Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition
3.2. Infrared Spectroscopy
3.3. Raman Spectroscopy
3.4. X-ray Diffraction Data and Crystal Structure
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, D. The sodalite group of minerals. Contrib. Mineral. Petrol. 1967, 16, 172–188. [Google Scholar] [CrossRef]
- Sahl, K.; Chatterjee, N.D. The crystal structure of bicchulite, Ca2[Al2SiO6](OH)2. Zeits. Krist. 1977, 146, 35–41. [Google Scholar] [CrossRef]
- Sahl, K. Refinement of the crystal structure of bicchulite, Ca2[Al2SiO6](OH)2. Zeits. Krist. 1980, 152, 13–21. [Google Scholar] [CrossRef]
- Uchida, E.; Iiyama, J.T. On kamaishilite, Ca2Al2SiO6(OH)2; a new mineral (tetragonal), dimorphous with bicchulite, from the Kamaishi mine, Japan. Proc. Jpn. Acad. 1981, 57B, 239–243. (In English) [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.C. The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec. Can. Mineral. 1983, 21, 549–552. [Google Scholar]
- Hassan, I.; Grundy, H.D. The crystal structures of sodalite-group minerals. Acta Cryst. 1984, B40, 6–13. [Google Scholar] [CrossRef]
- Hassan, I.; Buseck, P. Cluster ordering and antiphase domain boundaries in hauyne. Can. Mineral. 1989, 27, 173–180. [Google Scholar]
- Hassan, I.; Grundy, H.D. The structure of nosean, ideally Na8[Al6Si6O24]SO4·H2O. Can. Mineral. 1989, 27, 165–172. [Google Scholar]
- Hassan, I.; Peterson, R.C.; Grundy, H.D. The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Cryst. C 1985, 41, 827–832. [Google Scholar] [CrossRef]
- Gobeltz-Hautecoeur, N.; Demortier, A.; Lede, B.; Lelieur, J.P.; Duhayon, C. Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg. Chem. 2002, 41, 2848–2854. [Google Scholar] [CrossRef]
- Bellatreccia, F.; Della Ventura, G.; Piccinini, M.; Cavallo, A.; Brilli, M. H2O and CO2 in minerals of the hauyne-sodalite group: A FTIR spectroscopy study. Mineral. Mag. 2009, 73, 399–413. [Google Scholar] [CrossRef]
- Fechtelkord, M. Structural study of Na8[AlSiO4]6(CO3)x(HCOO)2-2x(H2O)4x, 0.2 ≤ x ≤ 1, synthesized in organic solvents: Order and disorder of carbonate and formate anions in sodalite. Micropor. Mesopor. Mater. 1999, 28, 335–351. [Google Scholar] [CrossRef]
- Gesing, T.M.; Buhl, J.C. Crystal structure of a carbonate-nosean Na8[AlSiO4]6CO3. Eur. J. Miner. 1998, 10, 71–77. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Kotel’nikov, A.R.; Shchekina, T.I.; Gramenitskiy, E.N.; Zubkov, E.S. New representative in the sodalite structure type with extraframework anions [AlF6]3–. Crystallogr. Rep. 2011, 56, 190–197. [Google Scholar] [CrossRef]
- Gramenitskii, E.N.; Kotel’nikov, A.R.; Shchekina, T.I.; Yakubovich, O.V.; Devyatova, V.N.; Zubkov, E.S.; Suk, N.I.; Vigasina, M.F.; Kotel’nikova, Z.A. Composition, structure and conditions of formation of fluorine-containing sodalite (experimental data). Geochem. Int. 2018, 56, 521–534. [Google Scholar] [CrossRef]
- Hassan, I.; Grundy, H.D. The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24](OH)2·3H2O. Can. Mineral. 1991, 29, 123–130. [Google Scholar]
- Nishanbaev, T.P.; Rassomahin, M.A.; Blinov, I.A.; Popova, V.I. Minerals of sodalite-cancrinite pegmatites from the Vishnevogorsk miaskite massif, South Urals. Mineralogy 2016, 3, 40–52. (In Russian) [Google Scholar]
- Schmitt, A.K.; Wetzel, F.; Cooper, K.M.; Zou, H.; Wörner, G. Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J. Petrol. 2010, 51, 1053–1085. [Google Scholar] [CrossRef]
