The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Aggregate Tests
3.2. Concrete Tests
4. Results
4.1. Aggregate Test Results
4.1.1. Petrographic Characteristics of the Examined Aggregate Rocks
4.1.2. X-Ray Diffractometry of the Examined Aggregate Rocks
4.1.3. Mineral Chemistry
Serpentine Group Minerals
Chlorite
Amphibole Group Minerals
4.1.4. Geochemical Characteristics of the Examined Aggregate rocks
4.1.5. Physicomechanical Properties of the Examined Aggregate Rocks
4.2. Concrete Strength Results
5. Discussion
5.1. The Effect of Chemical Composition of Mafic and Ultramafic Aggregates on Their Physicomechanical Properties
5.2. The Effect of Chemical Composition of Mafic and Ultramafic Aggregates on Their Produced Concrete Mechanical Behavior
6. Conclusions
- Chemical composition of ultramafic and mafic rocks is directly correlated with their physicomechanical behavior when used as aggregates.
- A geochemical alteration index (Ga) was proposed for ultramafic and mafic aggregate rocks as an indirectly indicator of engineering performance of aggregates. The variation of Ga values between ultramafic (Group I) and mafic (Group II) rocks is relative to the different type of alteration among these lithologies.
- Chemical composition of ultramafic and mafic rocks, expressed by the proposed index (Ga) presented as a useful tool for predicting mechanical behavior of construction applications such as concrete and contributes for saving money, time and conserving energy in the construction field.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilic, R. The Unified Alteration Index (UAI) for mafic rocks. Environ. Eng. Geosci. 1999, 4, 475–483. [Google Scholar] [CrossRef]
- Xia, K.; Nasseri, M.H.B.; Mohanty, B.; Lu, F.; Chen, R.; Luo, S.N. Effects of microstructures on dynamic compression of Barre granite. Int. J. Rock Mech. Min. Sci. 2008, 45, 879–887. [Google Scholar] [CrossRef]
- Liu, H.; Lindqvist, P.A.; Åkesson, U.; Kou, S.; Lindqvist, J.E. Characterisation of rock aggregate breakage properties using realistic texture-based modelling. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1280–1302. [Google Scholar] [CrossRef] [Green Version]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The influence of the mineralogical composition of ultramafic rocks on their engineering performance: A case study from the Veria-Naousa and Gerania ophiolite complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulou, P.P.; Petrounias, P.; Tsikouras, B.; Kalaitzidis, S.; Rogkala, A.; Hatzipanagiotou, K.; Tombros, S.F. Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals 2018, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Jayawardena, U.S.; Izawa, E. A new chemical index of weathering for metamorphic silicate rocks in tropical regions: A study from Sri Lanka. Eng. Geol. 1994, 36, 303–310. [Google Scholar] [CrossRef]
- Ceryan, S. New weathering indices for evaluating durability and weathering characterization of crystalline rock material: A case study from NE Turkey. J. Afr. Earth Sci. 2015, 103, 54–64. [Google Scholar] [CrossRef]
- Turgul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar]
- Sousa, L.M.O. The influence of the characteristics of quartz and mineral dete-rioration on the strength of granitic dimensional stones. Environ. Earth Sci. 2013, 69, 1333–1346. [Google Scholar] [CrossRef]
- Vesiloglou-Gultekin, N.; Sezer, E.A.; Gokceoglou, C.; Bayahan, H. An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Syst. Appl. 2013, 40, 921–928. [Google Scholar] [CrossRef]
- Undul, O. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Eng. Geol. 2016, 210, 10–22. [Google Scholar] [CrossRef]
- Pricryl, R. Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. 2001, 38, 671–682. [Google Scholar] [CrossRef]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J. Geophys. Res. Solid Earth. 2017, 122, 1054–1073. [Google Scholar] [CrossRef] [Green Version]
- Bandini, A.; Berry, P. Influence of Marble’s Texture on its Mechanical Behavior. Rock Mech. Rock Eng. 2013, 46, 785–799. [Google Scholar] [CrossRef]
