Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel
Abstract
:1. Introduction
2. Background Information
2.1. Walstromite from the North American Localities
2.2. Hatrurim Complex
2.3. Specific Aspects of Rankinite Paralava
3. Methods
4. Results
4.1. Occurrence and Description of Walstromite
- (1)
- Gurim Anticline: (Ba0.97Sr0.01Ca0.02)Σ1.00(Ca2.00Na0.01)Σ2.01(Si2.98Al0.01Ti0.01)Σ3.00O9,
- (2)
- Zuk Tamrur: (Ba0.95Sr0.01Ca0.02)Σ0.98(Ca1.97Na0.02)Σ1.99(Si2.99Ti0.02Al0.01)Σ3.02O9.
4.2. Raman Spectroscopy
4.3. Single-Crystal X-ray Diffraction Data
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alfors, J.T.; Stinson, M.C.; Matthews, R.A.; Pabst, A. Seven new barium minerals from eastern Fresno County, California. Am. Mineral. 1965, 50, 314–340. [Google Scholar]
- Dunning, G.; Cooper, J.K., Jr. Barium silicate minerals from Trumbull Peak, Mariposa County, California. Mineral. Rec. 1999, 30, 411–417. [Google Scholar]
- Walstrom, R.E.; Dunning, G.E. The Baumann prospect Chickencoop Canyon, Tulare County California. Mineral. Rec. 2003, 34, 159–166. [Google Scholar]
- Dunning, G.E.; Walstrom, R.E.; Lechner, W. Barium silicate mineralogy of the western margin, North American Continent, Part 1: Geology, origin, paragenesis and mineral distribution from Baja California Norte, Mexico, western Canada and Alaska, USA. Baymin J. 2018, 19, 1–70. [Google Scholar]
- McNeil, L.A.; Peterson, R.C.; Farber, G.; Groat, L.; Witzke, T. Mineralogical studies of a low-temperature hydrothermal barium-rich skarn deposit, Gunn Claim, Yukon Territory. In Proceedings of the Winnipeg 2013: GAC–MAC Joint Annual Meeting, Winnipeg, MT, Canada, 22–24 May 2013; Volume 135, p. 135. [Google Scholar]
- Peterson, R.C.; Farber, G.; Evans, R.J.; Groat, L.; MacNeil, L.; Joy, B.; Lafuente, B.; Witzke, T. Meierite, a new barium mineral with a Kfi-type zeolite framework from the Gun Claim, Yukon Canada. Can. Mineral. 2016, 54, 1249–1259. [Google Scholar] [CrossRef]
- Bentor, Y.K. Lexique Stratigraphique International: Asie fascicule 10 c 2 Israel; Centre National de la Recherche Scientifique: Paris, France, 1960; Volume 3. [Google Scholar]
- Gross, S. The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. Isr. Bull. 1977, 70, 1–80. [Google Scholar]
- Novikov, I.; Vapnik, Y.; Safonova, I. Mud volcano origin of the Mottled Zone, South Levant. Geosci. Front. 2013, 4, 597–619. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Pakhomova, A.; Armbruster, T.; Vapnik, Y.; Włodyka, R.; Dzierżanowski, P.; Murashko, M. New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Min. Mag. 2015, 79, 1073–1087. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V.; Vapnik, Y.; Prusik, K.; Stasiak, M.; Dzierżanowski, P.; Murashko, M. Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8—Two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Min. Mag. 2017, 81, 1009–1019. [Google Scholar] [CrossRef]