- Frechen, J. Vorgänge der Sanidinit-Bildung im Laacher Seegebiet. Fortschr. Mineral. 1947, 26, 147–166. (In German) [Google Scholar]
- Frechen, J. Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel. Sammlung geologischer Führer, 3. Auflage; Schweitzerbart: Stuttgart, Germany, 1976; p. 209. (In German) [Google Scholar]
- Schmitt, A.K. Laacher See revisited: High-spatial-resolution zircon dating indicates rapid formation of a zoned magma chamber. Geology 2006, 34, 597–600. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Krivovichev, S.V.; Pakhomova, A.S.; Pekov, I.V.; Schäfer, C.; Vigasina, M.F.; Van, K.V. Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur. J. Mineral. 2014, 26, 103–111. [Google Scholar] [CrossRef]
- Evsyunin, V.G.; Sapozhnikov, A.N.; Kashaev, A.A.; Rastsvetaeva, R.K. Crystal Structure of Triclinic Lazurite. Crystallogr. Rep. 1997, 42, 938–945. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, version 1.171.39.46; Rigaku Oxford Diffraction: Oxford, UK, 2018. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: London, UK, 2016; p. 1109. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Cobbold, D.G. Characterization of sulfur radical-ions in solutions of alkalipolysulfides in dimethylformamide and hexamethylphosphoramide and in solid-state in ultramarine blue, green, and red. Inorg. Chem. 1978, 17, 3169–3174. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Sun, L. Preparation of acid-resisting ultramarine blue by novel two-step silica coating process. Indust. Eng. Chem. Res. 2011, 50, 7326–7331. [Google Scholar] [CrossRef]
- Chivers, T.; Elder, P.J.W. Ubiquitous trisulfur radical anion: Fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. Chem. Soc. Rev. 2013, 42, 5996–6005. [Google Scholar] [CrossRef]
- Chukanov, N.V. Infrared Spectra of Mineral Species: Extended Library; Springer-Verlag GmbH: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; p. 1716. ISBN 9400771274. [Google Scholar]
- Buhl, J.-C. Kinetic investigations of the formation of carbonate sodalite. React. Kinet. Catal. Lett. 1992, 48, 641–648. [Google Scholar] [CrossRef]
- Balassone, G.; Bellatreccia, F.; Mormone, A.; Biagioni, C.; Pasero, M.; Petti, C.; Mondillo, N.; Fameli, G. Sodalite-group minerals from the Somma-Vesuvius volcanic complex, Italy: A case study of K-feldspar-rich xenoliths. Mineral. Mag. 2012, 76, 191–212. [Google Scholar] [CrossRef]
- Armbruster, T.; Schreyer, W.; Hoefs, J. Very high CO2 cordierite from Norwegian Lapland: Mineralogy, petrology, and carbon isotopes. Contrib. Mineral. Petrol. 1982, 81, 262–267. [Google Scholar] [CrossRef]
- Sheft, I.; Perkins, A.J. Anhydrous hydrogen fluoride: Raman spectrum of the liquid. J. Inorg. Nucl. Chem. 1976, 38, 665–668. [Google Scholar] [CrossRef]
- IMA List of Minerals. Available online: http://cnmnc.main.jp/ (accessed on 16 April 2020).
- Cámara, F.; Bellatreccia, F.; Della Ventura, G.; Mottana, A. Farneseite, a new mineral of the cancrinite-sodalite group with a 14 layer stacking sequence. Eur. J. Mineral. 2005, 17, 839–846. [Google Scholar] [CrossRef]
- Della Ventura, G.; Bellatreccia, F.; Bonaccorsi, E. CO2 molecules in pitiglianoite, a mineral of the cancrinite-sodalite group. Eur. J. Mineral. 2005, 17, 847–851. [Google Scholar] [CrossRef]
- Della Ventura, G.; Bellatreccia, F.; Parodi, G.C.; Cámara, F.; Piccinini, M. Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). Amer. Mineral. 2007, 92, 713–721. [Google Scholar] [CrossRef]