- Hemmati, A.; Ghafoori, M.; Moomivand, H.; Lashkaripour, G.R. The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification. Eng. Geol. 2020, 266, 105467. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The influence of alteration on the engineering properties of dolerites: The example from the Pindos and Vourinos ophiolites (northern Greece). Int. J. Rock Mech. Min. Sci. 2010, 47, 69–80. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Escartin, J.; Hirth, G.; Evans, B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology 2001, 29, 1023–1026. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef] [Green Version]
- Shevais, J.W.; Kolesar, P.; Andreasen, K. A field and chemical study of serpentinization—Stonyford, California: Chemical flux and mass balance. Int. Geol. Rev. 2005, 47, 1–23. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Malvoisin, B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth Planet. Sci. Lett. 2015, 430, 75–85. [Google Scholar] [CrossRef]
- Bettison, L.A.; Schiffman, P. Compositional and Structural variations of phyllosillicates from the Point Soil ophiolite, California. Am. Mineral. 1988, 79, 671–695. [Google Scholar]
- Weinert, H.H. Basic Igneous Rocks in Road Foundations; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1964; p. 47. [Google Scholar]
- Lumb, P. The Properties of Decomposed Granite. Géotechnique 1962, 12, 226–243. [Google Scholar] [CrossRef]
- Irfan, T.Y.; Dearman, W.R. The engineering petrography of weathered granite in Cornwall, England. Q. J. Eng. Geol. Hydrogeol. 1978, 11, 233–244. [Google Scholar] [CrossRef]
- Cole, W.F.; Sandy, M.J. A proposed secondary mineral rating for basalt road aggregate durability. Proc. Aust. Road Res. Board. 1980, 10, 27–37. [Google Scholar]
- Okewale, I.A.; Coop, M.R. Suitability of Different Approaches for Analyzing and Predicting the Behavior of Decomposed Volcanic Rocks. J. Geotech. Geoenviron. 2018, 144, 0401806. [Google Scholar] [CrossRef]
- Tugrul, A.; Zarif, I.H. Engineering aspects of limestone weathering in Istanbul, Turkey. Bull. Eng. Geol. Environ. 2013, 58, 191–206. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.; Aydin, A.; Malpas, J. Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong. Eng. Geol. 2002, 63, 99–119. [Google Scholar] [CrossRef]
- Irfan, T.Y. Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Q. J. Eng. Geol. Hydrogeol. 1996, 29, 5–35. [Google Scholar] [CrossRef]
- Ceryan, S. New Chemical Weathering Indices for Estimating the Mechanical Properties of Rocks: A Case Study from the Kürtün Granodiorite, NE Turkey. Turkish J. Earth Sci. 2008, 17, 187–207. [Google Scholar]
- Guan, P.; Ng, C.W.W.; Sun, M.; Tang, W. Weathering indices for rhyolitic tuff and granite in Hong Kong. Eng. Geol. 2001, 59, 147–159. [Google Scholar] [CrossRef]
- Hill, I.G.; Worden, R.H.; Meighan, I.G. Yttrium: The immobility-mobility transition during basaltic weathering. Geology 2000, 28, 923–926. [Google Scholar] [CrossRef]
- Nordt, L.C.; Driese, S.D. New weathering index improves paleorainfall estimates from Vertisols. Geology 2010, 38, 407–410. [Google Scholar] [CrossRef]
- Koca, Y.; Kıncal, C. The relationships between the rock material properties and weathering grades of andesitic rocks around Izmir, Turkey. Bull. Eng. Geol. Environ. 2016, 75, 709–734. [Google Scholar] [CrossRef]
- Gupta, A.S.; Rao, K.S. Weathering indices and their applicability for crystalline rocks. Bull. Eng. Geol. Environ. 2001, 60, 201–221. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Udagedara, D.T.; OguchiC, T.; Gunatilake, A.A.J.K. Combination of chemical indices and physical properties in the assessment of weathering grades of sillimanite-garnet gneiss in tropical environment. Bull. Eng. Geol. Environ. 2017, 76, 145–157. [Google Scholar] [CrossRef]
- Tugrul, A.; Gurpinar, O. The effect of chemical weathering on the engineering properties of Eocene basalts in northeastern Turkey. Environ. Eng. Geosci. 1997, 3, 225–234. [Google Scholar] [CrossRef]
- Ramana, Y.V.; Gogte, B.S.; Sarma, K.V.L.N.S. Physical properties of Indus ophiolites from Kashmir Himalaya. Phys. Earth Planet Int. 1986, 43, 104–122. [Google Scholar] [CrossRef]