- Krzątała, A.; Krüger, B.; Galuskina, I.; Vapnik, Y.; Galuskin, E. Bennesherite, IMA 2019-068; CNMNC Newsletter No. 52. Min. Mag. 2019, 83, 887–893. [Google Scholar]
- Trojer, F.J. The crystal structure of a high-pressure polymorph of CaSiO3. Z. Kristallogr. 1969, 130, 185–206. [Google Scholar] [CrossRef]
- Werner, J.; Paulus, E.F.; Winkler, B.; Milman, V. The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Z. Kristallogr. 2003, 218, 811–818. [Google Scholar]
- Barkley, M.C.; Downs, R.T.; Yang, H. Structure of walstromite, BaCa2Si3O9 and its relationship to CaSiO3-walstromite and wollastonite-II. Am. Mineral. 2011, 96, 797–801. [Google Scholar] [CrossRef]
- Anzolini, C.; Angel, R.J.; Merlini, M.; Derzsi, M.; Tokár, K.; Milani, S.; Krebs, M.Y.; Brenker, F.E.; Nestola, F.; Harris, J.W. Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 2016, 265, 138–147. [Google Scholar] [CrossRef]
- Anzolini, C.; Prencipe, M.; Alvaro, M.; Romano, C.; Vona, A.; Lorenzon, S.; Smith, E.M.; Brenker, F.E.; Nestola, F. Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. Am. Mineral. 2018, 103, 69–74. [Google Scholar] [CrossRef]
- Brenker, F.; Nestola, F.; Brenker, L.; Peruzzo, L.; Secco, L.; Harris, J.W. Breyite, IMA 2018-062, CNMNC Newsletter No. 45, October 2018, page 1041. Eur. J. Mineral. 2018, 30, 1037–1043. [Google Scholar]
- Ford, W.E.; Bradley, W.M. Margarosanite, a new lead-calcium silicate from Franklin, N.J. Am. J. Sci. 1916, 42, 159–162. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s Phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, Y.; Sharygin, V.V.; Sokol, E.V.; Shagam, R. Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. In Geology of Coal Fires: Case Studies from Around the World; Geological Society of America: Boulder, CO, USA, 2007; Volume 18, pp. 133–153. ISBN 978-0-8137-4118-5. [Google Scholar]
- Galuskina, I.O.; Vapnik, Y.; Lazic, B.; Armbruster, T.; Murashko, M.; Galuskin, E.V. Harmunite CaFe2O4—A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. Am. Mineral. 2014, 99, 965–975. [Google Scholar] [CrossRef]
- Sokol, E.; Novikov, I.; Zateeva, S.; Vapnik, Y.; Shagam, R.; Kozmenko, O. Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 2010, 22, 414–438. [Google Scholar] [CrossRef]
- Kolodny, Y.; Burg, A.; Sneh, A. Comment on Combustion metamorphism (CM) in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area, by: E.Sokol, I.Novikov, S.Zateeva, Ye.Vapnik, R. Shagamand O.Kozmenko, Basin Research (2010) 22, 414–438. Basin Res. 2013, 25, 112–114. [Google Scholar] [CrossRef]
- Vapnik, Y.; Novikov, I. Reply to Comment of Y. Kolodny, A. Burg and A. Sneh on “Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcano origin of the Mottled Zone, Dead Sea area,” by E. Sokol, I. Novikov, S. Zateeva, Ye. Vapnik, R. Shagam and O. Kozmenko, Basin Research (2010), 22, 414–438. Basin Res. 2013, 25, 115–120. [Google Scholar]
- Picard, l. Geological Research in the Judean Desert; Goldberg’s Press: Jerusalem, Israel, 1931; p. 108. [Google Scholar]