- Della Ventura, G.; Bellatreccia, F.; Piccinini, M. Channel CO2 infeldspathoids: A review of existing data and new perspectives. Rend. Accad. Lincei 2008, 19, 141–159. [Google Scholar] [CrossRef]
- Cámara, F.; Bellatreccia, F.; Della Ventura, G.; Gunter, M.E.; Sebactiani, M.; Cavallo, A. Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: Occurrence and crystal structure. Am. Mineral. 2012, 97, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, T.; Bloss, F.D. Channel CO2 in cordierites. Nature 1980, 286, 140–141. [Google Scholar] [CrossRef]
- Le Breton, N. Infrared investigation of CO2-bearing cordierites. Contrib. Mineral. Petrol. 1989, 103, 387–396. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. Cordierite II: The role of CO2 and H2O. Am. Mineral. 2000, 85, 1265–1274. [Google Scholar] [CrossRef]
- Khomenko, V.M.; Langer, K. Carbon oxides in cordierite channels: Determination of CO2 isotopic species and CO by single crystal IR spectroscopy. Am. Mineral. 2005, 90, 1913–1917. [Google Scholar] [CrossRef]
- Aines, R.D.; Rossman, G.R. The high temperature behaviour of water and carbon dioxide in cordierite and beryl. Am. Mineral. 1984, 69, 319–327. [Google Scholar]
- Charoy, B.; de Donato, P.; Barres, O.; Pintho-Choelo, C. Channel occupancy in an alkali-poor beryl from Serra Blanca (Goias, Brazil): Spectroscopic characterization. Am. Mineral. 1996, 81, 395–403. [Google Scholar] [CrossRef]
- Bellatreccia, F.; Della Ventura, G.; Gatta, G.D.; Guidi, M.C.; Harley, S. Carbon dioxide in pollucite, a feldspathoid with the ideal composition (Cs,Na)16Al16Si32O96×nH2O. Mineral. Mag. 2012, 76, 903–911. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. Molecules in the SiO2-clathrate melanophlogite: A single-crystal Raman study. Am. Mineral. 2003, 88, 1364–1368. [Google Scholar] [CrossRef]
- McLaughlan, S.D.; Marshall, D.J. Paramagnetic resonance of sulfur radicals in synthetic sodalites. J. Phys. Chem. 1970, 74, 1359–1363. [Google Scholar] [CrossRef]
- Platonov, A.N.; Tarashchan, A.N.; Belichenko, V.P.; Povarennikh, A.S. Spectroscopic study of sulfide sulfur in some framework aluminosilicates. Const. Prop. Miner. 1971, 5, 61–72. (In Russian) [Google Scholar]
- Samoilovich, M.I. An ESR study of sulfur-bearing radical ions in minerals. Geokhimiya 1971, 4, 477–483. (In Russian) [Google Scholar]
- Clark, R.J.H.; Dines, T.J.; Kurmoo, M. On the nature of the sulphur chromophores in ultramarine blue, green, violet, and pink and of the selenium chromophore in ultramarine selenium: Characterization of radical anions by electronic and resonance Raman spectroscopy and the determination of their excited-state geometries. Inorg. Chem. 1983, 22, 2766–2772. [Google Scholar]
- Reinen, D.; Lindner, G.-G. The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 1999, 28, 75–84. [Google Scholar] [CrossRef]
- Reshetnyak, N.B.; Tretyakova, L.I.; Vokhmentsev, A.Y. Investigation of colour centrums in natural lazurite by means of Raman spectroscopy. Mineral. Zhurnal 1986, 8, 49–60. (In Russian) [Google Scholar]
- Tauson, V.L.; Sapozhnikov, A.N. On the nature of lazurite colouring. Zap. Ross. Mineral. Obs. 2003, 132, 102–107. (In Russian) [Google Scholar]
- Fleet, M.E. XANES spectroscopy of fulfur in earth minerals. Canad. Mineral. 2005, 43, 1811–1838. [Google Scholar] [CrossRef] [Green Version]