- Marinos, P.; Hoek, E.; Marinos, V. Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunneling. Bull. Eng. Geol. Environ. 2006, 65, 129–142. [Google Scholar] [CrossRef]
- Jackson, N. Civil Engineering Materials; Macmillan Press Ltd.: London, UK, 1983; pp. 377–378. [Google Scholar]
- LaLonde, W.S.; Janes, M.F. Concrete Engineering Handbook; Library of Congress: New York, NY, USA, 1961.
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education Publishing Ltd.: London, UK, 2005. [Google Scholar]
- Thomas, M.D.A.; Folliard, K.J. Concrete aggregates and the durability of concrete. Durab. Concr. Cem. Compos. 2007, 247–281. [Google Scholar] [CrossRef]
- Taylor, G.D. Materials in Construction, 2nd ed.; Longman Group Ltd., Longman House, Burnt Mill: Harlow, UK, 1994. [Google Scholar]
- Petrounias, P.; Rogkala, A.; Kalpogiannaki, M.; Tsikouras, B.; Hatzipanagiotou, K. Comparative study of physico-mechanical properties of ultrabasic rocks (Veria-Naousa ophiolite) and andesites from central Macedonia (Greece). Bull. Geol. Soc. Greece 2016, 50, 1989–1998. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Tsikouras, B.; Hatzipanagiotou, K. The interdependence of mechanical properties of ultramafic rocks from Gerania ophiolitic complex. Bull. Geol. Soc. Greece 2016, 50, 1829–1837. [Google Scholar] [CrossRef] [Green Version]
- Al-Oraimi, S.K.; Taha, R.; Hassan, H.F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete. Constr. Build. Mater. 2006, 20, 499–503. [Google Scholar] [CrossRef]
- Korkanc, M.; Tugrul, A. Evaluation of selected basalts from Nigde, Turkey, as source of concrete aggregate. Eng. Geol. 2004, 75, 291–307. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New occurrence of pyroxenites in the Veria-Naousa ophiolite (north Greece): Implications on their origin and petrogenetic evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef] [Green Version]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of GREECE; The Anatomy of an Orogen; Beitrge zur Regionalen Geologie der Erde (Series); Gebrder Borntaeger: Stuttgart, Germany, 2002; p. 573. [Google Scholar] [CrossRef]
- Saccani, E.; Bortolotti, V.; Marroni, M.; Pandolfi, L.; Photiades, A.; Principi, G. The Jurassic association of backarc basin ophiolites and calc-alkaline volcanics in the Guevgueli complex (Northern Greece): Implication for the evolution of the Vardar zone. Ofioliti 2008, 33, 209–227. [Google Scholar]
- Decourt, J.; Aubouin, J.; Savoyat, E. Le sillonmesohellenique et la zone pelagonienne. Bull. Soc. Geol. Fr. 1977, 1, 32–70. [Google Scholar]
- Michailidis, K.M. Zoned chromites with high MN-contents in the Fe–Ni–Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner. Depos. 1990, 25, 190–197. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Giannakopoulou, P.P.; Hatzipanagiotou, K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Brunn, J.H. Geological Map of Greece, Veroia Sheet, 1:50.000; IGME: Athens, Greece, 1982. [Google Scholar]
- Mercier, J.L.; Vergely, P. Geological Map of Greece, Edhessa Sheet, 1:50.000; IGME: Athens, Greece, 1984. [Google Scholar]
- EN 932. Part 3: Procedure and Terminology for Simplified Petrographic Description; European Standard: Warsaw, Poland, 1996. [Google Scholar]
- AASHTO T255. Standard Method of Test for Total Evaporable Moisture Content of Aggregate by Drying; AASHTO: Washington, DC, USA, 2000. [Google Scholar]
- ISRM Suggested Methods. Rock Characterization Testing and Monitoring; Brown, E., Ed.; Pergamon Press: Oxford, UK, 1981; p. 211. [Google Scholar]
- ASTM C-131. Resistance to Abrasion of Small-Size Coarse Aggregate by Use of the Los Angeles Machine; American Society for Testing and Materials: Philadelphia, PA, USA, 1989. [Google Scholar]
- ASTM D-2938. Standard Test Method of Unconfined Compressive Strength of Intact Rock Core Specimens; Annual Book of Standards, 4.08; American Society for Testing and Materials: Philadelphia, PA, USA, 1986. [Google Scholar]
- ISRM. Suggested method for determining point load strength. Int. J. Rock Mech Min. Sci. Geomech. Abstr. 1985, 22, 51–62. [Google Scholar] [CrossRef]