- Minster, T.; Yoffe, O.; Nathan, Y.; Flexer, A. Geochemistry, mineralogy and paleoenvironments of deposition of the Oil Shale Member in the Negev. Isr. J. Earth Sci. 1997, 46, 41–59. [Google Scholar]
- Burg, A.; Starinsky, A.; Bartov, Y.; Kolodny, Y. Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim Basin. Isr. J. Earth Sci. 1991, 40, 107–124. [Google Scholar]
- Burg, A.; Kolodny, Y.; Lyakhovsky, V. Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Isr. J. Earth Sci. 2000, 48, 209–223. [Google Scholar]
- Sokol, E.V.; Kozmenko, O.A.; Kokh, S.N.; Vapnik, Y. Gas reservoirs in the Dead Sea area: Evidence from chemistry of combustion metamorphic rocks in Nabi Musa fossil mud volcano. Russ. Geol. Geophys. 2012, 3, 745–762. [Google Scholar] [CrossRef]
- Fishman, I.L.; Kazakova, Y.I.; Sokol, E.V.; Stracher, G.B.; Kokh, S.N.; Polyansky, O.P.; Vapnik, Y.; White, Y.; Bajadilov, K.O. Mud volcanism and gas combustion in the Yli Depression, Southeastern Kazakhstan. In Coal and Peat Fires: A Global Perspective, Vol. 2: Photographs and Multimedia Tours; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, pp. 217–231. ISBN 978-0-444-59412-9. [Google Scholar]
- Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N. Natural pseudowollastonite: Crystal structure, associated minerals and geological context. Lithos 2012, 134, 75–90. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Sokol, E.V.; Vapnik, Y. Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russ. Geol. Geophys. 2008, 49, 709–726. [Google Scholar] [CrossRef]
- Krzątała, A.; Panikorovskii, T.; Galuskina, I.; Galuskin, E. Dynamic Disorder of Fe3+ Ions in the Crystal Structure of Natural Barioferrite. Minerals 2018, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, F.; Widmer, R.; Krüger, B.; Galuskin, E.V.; Galuskina, I.O.; Armbruster, T. The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. Eur. J. Mineral. 2015, 27, 755–769. [Google Scholar] [CrossRef]
- Waltersperger, S.; Olieric, V.; Pradervand, C.; Glettig, W.; Salathe, M.; Fuchs, M.R.; Curtin, A.; Wang, X.; Ebner, S.; Panepucci, E.; et al. PRIGo: A new multi-axis goniometer for macromolecular crystallography. J. Synchrotron. Radiat. 2015, 22, 895–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdyla, J.A.; Kaminski, J.W.; Panepucci, E.; Ebner, S.; Wang, X.; Gabadinho, J.; Wang, M.J. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines. Synchrotron Rad. 2018, 25, 293–303. [Google Scholar]
- Rigaku. CrysAlisPro; Rigaku Oxford Diffraction Ltd.: Yarnton, UK, 2016. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Glasser, L.S.D.; Glasser, F.P. The crystal structure of walstromite. Am. Mineral. 1968, 53, 9–13. [Google Scholar]
- Krzątała, A.; Galuskina, I.O. Potentially new mineral of the apatite group, Ba5(PO4)3F-fluorine analogue of alforsite from the Hatrurim complex, Israel. In Proceedings of the 200th Anniversary Meeting of the Russian Mineralogical Society, Saint-Petersburg, Russia, 10–13 October 2017; pp. 72–73. [Google Scholar]