- Steudel, R.; Chivers, T. Correction for ‘The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries’. Chem. Soc. Rev. 2019, 48, 3279–3319. [Google Scholar] [CrossRef] [PubMed]
- Tauson, V.L.; Sapozhnikov, A.N.; Shinkareva, S.N.; Lustenberg, E.E. Indicative properties of lazurite as a member of clathrasil mineral family. Dokl. Earth Sci. 2011, 441, 1732–1737. [Google Scholar] [CrossRef]
Sample No. | EDS | CO2 Sorption | IR Spectroscopy | Raman Spectroscopy | Single-Crystal XRD |
---|---|---|---|---|---|
1 | [17] | + | + | − | − |
2 | + | + | + | − | − |
3 | + | + | + | + | − |
4 | + | + | + | − | − |
5 | + | + | + | − | − |
6 | + | + | + | + | − |
7 | + | + | + | + | − |
8 | + | + | + | − | − |
9 | + | − | + | + | + |
10 | [14] | − | + | + | − |
Crystal sizes, mm | 0.07 × 0.11 × 0.13 |
Temperature, K | 293 |
Radiation and wavelength, Å | MoKα; 0.71073 |
F000* | 461 |
Diffractometer | Xcalibur S CCD |
θ range for data collection, ° | 5.514–30.359 |
h, k, l ranges | −12 ≤ h ≤ 12, −12 ≤ k ≤ 12, −12 ≤ l ≤ 12 |
Reflections used in the refinement: total/with I > 2σ(I) | 728/725 |
Data reduction | CrysAlisPro Version 1.171.39.46 |
Absorption correction | multi-scan |
Refinement method | Full–matrix least–squares on F2 |
Number of refined parameters | 21 |
Final R indices (with I > 2σ (I)) R1/wR2 | 0.0430/0.1050 |
R indices (with all data) | 0.0433/0.1052 |
GoF | 1.161 |
Largest diffraction peak and hole, e/Å3 | 0.71 and −0.33 |
Sample No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compo-nent | 1 a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 b |
Na2O | 24.97 | 16.96 | 18.60 | 18.33 | 19.02 | 20.66 | 17.88 | 18.08 | 19.00 | 21.5 |
K2O | bdl | 2.90 | bdl | 0.13 | bdl | 0.66 | 1.06 | 0.53 | 4.04 | bdl |
CaO | bdl | 1.77 | 4.80 | 6.14 | 6.54 | 2.17 | 0.77 | 6.25 | 0.59 | bdl |
Al2O3 | 31.86 | 26.85 | 25.75 | 26.86 | 28.00 | 26.28 | 24.44 | 27.33 | 30.21 | 32.2 |
Fe2O3 | bdl | 0.47 | 0.31 | 0.52 | 0.23 | 0.58 | 0.15 | 0.31 | bdl | bdl |
SiO2 | 35.20 | 36.97 | 30.83 | 33.41 | 33.80 | 33.28 | 33.52 | 33.52 | 39.83 | 42.7 |
CO2 | bdl | 0.48 | 1.35 | 0.78 | 0.24 | 1.81 | 0.82 | 0.65 | 1.66 | - |
SO3 | bdl | 9.27 | 14.97 | 10.41 | 11.56 | 11.88 | 19.01 | 13.07 | 1.42 | bdl |
F | bdl | 0.17 | bdl | 0.21 | 0.70 | bdl | bdl | 0.27 | 1.65 | 6.3 |
Cl | 7.97 | 0.37 | bdl | 0.27 | 0.45 | 0.20 | 0.56 | 0.40 | 0.62 | bdl |
–O=(F,Cl) | −1.80 | −0.15 | 0 | −0.15 | −0.40 | −0.05 | −0.13 | −0.20 | −0.83 | −2.7 |
Total | 98.20 | 96.06 | 96.61 | 96.91 | 100.14 | 97.47 | 98.96 c | 100.21 | 98.19 | 100.0 |
Formula coefficients calculated on Al + Si + Fe = 12 atoms per formula unit | ||||||||||
Na | 7.98 | 5.72 | 7.05 | 6.52 | 6.61 | 7.43 | 6.66 | 6.38 | 5.86 | 6.21 |
K | 0 | 0.64 | 0 | 0.03 | 0 | 0.16 | 0.26 | 0.12 | 0.82 | 0 |
Ca | 0 | 0.33 | 1.00 | 1.21 | 1.26 | 0.43 | 0.16 | 1.22 | 0.10 | 0 |
Al | 6.20 | 5.51 | 5.93 | 5.80 | 5.91 | 5.75 | 5.54 | 5.86 | 5.66 | 5.65 |
Fe | 0 | 0.06 | 0.05 | 0.07 | 0.03 | 0.08 | 0.02 | 0.04 | 0 | 0 |
Si | 5.80 | 6.43 | 6.02 | 6.13 | 6.06 | 6.17 | 6.44 | 6.10 | 6.34 | 6.35 |
C | 0 | 0.11 | 0.36 | 0.20 | 0.06 | 0.46 | 0.22 | 0.16 | 0.36 | 0 |
S | 0 | 1.21 | 2.20 | 1.43 | 1.55 | 1.66 | 2.75 | 1.78 | 0.17 | 0 |
F | 0 | 0.09 | 0 | 0.12 | 0.05 | 0 | 0 | 0.16 | 0.83 | 2.99 |
Cl | 2.22 | 0.11 | 0 | 0.08 | 0.32 | 0.06 | 0.18 | 0.12 | 0.17 | 0 |
Sample 3 | Sample 6 | Sample 7 | Sample 9 | Sample 10 | Assignment |
---|---|---|---|---|---|
Raman Shift (cm−1) | |||||
220w | 220w | 210 | Combination of low-frequency lattice modes | ||