- ACI-211. 1-91. Standard for Selecting Proportions for Normal, Heavyweight and Mass Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2002. [Google Scholar]
- BS EN 12390. Part 3: Testing Hardened Concrete. Compressive Strength of Test Specimens; British Standard Institution: London, UK, 2009. [Google Scholar]
- Singh, A.K.; Singh, R.B. Genetic implications of Zn- and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geol. J. 2013, 48, 22–38. [Google Scholar] [CrossRef]
- Bailey, S.W. Summary of recommendations of AIPEA nomenclature committee on clay minerals. Am. Mineral. 1980, 65, 1–7. [Google Scholar]
- Leake, E.B.; Wooley, A.R.; Birch, W.D.; Burke, E.A.J.; Ferraris, G.; Grice, J.D.; Hawthorne, F.C.; Kisch, H.J.; Krivovichev, V.G.; Schumacher, J.C.; et al. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur. J. Mineral. 2004, 89, 191–196. [Google Scholar]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Assessment of the engineering behavior of ultramafic and mafic rocks using chemical indices. Eng. Geol. 2015, 196, 222–237. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Harrassowitz, H. Laterit. Forsch. Geol. Paleont. 1926, 4, 253–565. [Google Scholar]
- Reiche, P. Graphic representation of chemical weathering. J. Sediment. Petrol. 1943, 13, 58–68. [Google Scholar]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Venturelli, G.; Contini, S.; Bonazzi, A. Weathering rocks and element mobility at Mt. Prinzera, Northern Apennines, Italy. Mineral. Mag. 1997, 61, 765–778. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W.; Rosing, M.T. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intraoceanic subduction zone processes in the Early Earth. Chem. Geol. 2002, 184, 231–254. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece. Q. J. Eng. Geol. Hydrogeol. 2012, 45, 423–433. [Google Scholar]
- Sibbick, R.G.; Page, C.L. Susceptibility of various UK aggregates to alkali–aggregate reaction. In Proceedings of the Ninth International Conference on Alkali-Aggregate Reaction in Concrete, London, UK, 27–31 July 1992; pp. 980–987. [Google Scholar]
- Ponce, J.M.; Batic, O.R. Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate. Cem. Concr. Res. 2006, 36, 1148–1156. [Google Scholar] [CrossRef]
- Vogt, T. Swlitjelmefeltets geologiog petrografi. Nor. Geol. Tidsskr. 1927, 121, 1–560. [Google Scholar]
- Roaldset, E. Mineralogy and geochemistry of Quaternary clays in the numedal area, southern Norway. Nor. Geol. Tidsskr. 1972, 52, 335–369. [Google Scholar]
Sample | Serpentinized Lherzolite | Serpentinized Harzburgite | Pyroxenite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE.103B | BE.133B | BE.12C | ED.59B | BE.67C | |||||||||||
Analytical Number | 2 | 3 | 6 | 4 | 9 | 6 | 13 | 4 | 6 | 7 | 2 | 5 | 7 | 8 | 10 |
wt% | |||||||||||||||
SiO2 | 44.13 | 45.30 | 45.28 | 44.42 | 42.70 | 43.65 | 46.01 | 44.86 | 44.48 | 44.51 | 42.60 | 44.68 | 45.06 | 45.17 | 45.96 |
TiO2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Al2O3 | - | 1.30 | 1.60 | 1.00 | - | - | - | - | 0.39 | - | 0.12 | - | 1.45 | 0.86 | 0.94 |
Fe2O3 | 4.80 | 2.30 | 2.41 | 2.02 | 3.31 | 4.56 | 5.28 | 5.40 | 2.73 | 4.31 | 3.83 | 1.79 | 4.79 | 4.07 | 4.02 |
MnO | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
MgO | 38.63 | 36.60 | 37.38 | 36.43 | 36.93 | 37.98 | 40.02 | 40.53 | 35.96 | 36.13 | 36.04 | 39.17 | 36.75 | 36.37 | 37.46 |
CaO | 0.17 | 0.01 | 0.03 | 0.08 | - | - | - | - | - | - | - | - | 0.76 | 0.57 | 0.69 |
Na2O | 0.22 | 0.23 | 0.18 | 0.29 | - | - | - | - | - | - | - | - | - | - | - |
K2O | 0.01 | 0.08 | 0.01 | 0.01 | - | - | - | - | - | - | - | - | - | - | - |
NiO | - | - | - | - | - | - | - | - | - | - | - | 0.65 | - | - | - |
Cr2O3 | - | - | - | - | - | 1.21 | - | - | 0.36 | - | - | - | - | 0.72 | - |
Sum | 87.96 | 85.82 | 86.89 | 84.25 | 82.94 | 87.40 | 91.31 | 90.79 | 83.92 | 84.95 | 82.59 | 86.29 | 88.81 | 87.76 | 89.07 |
Formula units based on 7 atoms of oxygen | |||||||||||||||
Si | 2.037 | 2.109 | 2.085 | 2.107 | 2.073 | 2.030 | 2.042 | 2.010 | 2.121 | 2.109 | 2.079 | 2.081 | 2.052 | 2.078 | 2.080 |
Ti | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Al | - | 0.071 | 0.087 | 0.056 | - | - | - | - | 0.022 | - | 0.007 | - | 0.078 | 0.047 | 0.050 |