- Pekov, I.V.; Zubkova, N.V.; Koshlyakova, N.N.; Krzątała, A.; Belakovskiy, D.I.; Galuskina, I.O.; Galuskin, E.V.; Britvin, S.N.; Sidorov, E.G.; Vapnik, Y.; et al. Pliniusite, IMA 2018-031, CNMNC Newsletter No. 44, August 2018, page 881. Eur. J. Mineral. 2018, 30, 877–882. [Google Scholar]
- Wiedenmann, D.; Zaitsev, A.N.; Britvin, S.N.; Krivovichev, S.V.; Keller, J. Alumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, northern Tanzania. Min. Mag. 2009, 73, 373–384. [Google Scholar]
- Gaft, M.; Yeates, H.; Nagli, L. Laser-induced time-resolved luminescence of natural margarosanite Pb(Ca,Mn)2Si3O9. Swedenborgite NaBe4SbO7 and walstromite BaCa2Si3O9. Eur. J. Mineral. 2013, 25, 71–77. [Google Scholar] [CrossRef]
- McKeown, D.A.; Bell, M.I.; Kim, C.C. Raman spectroscopy of silicate rings: Benitoite and the three-membered ring. Phys. Rev. B 1993, 48, 16357–16365. [Google Scholar] [CrossRef]
- Sitarz, M.; Mozgawa, W.; Handke, M. Vibrational spectra of complex ring silicate anions—Method of recognition. J. Mol. Struct. 1997, 404, 193–197. [Google Scholar] [CrossRef]
- Richet, P.; Mysen, B.O.; Ingrin, J. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Mineral. 1998, 25, 401–414. [Google Scholar] [CrossRef]
- Takahashi, Y.; Iwasaki, K.; Masai, H.; Fujiwara, T. Raman spectroscopic study of benitoite-type compounds. J. Ceram. Soc. Jpn. 2008, 116, 1139–1142. [Google Scholar] [CrossRef] [Green Version]
- Freed, R.L.; Peacor, D. Determination and refinement of the crystal structure of margarosanite, PbCa2Si309. Z. Kristallogr. 1969, 128, 213–228. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of database: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2016; pp. 1–30. [Google Scholar]
- Glasser, F.P.; Dent Glasser, L.S. Crystallographic study of Ca2BaSi3O9. Z. Kristallogr. Cryst. Mater. 1961, 116, 263–265. [Google Scholar] [CrossRef]
- Basciano, L.C. Mineralogy and Crystal Structures of Barium Silicate Minerals from Fresno County, California. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 1999. [Google Scholar]
- Moncea, M.A.; Panait, A.M.; Dumitru, F.D.; Baraitaru, A.G.; Olteanu, M.V.; Boboc, D.G.; Stanciu, S. Metakaolin—Waste glass geopolymers. The influence of hardening conditions on mechanical performances. IOP Conf Ser. Mater. Sci. Eng. 2019, 572, 012057. [Google Scholar] [CrossRef]
Crystal Data | |
Walstromite | |
Crystal system | triclinic |
Unit cell dimensions | a = 6.7487(1) b = 9.6292(1) c = 6.6999(1) α = 69.658(1)° β = 102.345(1)° γ = 96.878(1)° |
Space group | P no. 2 |
Volume | 398.314 Å3 |
Z | 2 |
Density (calculated) | 3.717 g/cm3 |
Chemical formula sum | BaCa2Si3O9 |
Crystal size (μm) | 50 × 40 × 30 |
Data Collection | |
Diffractometer Detector | beamline PXIII-X06DA, SLS, PILATUS 2M-F |
Exposure time/step size | 1 s/0.1° |
Number of frames | 1800 |
Max. θ°-range for data collection | 34.844 |
Index ranges | −10 ≤ h ≤ 9 |
−11 ≤ k ≤ 15 | |
