., & Pardieu, V. (2020). Ruby Deposits: A Review and Geological Classification. Minerals, 10(7), 597. https://doi.org/10.3390/min10070597