Fe3+ | 0.167 | 0.081 | 0.083 | 0.072 | 0.121 | 0.160 | 0.179 | 0.182 | 0.098 | 0.154 | 0.141 | 0.063 | 0.164 | 0.141 | 0.137 |
Mn | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mg | 2.658 | 2.540 | 2.565 | 2.576 | 2.673 | 2.633 | 2.648 | 2.707 | 2.557 | 2.552 | 2.622 | 2.720 | 2.495 | 2.495 | 2.527 |
Ca | 0.008 | - | 0.001 | 0.004 | - | - | - | - | - | - | - | - | 0.037 | 0.028 | 0.033 |
Na | 0.020 | 0.021 | 0.016 | 0.027 | - | - | - | - | - | - | - | - | - | - | - |
K | 0.001 | 0.005 | 0.001 | 0.001 | - | - | - | - | - | - | - | - | - | - | - |
Ni | - | - | - | - | - | - | - | - | - | - | - | 0.024 | - | - | - |
Cr | - | - | - | - | - | 0.044 | - | - | 0.014 | - | - | - | - | 0.026 | - |
Total | 4.890 | 4.828 | 4.839 | 4.843 | 4.867 | 4.868 | 4.869 | 4.899 | 4.812 | 4.814 | 4.848 | 4.888 | 4.827 | 4.815 | 4.827 |
Sample | Serpentinized Harzburgite | Diorite | Gabbro | Diabase | Basalt | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE.12C | BE.103B | BE.77B | ED.93B | ED.26C | BE.100B | BE.165 | BE.43B | ED.110B | ΒΕ.15Β | ED.66C | |||||||
Analytical Number | 2 | 4 | 2 | 8 | 2 | 10 | 7 | 10 | 1 | 3 | 8 | 9 | 1 | 1 | 4 | 11 | 11 |
wt% | |||||||||||||||||
SiO2 | 33.30 | 36.15 | 34.50 | 30.56 | 32.73 | 33.76 | 32.68 | 31.67 | 28.52 | 35.45 | 33.55 | 30.75 | 30.93 | 30.03 | 29.97 | 32.99 | 30.88 |
TiO2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Al2O3 | 18.79 | 13.09 | 11.47 | 20.53 | 17.73 | 17.28 | 20.22 | 15.27 | 17.68 | 18.99 | 18.44 | 18.52 | 17.64 | 17.82 | 18.13 | 15.76 | 19.07 |
Cr2O3 | 0.98 | 0.72 | 2.33 | - | 0.14 | - | 0.12 | - | - | - | - | 0.59 | - | - | - | - | - |
FeO | 1.84 | 1.94 | 3.71 | 19.17 | 17.01 | 17.84 | 17.55 | 24.17 | 25.27 | 20.85 | 23.09 | 15.66 | 24.38 | 30.41 | 30.58 | 25.68 | 25.71 |
MgO | 33.64 | 34.33 | 33.42 | 19.42 | 19.72 | 18.98 | 20.19 | 16.80 | 14.83 | 18.67 | 17.42 | 21.00 | 16.60 | 11.28 | 11.96 | 14.35 | 13.64 |
NiO | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
MnO | - | - | - | - | 0.24 | - | - | - | 0.36 | 0.51 | - | - | 0.46 | 0.61 | 0.51 | 0.32 | 0.51 |
CaO | - | - | - | - | 0.35 | - | 0.27 | - | - | 0.40 | - | 1.27 | - | 0.15 | - | - | - |
Na2O | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
K2O | - | - | - | - | - | 0.48 | - | - | - | - | - | - | - | - | 0.30 | 0.28 | 0.42 |
Sum | 88.55 | 86.23 | 85.43 | 90.10 | 87.92 | 88.34 | 91.03 | 87.91 | 86.66 | 94.87 | 92.50 | 87.79 | 90.01 | 90.30 | 91.45 | 89.38 | 90.23 |
Formula units based on 28 atoms of oxygens | |||||||||||||||||
Si | 6.107 | 6.789 | 6.664 | 5.994 | 6.492 | 6.676 | 6.257 | 6.540 | 6.057 | 6.591 | 6.480 | 6.119 | 6.250 | 6.252 | 6.169 | 6.735 | 6.265 |
Aliv | 1.893 | 1.211 | 1.336 | 2.006 | 1.508 | 1.324 | 1.743 | 1.460 | 1.943 | 1.409 | 1.520 | 1.881 | 1.750 | 1.748 | 1.831 | 1.265 | 1.735 |
8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | |
Alvi | 2.169 | 1.686 | 1.275 | 2.740 | 2.636 | 2.704 | 2.819 | 2.256 | 2.482 | 2.752 | 2.677 | 2.463 | 2.451 | 2.625 | 2.568 | 2.526 | 2.825 |
Ti | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Fe2+ | 0.282 | 0.305 | 0.599 | 3.145 | 2.821 | 2.950 | 2.810 | 4.174 | 4.488 | 3.242 | 3.729 | 2.606 | 4.120 | 5.295 | 5.264 | 4.384 | 4.362 |
Cr | 0.142 | 0.107 | 0.356 | - | 0.022 | - | 0.018 | - | - | - | - | 0.093 | - | - | - | - | - |
Mn | - | - | - | 0.070 | 0.040 | - | 0.044 | - | 0.065 | 0.080 | - | - | 0.079 | 0.108 | 0.089 | 0.055 | 0.088 |
Mg | 9.198 | 9.611 | 9.623 | 5.678 | 5.831 | 5.595 | 5.762 | 5.172 | 4.695 | 5.175 | 5.015 | 6.230 | 5.000 | 3.501 | 3.670 | 4.367 | 4.126 |
Ca | - | - | - | - | 0.074 | - | - | - | - | 0.080 | - | 0.271 | - | 0.033 | - | - | - |
Na | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
K | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.079 | 0.073 | 0.109 |
Ni | - | - | - | - | - | 0.121 | - | - | - | - | - | - | - | - | - | - | - |
11.791 | 11.843 | 11.853 | 11.633 | 11.425 | 11.371 | 11.453 | 11.602 | 11.730 | 11.329 | 11.422 | 11.663 | 11.650 | 11.562 | 11.671 | 11.406 | 11.509 | |
Total | 19.791 | 19.843 | 19.853 | 19.633 | 19.425 | 19.371 | 19.453 | 19.602 | 19.730 | 19.329 | 19.422 | 19.663 | 19.650 | 19.562 | 19.671 | 19.406 | 19.509 |