−8 ≤ l ≤ 9 | |
No. of measured reflections | 3256 |
No. of unique reflections | 2380 |
No. of observed reflections (I > 2σ (I)) | 2300 |
Refinement of the Structure | |
no. of parameters | 136 |
Rint | 0.0062 |
Rσ | 0.0121 |
R1, I > 2σ(I) | 0.0186 |
R1 all data | 0.0190 |
wR2 on (F2) | 0.0618 |
GooF | 1.134 |
Δρ min (−eÅ−3) | −0.84 |
Δρ max (eÅ−3) | 0.95 |
Site | Atom | x/a | y/b | z/c | Ueq | sof |
---|---|---|---|---|---|---|
Ca1 | Ca | 0.27471(7) | 0.50895(5) | 0.76250(8) | 0.01546(10) | 1 |
Ca2 | Ca | 0.43670(7) | 0.82840(5) | 0.94379(8) | 0.01524(10) | 1 |
Ba1 | Ba | 0.04753(2) | 0.84859(2) | 0.32124(2) | 0.01762(6) | 1 |
Si1 | Si | 0.09707(10) | 0.22164(7) | 0.15331(11) | 0.01420(13) | 1 |
Si2 | Si | 0.23400(10) | 0.48115(7) | 0.28547(12) | 0.01431(13) | 1 |
Si3 | Si | 0.44142(10) | 0.19636(7) | 0.51338(11) | 0.01389(13) | 1 |
O1 | O | 0.2335(3) | 0.2602(2) | −0.0289(3) | 0.0170(3) | 1 |
O2 | O | −0.1008(3) | 0.12162(19) | 0.1047(3) | 0.0174(3) | 1 |
O3 | O | 0.0461(3) | 0.37101(19) | 0.1996(3) | 0.0167(3) | 1 |
O4 | O | 0.3727(3) | 0.5564(2) | 0.1068(3) | 0.0169(3) | 1 |
O5 | O | 0.1344(3) | 0.5858(2) | 0.3681(3) | 0.0201(4) | 1 |
O6 | O | 0.3596(3) | 0.35601(19) | 0.5058(3) | 0.0170(3) | 1 |
O7 | O | 0.6141(3) | 0.2340(2) | 0.3698(3) | 0.0174(3) | 1 |
O8 | O | 0.5079(3) | 0.0916(2) | 0.7571(3) | 0.0182(3) | 1 |
O9 | O | 0.2302(3) | 0.12399(19) | 0.3933(3) | 0.0167(3) | 1 |
Site | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|
Ca1 | 0.0165(2) | 0.01433(18) | 0.0140(2) | −0.00325(15) | 0.00209(17) | 0.00079(14) |
Ca2 | 0.01442(19) | 0.01699(18) | 0.0151(2) | −0.00653(15) | 0.00197(17) | 0.00151(14) |
Ba1 | 0.01913(8) | 0.01579(7) | 0.01740(9) | −0.00589(5) | 0.00061(6) | 0.00260(5) |
Si1 | 0.0131(3) | 0.0141(3) | 0.0143(3) | −0.0042(2) | 0.0015(2) | 0.0001(2) |
Si2 | 0.0145(3) | 0.0139(3) | 0.0146(3) | −0.0046(2) | 0.0028(2) | 0.0010(2) |
Si3 | 0.0140(3) | 0.0145(2) | 0.0124(3) | −0.0041(2) | 0.0013(2) | 0.0009(2) |
O1 | 0.0156(7) | 0.0192(7) | 0.0168(8) | −0.0059(6) | 0.0038(7) | 0.0014(6) |
O2 | 0.0137(7) | 0.0162(7) | 0.0205(8) | −0.0057(6) | 0.0007(7) | −0.0008(5) |
O3 | 0.0146(7) | 0.0159(7) | 0.0195(8) | −0.0070(6) | 0.0011(6) | 0.0011(5) |
O4 | 0.0169(8) | 0.0185(7) | 0.0160(8) | −0.0053(6) | 0.0054(7) | 0.0000(6) |
O5 | 0.0234(9) | 0.0180(7) | 0.0210(9) | −0.0073(7) | 0.0050(8) | 0.0046(6) |
O6 | 0.0194(8) | 0.0162(7) | 0.0154(8) | −0.0057(6) | 0.0009(7) | 0.0040(6) |
O7 | 0.0174(8) | 0.0187(7) | 0.0159(8) | −0.0061(6) | 0.0031(7) | −0.0008(6) |
O8 | 0.0225(8) | 0.0164(7) | 0.0133(8) | −0.0038(6) | −0.0003(7) | 0.0016(6) |
O9 | 0.0170(7) | 0.0156(7) | 0.0154(8) | −0.0043(6) | −0.0002(6) | 0.0008(5) |
Atom | -atom | Distance (Å) | Atom | -atom | Distance (Å) |
---|---|---|---|---|---|
Ca1 | O1 | 2.334(2) | Si1 | O1 | 1.600(2) |
O3 | 2.670(2) | O2 | 1.594(2) | ||
O4 | 2.431(2) | O3 | 1.660(2) | ||
O4 | 2.445(2) | O9 | 1.676(2) | ||
O5 | 2.483(2) | Mean | 1.632 | ||