254 | 265 | 262 | S3− bending (ν2) | ||
287w | 290sh | 283sh | Combination of low-frequency lattice modes | ||
331w | 327w | S4− symmetric stretching (ν1–A1) | |||
396 | Anhydrite admixture | ||||
437w | 441s | 436s | SO4 bending and/or δ[O–Si(Al)–O] | ||
485 | AlF6 stretching. | ||||
505w | Anhydrite admixture | ||||
544s | 550s | 544s | 548w | 544 | S3− symmetric stretching (ν1) and/or AlF6 stretching |
578sh | 582sh | S3− antisymmetric stretching (ν3) | |||
605w | HF translational mode | ||||
673w | 665w | HF translational mode? | |||
680w | 667w | S4− stretching (ν3–E) | |||
802 | 808 | 806 | S3− combination mode (ν1 + ν2) | ||
988 | 987 | 986s | 978sh | SO4 symmetric stretching and/or stretching vibrations of the framework | |
1012w | Anhydrite admixture | ||||
1018 br | Admixture of aluminosilicate glass | ||||
1058s | CO3 symmetric stretching | ||||
1074w | HF librational mode | ||||
1088s | 1098s | 1094s | S3− overtone (2 × ν1) | ||
1271w | CO2 Fermi resonance | ||||
1350 | 1349 | H+ | |||
1351 | 1355 | 1362 | S3− combination mode (2 ν1 + ν2) | ||
1381 | CO2 Fermi resonance | ||||
1442w | CO3 asymmetric stretching | ||||
1632 | 1642 | 1642 | S3− overtone (3 × ν1) | ||
1894 | 1907w | 1908w | S3− combination mode (3 × ν2 + ν1) | ||
2178 | 2188 | 2179 | S3− overtone (4 × ν1) | ||
2420w | 2450w | 2450w | S3− combination mode (4 × ν2 + ν1) | ||
2712 | 2730w | 2730w | S3− overtone (5 × ν1) | ||
2902 | CH4 | ||||
3256 | 3257w | S3− overtone (6 × ν1) | |||
3511w | 3540 | 3522 | H2O stretching vibrations |
Site | x | y | z | Ueq | s.o.f * | Q |
---|---|---|---|---|---|---|
T | 0.25 | 0.5 | 0.0 | 0.0102(5) | Si0.528Al0.472 | 12 |
O | 0.1480(4) | 0.1480(4) | 0.4605(5) | 0.0275(12) | O1.00 | 24 |
Na1 | 0.297(4) | 0.297(4) | 0.297(4) | 0.060(8) | Na0.159K0.024 | 8 |
Na2 | 0.164(3) | 0.164(3) | 0.164(3) | 0.060(8) | Na0.288K0.045 | 8 |
Na3 | 0.198(3) | 0.198(3) | 0.198(3) | 0.060(8) | Na0.288K0.045 | 8 |
Cl, S | 0.0 | 0.0 | 0.0 | 0.024(4) | Cl0.096S0.078 | 2 |
OS | 0.4074(16) | 0.4074(16) | 0.4074(16) | 0.024(4) | O0.078 | 8 |
F | 0.0 | 0.0 | 0.191(4) | 0.034(10) | F0.128 | 12 |
Na1–O | 2.415(19) × 3 | Na3–O | 2.462(16) × 3 |
–F | 2.61(5) × 3 | –F | 2.54(3) × 3 |
–O | 3.13(2) × 3 | –O | 2.919(7) × 3 |
–Cl | 3.19(6) | –OS | 2.96(4) × 3 |
–Cl | 3.11(4) | ||
Na2*–OS | 2.50(4) × 3 | T–O | 1.6671(14) × 4 |
–O | 2.70(2) × 3 | S–OS | 1.45(2) × 4 |
–O | 3.035(13) × 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukanov, N.V.; Vigasina, M.F.; Zubkova, N.V.; Pekov, I.V.; Schäfer, C.; Kasatkin, A.V.; Yapaskurt, V.O.; Pushcharovsky, D.Y. Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals 2020, 10, 363. https://doi.org/10.3390/min10040363
Chukanov NV, Vigasina MF, Zubkova NV, Pekov IV, Schäfer C, Kasatkin AV, Yapaskurt VO, Pushcharovsky DY. Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals. 2020; 10(4):363. https://doi.org/10.3390/min10040363
Chicago/Turabian StyleChukanov, Nikita V., Marina F. Vigasina, Natalia V. Zubkova, Igor V. Pekov, Christof Schäfer, Anatoly V. Kasatkin, Vasiliy O. Yapaskurt, and Dmitry Yu. Pushcharovsky. 2020. "Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy" Minerals 10, no. 4: 363. https://doi.org/10.3390/min10040363
APA StyleChukanov, N. V., Vigasina, M. F., Zubkova, N. V., Pekov, I. V., Schäfer, C., Kasatkin, A. V., Yapaskurt, V. O., & Pushcharovsky, D. Y. (2020). Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals, 10(4), 363. https://doi.org/10.3390/min10040363