Fet/(Fet + Mg) | 0.03 | 0.03 | 0.06 | 0.36 | 0.33 | 0.35 | 0.33 | 0.45 | 0.49 | 0.39 | 0.43 | 0.29 | 0.45 | 0.60 | 0.59 | 0.50 | 0.51 |
Sample | Serpentinized Lherzolite | Diorite | Gabbro | Diabase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BE.133B | ΒΕ.77B | BE.100B | ED.110B | ||||||||
Analytical Number | 3 | 6 | 5 | 9 | 17 | 3 | 5 | 10 | 1 | 7 | 16 |
wt% | |||||||||||
SiO2 | 58.32 | 54.82 | 54.81 | 46.70 | 50.77 | 51.23 | 51.14 | 51.25 | 52.03 | 51.40 | 50.59 |
TiO2 | - | - | - | - | - | 0.82 | 1.02 | 0.83 | 0.50 | 0.34 | 0.67 |
Al2O3 | 0.66 | 0.87 | 3.05 | 6.82 | 4.90 | 4.40 | 4.07 | 4.98 | 2.94 | 4.96 | 3.77 |
FeO | 2.60 | 3.05 | 10.75 | 21.36 | 18.59 | 18.20 | 16.24 | 16.41 | 16.63 | 13.93 | 20.67 |
MnO | - | - | 0.31 | 0.25 | 0.47 | - | - | - | 0.36 | 0.32 | |
MgO | 23.84 | 20.88 | 16.67 | 9.76 | 12.72 | 12.78 | 13.82 | 12.93 | 13.57 | 13.76 | 11.82 |
CaO | 12.60 | 13.80 | 11.28 | 10.01 | 11.06 | 10.58 | 10.49 | 11.38 | 10.83 | 11.14 | 8.51 |
Na2O | - | - | 0.56 | - | - | - | - | - | - | 0.78 | 0.65 |
K2O | - | - | - | 0.14 | - | - | 0.30 | - | - | 0.27 | 0.28 |
Cr2O3 | - | - | - | - | - | - | - | - | - | - | - |
NiO | - | 0.22 | - | - | - | - | - | - | - | - | - |
Sum | 98.02 | 93.64 | 97.43 | 95.04 | 98.51 | 98.01 | 97.08 | 97.78 | 96.50 | 96.94 | 97.28 |
Formula units based on 23 atoms of oxygens | |||||||||||
Si | 7.936 | 7.889 | 7.794 | 7.214 | 7.440 | 7.501 | 7.510 | 7.468 | 7.683 | 7.510 | 7.558 |
Aliv | 0.064 | 0.111 | 0.206 | 0.786 | 0.560 | 0.499 | 0.490 | 0.532 | 0.317 | 0.490 | 0.442 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - |
Ti | - | - | - | - | - | - | - | - | - | - | - |
T | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 |
Alvi | 0.042 | 0.037 | 0.305 | 0.455 | 0.286 | 0.261 | 0.214 | 0.328 | 0.195 | 0.364 | 0.222 |
Ti | - | - | - | - | - | 0.090 | 0.113 | 0.091 | 0.056 | 0.037 | 0.075 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - |
Cr | - | - | - | - | - | - | - | - | - | - | - |
Mg | 4.836 | 4.480 | 3.534 | 2.248 | 2.779 | 2.790 | 3.025 | 2.810 | 2.987 | 2.997 | 2.632 |
Fe2+ | 0.122 | 0.367 | 1.161 | 2.297 | 1.936 | 1.860 | 1.648 | 1.770 | 1.762 | 1.601 | 2.071 |
Mn | - | - | - | - | - | - | - | - | - | - | - |
C | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 |
Mg | - | - | - | - | - | - | - | - | - | - | - |
Fe2+ | 0.174 | - | 0.117 | 0.462 | 0.343 | 0.369 | 0.347 | 0.231 | 0.292 | 0.101 | 0.512 |
Mn | - | - | 0.037 | 0.033 | 0.058 | - | - | - | - | 0.045 | 0.040 |
Ca | 1.826 | 2.000 | 1.719 | 1.505 | 1.599 | 1.631 | 1.650 | 1.769 | 1.708 | 1.744 | 1.362 |
Na | - | - | 0.127 | - | - | - | - | - | - | 0.110 | 0.086 |
B | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 1.997 | 2.000 | 2.000 | 2.000 | 2.000 |
Ca | 0.011 | 0.128 | - | 0.152 | 0.137 | 0.029 | - | 0.009 | 0.005 | - | - |
Na | - | - | 0.028 | - | - | - | - | - | - | 0.111 | 0.103 |
K | - | - | - | 0.028 | - | - | 0.056 | - | - | 0.050 | 0.053 |
A | 0.011 | 0.128 | 0.028 | 0.179 | 0.137 | 0.029 | 0.056 | 0.009 | 0.005 | 0.161 | 0.156 |
Mg# | 0.942 | 0.924 | 0.734 | 0.449 | 0.549 | 0.556 | 0.603 | 0.584 | 0.593 | 0.638 | 0.505 |
Group | Sample | Lithotype | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
Group I Ultramafic rocks | BE.01C | Serpentinized harzburgite | 39.82 | - | 1.01 | 8.86 | 34.17 | 0.10 | - | - | 14.6 |
BE.12C | Serpentinized harzburgite | 40.95 | - | 1.11 | 8.06 | 34.81 | 0.21 | - | - | 13.5 | |
ED.59B | Serpentinized harzburgite | 39.95 | - | 0.39 | 8.06 | 36.71 | 0.02 | - | - | 14.1 | |
BE.122B | Serpentinized harzburgite | 38.78 | - | 0.98 | 7.68 | 36.00 | 0.28 | - | - | 15.3 | |
BE.103B | Serpentinized lherzolite | 39,80 | - | 0.72 | 7.56 | 35.56 | 1.29 | - | - | 14.2 | |
BE.133B | Serpentinized lherzolite | 39.59 | 0.02 | 1.39 | 7.98 | 35.58 | 1.19 | - | - | 13.4 | |
ED.115B | Serpentinized harzburgite | 40.82 | - | 0.33 | 7.51 | 36.13 | 0.03 | - | - | 14.4 | |
BE.67C | Pyroxenite | 57.65 | 0.02 | 1.03 | 7.78 | 29.01 | 2.14 | 0.02 | - | 1.2 | |
BE.67D | Pyroxenite | 54.79 | 0.02 | 1.00 | 8.00 | 26.00 | 1.90 | - | 1.1 | ||