O5 | 2.853(2) | Si2 | O3 | 1.689(2) | |
O6 | 2.800(2) | O4 | 1.596(2) | ||
O7 | 2.406(2) | O5 | 1.576(2) | ||
Mean | 2.552 | O6 | 1.680(2) | ||
Ca2 | O1 | 2.362(2) | Mean | 1.635 | |
O2 | 2.305(2) | Si3 | O6 | 1.676(2) | |
O4 | 2.486(2) | O7 | 1.597(2) | ||
O7 | 2.326(2) | O8 | 1.592(2) | ||
O8 | 2.331(2) | O9 | 1.681(2) | ||
O8 | 2.445(2) | Mean | 1.636 | ||
Mean | 2.376 | ||||
Ba1 | O5 | 2.563(2) | |||
O2 | 2.716(2) | ||||
O7 | 2.721(2) | ||||
O1 | 2.810(2) | ||||
O2 | 2.863(2) | ||||
O9 | 2.939(2) | ||||
O9 | 3.041(2) | ||||
O8 | 3.108(2) | ||||
O3 | 3.318(2) | ||||
O6 | 3.354(2) | ||||
Mean | 2.943 |
1 | 2 | |||||
---|---|---|---|---|---|---|
n = 15 | s.d. | Range | n = 5 | s.d. | Range | |
TiO2 | 0.16 | 0.10 | 0–0.34 | 0.34 | 0.07 | 0.24–0.43 |
SiO2 | 40.56 | 0.40 | 39.92–41.10 | 40.19 | 0.75 | 39.07–41.10 |
Al2O3 | 0.15 | 0.02 | 0.12–0.19 | 0.16 | 0.04 | 0.12–0.21 |
BaO | 33.62 | 0.41 | 32.90–34.26 | 32.62 | 0.60 | 32.18–33.43 |
SrO | 0.27 | 0.20 | 0–0.68 | 0.18 | 0.11 | 0.09–0.35 |
CaO | 25.60 | 0.47 | 24.84–26.15 | 24.89 | 0.39 | 24.43–25.41 |
K2O | 0.03 | 0.02 | 0–0.06 | n.d. | ||
Na2O | 0.06 | 0.02 | 0–0.09 | 0.15 | 0.01 | 0.07–0.11 |
Total | 100.45 | 98.53 | ||||
Calculated on 9O | ||||||
Ba | 0.97 | 0.95 | ||||
Sr | 0.01 | 0.01 | ||||
Ca | 2.02 | 1.99 | ||||
Na | 0.01 | 0.02 | ||||
A+B | 3.01 | 2.97 | ||||
Si | 2.98 | 2.99 | ||||
Ti4+ | 0.01 | 0.02 | ||||
Al | 0.01 | 0.01 | ||||
T | 2.00 | 3.02 |
1 | 2 | 3 | 4 | 5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n = 1 | n = 7 | s.d | range | n = 4 | n = 6 | s.d. | range | n = 6 | s.d. | range | |
TiO2 | n.d. | n.d. | 0.09 | n.d. | n.d. | ||||||
SiO2 | 39.93 | 31.67 | 0.79 | 30.42–32.80 | 28.23 | 37.02 | 1.31 | 35.09–38.71 | 26.26 | 0.80 | 25.36–27.09 |
Fe2O3 | 5.47 | 7.52 | 0.42 | 6.72–8.39 | 6.30 | 6.63 | 0.74 | 5.67–7.87 | 5.95 | 0.33 | 5.54–6.36 |
Al2O3 | 10.58 | 16.11 | 0.45 | 15.57–16.91 | 21.96 | 10.47 | 1.24 | 8.81–12.31 | 24.77 | 1.13 | 23.45–26.22 |
BaO | 0.11 | 0.13 | 0.14 | 0.00–0.34 | 0.00 | 1.04 | 0.48 | 0.46–1.79 | 0.00 | ||
SrO | 0.59 | 0.22 | 0.19 | 0.00–0.47 | 0.34 | 0.69 | 0.23 | 0.43–0.96 | 0.00 | ||
ZnO | 0.38 | 0.63 | 0.2 | 0.41–0.89 | 0.45 | 0.88 | 0.12 | 0.79–0.96 | 0.00 | ||
NiO | 0.00 | 0.00 | 0.21 | 0.1 | 0.14–0.28 | 0.00 | |||||
FeO * | 5.42 | 1.77 | 0.36 | 1.20–2.27 | 1.31 | 3.00 | 0.50 | 2.27–3.67 | 0.82 | 0.23 | 0.47–1.34 |
CaO | 28.81 | 35.78 | 0.51 | 35.04–36.34 | 37.35 | 31.51 | 0.94 | 29.96–32.52 | 38.17 | 0.08 | 38.08–38.28 |
MgO | 1.50 | 2.60 | 0.54 | 2.14–3.39 | 1.57 | 3.58 | 0.29 | 3.20–4.02 | 1.45 | 0.27 | 1.13–1.8 |
K2O | 0.38 | 0.36 | 0.09 | 0.27–0.50 | 0.23 | 0.27 | 0.08 | 0.17–0.40 | 0.29 | 0.07 | 0.19–0.37 |
Na2O | 5.65 | 1.90 | 0.3 | 1.51–2.38 | 1.25 | 3.63 | 0.37 | 3.42–4.28 | 0.74 | 0.10 | 0.65–0.86 |
Total | 98.81 | 98.69 | 99.08 | 98.93 | 98.45 | ||||||
Calculated on 7O | |||||||||||
Ca | 1.45 | 1.83 | 1.89 | 1.61 | 1.94 | ||||||
Na | 0.52 | 0.18 | 0.11 | 0.34 | 0.07 | ||||||
K | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | ||||||
Sr | 0.02 | 0.01 | 0.01 | 0.02 | |||||||
Ba | 0.02 | ||||||||||
A | 2.01 | 2.04 | 2.02 | 2.01 | 2.03 | ||||||
Mg | 0.11 | 0.18 | 0.11 | 0.25 | 0.10 | ||||||
Fe2+ | 0.21 | 0.07 | 0.05 | 0.12 | 0.03 | ||||||
Zn | 0.01 | 0.02 | 0.02 | 0.03 | |||||||
Ni | 0.01 | ||||||||||
Fe3+ | 0.19 | 0.27 | 0.22 | 0.24 | 0.21 | ||||||
Al | 0.47 | 0.42 | 0.57 | 0.35 | 0.63 | ||||||
T1 | 0.99 | 0.96 | 0.97 | 1.00 | 0.97 | ||||||
Al | 0.12 | 0.49 | 0.66 | 0.24 | 0.76 | ||||||
Si | 1.88 | 1.51 | 1.34 | 1.76 | 1.24 | ||||||
T2 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ||||||
Åk | 33 | 28 | 19 | 41 | 14 | ||||||
Na-Mel | 54 | 21 | 13 | 36 | 7 | ||||||
Ghl | 12 | 51 | 67 | 24 | 79 |
1 | 2 | 3 | 4 | 5 | |||
---|---|---|---|---|---|---|---|
n = 9 | s.d. | Range | n = 4 | n = 3 | n = 2 | n = 1 | |
ZrO2 | n.d. | 0.20 | 0.39 | n.d. | n.d. | ||
TiO2 | 8.64 | 0.26 | 8.10–9.06 | 16.17 | 11.18 | 14.32 | 3.13 |
SiO2 | 28.27 | 0.25 | 27.81–28.63 | 22.41 | 26.43 | 24.01 | 32.65 |
Fe2O3 | 27.10 | 0.28 | 26.78–27.61 | 25.76 | 21.54 | 25.75 | 28.90 |
Cr2O3 | 0.19 | 0.10 | 0.08–0.40 | n.d. | 5.64 | n.d. | n.d. |
V2O3 | 0.16 | 0.05 | 0.11–0.24 | 0.11 | n.d. | 0.15 | 0.20 |
Al2O3 | 2.03 | 0.06 | 1.93–2.12 | 2.26 | 2.92 | 2.63 | 1.42 |
MgO | 0.11 | 0.02 | 0.09–0.14 | 0.10 | 0.09 | 0.11 | 0.08 |
CaO | 32.32 | 0.15 | 32.11–32.51 | 32.22 | 32.66 | 32.31 | 32.65 |
Total | 98.82 | 99.23 | 100.85 | 99.28 | 99.03 | ||
Calculated on 8O | |||||||
Ca | 2.99 | 3.02 | 2.97 | 3.00 | 2.99 | ||
Mg | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | ||
X | 3.01 | 3.03 | 2.98 | 3.01 | 3.00 | ||
Fe3+ | 1.41 | 0.90 | 0.90 | 1.04 | 1.79 | ||
Ti4+ | 0.56 | 1.06 | 0.71 | 0.94 | 0.20 | ||
Cr3+ | 0.01 | 0.38 | |||||
V3+ | 0.01 | 0.01 | 0.01 | 0.01 | |||
Zr | 0.01 | 0.02 | |||||
Y | 1.99 | 1.98 | 2.01 | 1.99 | 2.00 | ||
Si | 2.44 | 1.96 | 2.24 | 2.09 | 2.79 | ||
Al | 0.21 | 0.23 | 0.29 | 0.27 | 0.14 | ||
Fe3+ | 0.35 | 0.80 | 0.48 | 0.64 | 0.07 | ||
Z | 3.00 | 2.99 | 3.01 | 3.00 | 3.00 | ||
Adr * | 72 | 49 | 62 | 55 | 89 | ||
Sch | 17 | 40 | 24 | 32 | 4 | ||
Htc | 11 | 11 | 14 | 13 | 7 |
1 | 2 | 3 | 4 | 5 | 6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rankinite | cuspidine | wollastonite | ||||||||||||||||
n = 14 | s.d. | Range | n = 18 | s.d. | Range | N z = 6 | s.d. | Range | n = 6 | s.d. | Range | n = 9 | s.d. | Range | n = 10 | s.d. | Range | |
P2O5 | 0.16 | 0.08 | 0.04–0.38 | 0.14 | 0.04 | 0.03–0.22 | 0.16 | 0.04 | 0.10–0.20 | n.d. | n.d. | n.d. | ||||||
TiO2 | n.d. | n.d. | n.d. | n.d. | 0.21 | 0.15 | 0.01–0.47 | n.d. | ||||||||||
SiO2 | 40.82 | 0.26 | 40.33–41.23 | 41.34 | 0.19 | 40.94–41.66 | 31.86 | 0.68 | 30.87–32.47 | 32.39 | 0.19 | 32.02–32.66 | 50.77 | 0.94 | 48.09–51.52 | 51.78 | 0.51 | 51.25–52.85 |
Al2O3 | n.d. | n.d. | 0.04 | 0.10 | 0.00–0.22 | n.d. | 0.14 | 0.34 | 0.00–1.10 | 0.09 | 0.07 | 0.01–0.20 | ||||||
BaO | 0.15 | 0.11 | 0.05–0.32 | n.d. | 0.46 | 0.02 | 0.44–0.49 | n.d. | n.d. | n.d. | ||||||||