Group II Mafic rocks | BE.77B | Diorite | 52.40 | 0.52 | 14.94 | 10.84 | 6.47 | 7.25 | 3.36 | 1.80 | 2.0 |
ED.93B | Diorite | 53.55 | 0.16 | 12.25 | 9.54 | 10.49 | 5.68 | 3.94 | 0.78 | 3.1 | |
BE.100B | Gabbro | 43.82 | 0.69 | 17.79 | 14.52 | 7.68 | 6.35 | 3.55 | 0.05 | 5.1 | |
ED.26C | Gabbro | 39.90 | 1.30 | 17.70 | 7.32 | 8.55 | 19.09 | 0.07 | 0.01 | 5.8 | |
BE.165 | Gabbro | 38.92 | 1.44 | 14.71 | 8.24 | 6.37 | 27.52 | 0.07 | - | 5.6 | |
BE.166 | Gabbro | 35.19 | 0.22 | 17.29 | 6.21 | 11.03 | 24.66 | - | - | 5.4 | |
BE.167 | Gabbro | 38.49 | 1.71 | 11.71 | 9.72 | 7.53 | 27.34 | - | - | 5.3 | |
BE.43B | Diabase | 57.17 | 0.22 | 11.68 | 7.14 | 10.56 | 5.88 | 4.89 | 0.26 | 1.7 | |
ED.24B | Diabase | 38.35 | 1.23 | 18.30 | 8.76 | 9.35 | 17.31 | 0.18 | 0.01 | 5.4 | |
ED.45B | Diabase | 48.24 | 0.66 | 15.50 | 11.03 | 6.77 | 6.89 | 3.01 | 1.42 | 6.0 | |
BE.113B | Diabase | 52.99 | 0.34 | 12.85 | 8.46 | 10.67 | 5.94 | 4.83 | 0.15 | 3.2 | |
ED.110B | Diabase | 48.73 | 0.48 | 17.06 | 10.29 | 4.16 | 14.26 | 2.67 | 0.02 | 2.0 | |
BE.15B | Basalt | 59.34 | 0.56 | 14.36 | 10.02 | 4.20 | 3.78 | 3.89 | 0.47 | 3.0 | |
ED.66C | Basalt | 48.40 | 2.39 | 13.63 | 14.28 | 6.64 | 6.56 | 4.80 | 0.05 | 2.6 | |
BE.3A | Basalt | 0.96 | 0.96 | 15.58 | 9.23 | 6.02 | 21.08 | 0.02 | 0.02 | 4.1 |
Group | Sample | Lithotype | Total Porosity (%) | Moisture Content (%) | Los Angeles (%) | Uniaxial Compressive Strength (MPa) | Point Load Index (MPa) |
---|---|---|---|---|---|---|---|
Group I Ultramafic rocks | BE.01C | Serpentinized harzburgite | 4.00 | 1.50 | 27.00 | 55.0 | 3.8 |
BE.12C | Serpentinized harzburgite | 5.00 | 2.18 | 34.00 | 45.0 | 1.9 | |
ED.59B | Serpentinized harzburgite | 6.29 | 1.52 | 40.40 | 20.0 | 1.4 | |
BE.122B | Serpentinized harzburgite | 3.21 | 1.25 | 25.50 | 25.45 | 3.0 | |
BE.103B | Serpentinized lherzolite | 5.00 | 1.95 | 28.98 | 32.0 | 1.2 | |
BE.133B | Serpentinized lherzolite | 2.80 | 1.40 | 26.00 | 35.0 | 1.6 | |
ED.115B | Serpentinized harzburgite | 4.53 | 1.60 | 35.00 | 28.0 | 1.9 | |
BE.67C | Pyroxenite | 1.40 | 1.18 | 17.20 | 75.0 | 4.9 | |
BE.67D | Pyroxenite | 1.20 | 0.90 | 17.80 | 78.0 | 4.4 | |
Group II Mafic rocks | BE.77B | Diorite | 0.80 | 0.38 | 12.40 | 95.0 | 10.0 |
ED.93B | Diorite | 1.27 | 0.50 | 11.80 | 100.0 | 8.0 | |
BE.100B | Gabbro | 0.88 | 0.47 | 13.90 | 85.0 | 9.0 | |
ED.26C | Gabbro | 1.74 | 0.60 | 16.00 | 80.0 | 7.0 | |
BE.165 | Gabbro | 1.72 | 0.80 | 18.00 | 79.0 | 8.0 | |
BE.166 | Gabbro | 2.00 | 1.10 | 19.50 | 79.0 | 7.0 | |
BE.167 | Gabbro | 1.90 | 1.01 | 18.30 | 79.0 | 7.5 | |
BE.43B | Diabase | 0.53 | 0.25 | 8.70 | 120.0 | 12.8 | |
ED.24B | Diabase | 0.84 | 0.52 | 14.10 | 91.33 | 9.7 | |
ED.45B | Diabase | 0.24 | 0.41 | 10.00 | 110.0 | 8.4 | |
BE.113B | Diabase | 0.45 | 0.42 | 7.40 | 97.15 | 9.7 | |
ED.110B | Diabase | 0.86 | 0.20 | 7.30 | 148.0 | 12.0 | |
BE.15B | Basalt | 0.13 | 0.29 | 10.50 | 165.9 | 12.6 | |
ED.66C | Basalt | 0.38 | 0.46 | 7.60 | 140.0 | 11.0 | |
BE.3A | Basalt | 0.95 | 0.68 | 12.50 | 110.0 | 11.2 |
Group | Sample | Lithotype | Concrete Uniaxial Compressive Strength (MPa) |
---|---|---|---|
Group I Ultramafic rocks | BE.12C | Serpentinized harzburgite | 26.0 |
ED.59B | Serpentinized harzburgite | 25.0 | |
BE.122B | Serpentinized harzburgite | 26.0 | |
BE.103B | Serpentinized lherzolite | 26.0 | |
BE.67C | Pyroxenite | 27.0 | |
BE.67D | Pyroxenite | 27.0 | |
BE.77B | Diorite | 29.0 | |
BE.100B | Gabbro | 30.0 | |
ED.26C | Gabbro | 29.0 | |
Group II Mafic rocks | BE.165 | Altered Gabbro | 28.0 |
BE.166 | Altered Gabbro | 28.0 | |
BE.167 | Altered Gabbro | 28.0 | |
ED.24B | Diabase | 31.0 | |
ED.45B | Diabase | 29.0 | |
BE.113B | Diabase | 32.0 | |
ED.110B | Diabase | 31.0 | |
ED.66C | Basalt | 31.0 | |
BE.3A | Basalt | 29.0 |
Group | Sample | Lithotype | Qualitatively Measured Degree of Alteration | Geochemical Index-Ga |
---|---|---|---|---|
Group I Ultramafic rocks | BE.01C | Serpentinized harzburgite | Medium to high | 3.47 |
BE.12C | Serpentinized harzburgite | Medium to high | 3.82 | |
ED.59B | Serpentinized harzburgite | High | 4.34 | |
BE.122B | Serpentinized harzburgite | Medium to high | 4.20 | |
BE.103B | Serpentinized lherzolite | Medium to high | 4.45 | |
BE.133B | Serpentinized lherzolite | High | 3.91 | |
ED.115B | Serpentinized harzburgite | High | 4.61 | |
BE.67C | Pyroxenite | Low | 3.57 | |
BE.67D | Pyroxenite | Low | 3.09 | |
Group II Mafic rocks | BE.77B | Diorite | Medium | 0.59 |
ED.93B | Diorite | Medium | 0.77 | |
BE.100B | Gabbro | Low | 0.42 | |
ED.26C | Gabbro | Medium | 0.94 | |
BE.165 | Gabbro | High | 1.39 | |
BE.166 | Gabbro | High | 1.50 | |
BE.167 | Gabbro | High | 1.50 | |
BE.43B | Diabase | Medium | 0.87 | |
ED.24B | Diabase | Medium | 1.05 | |
ED.45B | Diabase | Low | 0.55 | |
BE.113B | Diabase | Medium | 0.77 | |
ED.110B | Diabase | Low | 0.66 | |
BE.15B | Basalt | Low | 0.33 | |
ED.66C | Basalt | Low | 0.43 | |
BE.3A | Basalt | Medium | 1.05 |
Chemical Index | Formula | Reference |
---|---|---|
PI | 100 × SiO2/(SiO2 + TiO2 + Fe2O3 + FeO + Al2O3) | Rieche [76] |
CIA | 100 × [Al2O3/(Al2O3 + CaO + Na2O + K2O)] | Nesbitt [40] |
ba2 | (CaO + MgO)/Al2O3 | Harrassowitz [75] |
VR | (Al2O3 + K2O)/(MgO + CaO + Na2O) | Vogt [83] & Roaldset [84] |
Group | Sample | Lithotype | PI | CIA | ba2 | VR |
---|---|---|---|---|---|---|
Group I Ultramafic rocks | BE.01C | Serpentinized harzburgite | 69.06 | 90.99 | 33.93 | 0.03 |
BE.12C | Serpentinized harzburgite | 71.38 | 84.09 | 31.55 | 0.03 | |
ED.59B | Serpentinized harzburgite | 71.78 | 95.12 | 94.18 | 0.01 | |
BE.122B | Serpentinized harzburgite | 71.35 | 77.78 | 37.02 | 0.03 | |
BE.103B | Serpentinized lherzolite | 72.52 | 35.82 | 51.18 | 0.02 | |
BE.133B | Serpentinized lherzolite | 70.49 | 53.88 | 26.45 | 0.04 | |
ED.115B | Serpentinized harzburgite | 73.66 | 91.67 | 109.58 | 0.01 | |
BE.67C | Pyroxenite | 78.46 | 32.29 | 30.24 | 0.03 | |
BE.67D | Pyroxenite | 75.69 | 35.14 | 25.67 | 0.04 | |
Group II Mafic rocks | BE.77B | Diorite | 59.24 | 54.63 | 0.92 | 0.98 |
ED.93B | Diorite | 63.69 | 54.08 | 1.32 | 0.65 | |
BE.100B | Gabbro | 48.75 | 64.13 | 0.79 | 1.01 | |
ED.26C | Gabbro | 54.80 | 48.01 | 1.56 | 0.64 | |
BE.165 | Gabbro | 54.56 | 34.78 | 2.30 | 0.43 | |
BE.166 | Gabbro | 54.26 | 41.22 | 2.06 | 0.48 | |
BE.167 | Gabbro | 54.22 | 29.99 | 2.98 | 0.34 | |
BE.43B | Diabase | 69.18 | 51.43 | 1.41 | 0.56 | |
ED.24B | Diabase | 51.46 | 51.12 | 1.46 | 0.68 | |
ED.45B | Diabase | 56.52 | 57.79 | 0.88 | 1.01 | |
BE.113B | Diabase | 64.42 | 54.06 | 1.29 | 0.61 | |
ED.110B | Diabase | 56.78 | 50.16 | 1.08 | 0.81 | |
BE.15B | Basalt | 63.60 | 63.82 | 0.56 | 1.25 | |
ED.66C | Basalt | 52.87 | 54.43 | 0.97 | 0.76 | |
BE.3A | Basalt | 2.80 | 93.61 | 2.34 | 0.43 |
Correlations | Correlation Coefficient (r2) | Correlations | Correlation Coefficient (r2) |
---|---|---|---|
PI-nt | 0.16 | ba2-nt | 0.69 |
PI-w | 0.10 | ba2-w | 0.78 |
PI-LA | 0.17 | ba2-LA | 0.73 |
PI-UCS | 0.17 | ba2-UCS | 0.72 |
PI-Is(50) | 0.29 | ba2-Is(50) | 0.48 |
PI-UCScon | 0.16 | ba2-UCScon | 0.57 |
PI-LOI | 0.11 | ba2-LOI | 0.56 |
CIA-nt | 0.28 | VR-nt | 0.72 |
CIA-w | 0.05 | VR-w | 0.72 |
CIA-LA | 0.20 | VR-LA | 0.75 |
CIA-UCS | 0.07 | VR-UCS | 0.77 |
CIA-Is(50) | 0.08 | VR-Is(50) | 0.70 |
CIA-UCScon | 0.06 | VR-UCScon | 0.82 |
CIA-LOI | 0.34 | VR-LOI | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampropoulou, P.; Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Koukouzas, N.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength. Minerals 2020, 10, 406. https://doi.org/10.3390/min10050406
Lampropoulou P, Petrounias P, Giannakopoulou PP, Rogkala A, Koukouzas N, Tsikouras B, Hatzipanagiotou K. The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength. Minerals. 2020; 10(5):406. https://doi.org/10.3390/min10050406
Chicago/Turabian StyleLampropoulou, Paraskevi, Petros Petrounias, Panagiota P. Giannakopoulou, Aikaterini Rogkala, Nikolaos Koukouzas, Basilios Tsikouras, and Konstantin Hatzipanagiotou. 2020. "The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength" Minerals 10, no. 5: 406. https://doi.org/10.3390/min10050406
APA StyleLampropoulou, P., Petrounias, P., Giannakopoulou, P. P., Rogkala, A., Koukouzas, N., Tsikouras, B., & Hatzipanagiotou, K. (2020). The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength. Minerals, 10(5), 406. https://doi.org/10.3390/min10050406