SrO | n.d. | n.d. | 0.12 | 0.18 | 0.00–0.43 | 0.20 | 0.08 | 0.09–0.34 | n.d. | n.d. | ||||||||
FeO | 0.08 | 0.11 | 0–0.44 | 0.18 | 0.04 | 0–0.22 | 0.13 | 0.07 | 0–0.28 | n.d. | 0.12 | 0.06 | 0–0.22 | 0.17 | 0.08 | 0–0.30 | ||
CaO | 57.61 | 0.38 | 56.81–58.17 | 57.48 | 0.34 | 56.78–57.98 | 59.37 | 0.69 | 58.53–60.01 | 60.33 | 0.60 | 59.40–61.10 | 48.16 | 0.60 | 46.89–49.09 | 48.10 | 0.13 | 47.67–48.13 |
MgO | 0.06 | 0.02 | 0.03–0.11 | 0.05 | 0.02 | 0.02–0.08 | 0.03 | 0.01 | 0.03–0.04 | n.d. | n.d. | n.d. | ||||||
K2O | 0.04 | 0.08 | 0.00–0.22 | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Na2O | 0.09 | 0.04 | 0.05–0.20 | 0.07 | 0.02 | 0.01–0.11 | 0.12 | 0.04 | 0.06–0.18 | n.d. | n.d. | n.d. | ||||||
F | n.d. | n.d. | 9.20 | 0.26 | 8.84–9.53 | 10.07 | 0.32 | 9.44–10.41 | n.d. | n.d. | ||||||||
H2O | 0.45 | 0.08 | ||||||||||||||||
–F=O | 3.87 | 4.24 | ||||||||||||||||
Total | 99.01 | 99.26 | 98.061 | 98.83 | 99.40 | 100.14 | ||||||||||||
Calculated on 7O *, 9(O + F + OH) ♣, 3O ♦ | ||||||||||||||||||
Ca | 3.00 * | 2.98 * | 3.97 ♣ | 3.99 ♣ | 1.01 ♦ | 1.00 ♦ | ||||||||||||
Ba | 0.01 | |||||||||||||||||
Sr | 0.01 | |||||||||||||||||
Fe2+ | 0.01 | 0.01 | ||||||||||||||||
Na | 0.01 | 0.01 | 0.01 | |||||||||||||||
A | 3.01 | 3.00 | 4.00 | 4.00 | 1.01 | |||||||||||||
Si | 1.98 | 2.00 | 1.99 | 2.00 | 0.99 | 1.00 | ||||||||||||
P5+ | 0.01 | 0.01 | 0.01 | |||||||||||||||
T | 1.99 | 2.01 | 2.00 | 2.00 | 0.99 | 1.00 | ||||||||||||
F− | 1.81 | 1.97 | ||||||||||||||||
(OH)− | 0.19 | 0.03 | ||||||||||||||||
W | 2.00 | 2.00 |
1 | 2 | 3 | |||||
---|---|---|---|---|---|---|---|
n = 7 | s.d. | Range | n = 6 | s.d. | Range | n = 5 | |
SiO2 | 36.93 | 0.39 | 36.46–37.44 | 36.87 | 0.41 | 36.74–37.91 | 40.50 |
Fe2O3 | 4.56 | 1.39 | 2.84–6.38 | 4.56 | 0.62 | 3.50–5.38 | 3.37 |
Al2O3 | 27.89 | 1.48 | 26.08–29.82 | 27.97 | 0.56 | 26.87–28.30 | 32.06 |
BaO | 0.75 | 0.60 | 0.11–1.72 | 1.33 | 0.61 | 0.62–2.37 | n.d. |
CaO | 0.15 | 0.28 | 0.00–0.77 | n.d. | 0.07 | ||
MgO | 0.09 | 0.09 | 0.00–0.25 | 0.12 | 0.06 | 0.03–0.22 | n.d. |
K2O | 26.57 | 1.20 | 25.22–27.89 | 27.03 | 0.46 | 26.30–27.42 | 8.91 |
Na2O | 1.53 | 0.48 | 0.98–2.28 | 0.96 | 0.11 | 0.69–0.98 | 15.02 |
Total | 98.47 | 98.84 | 99.93 | ||||
Calculated on 4O | |||||||
K | 0.92 | 0.94 | 0.28 | ||||
Na | 0.08 | 0.05 | 0.72 | ||||
Ba | 0.01 | 0.01 | |||||
A | 1.01 | 1.00 | 1.00 | ||||
Al | 0.89 | 0.90 | 0.93 | ||||
Fe3+ | 0.09 | 0.09 | 0.06 | ||||
Si | 1.00 | 1.00 | 1.00 | ||||
T | 1.98 | 1.99 | 1.99 |
1 | 2 | 3 | |||
---|---|---|---|---|---|
n = 7 | s.d. | Range | n = 4 | n = 1 | |
SO3 | 1.29 | 0.2 | 1.11–1.69 | 0.49 | 2.38 |
V2O5 | 0.39 | 0.11 | 0.2–50.56 | 1.14 | 18.96 |
P2O5 | 37.47 | 0.53 | 38.37–39.66 | 27.80 | 6.07 |
SiO2 | 2.84 | 0.27 | 2.61–3.33 | 6.73 | 0.26 |
Al2O3 | n.d. | n.d. | 0.08 | ||
BaO | 0.42 | 0.13 | 0.32–0.71 | 20.01 | 68.12 |
SrO | 0.54 | 0.20 | 0.44–0.98 | n.d. | 0.00 |
CaO | 55.1 | 0.34 | 55.63–56.43 | 42.48 | 1.06 |
K2O | n.d. | n.d. | 1.53 | ||
Na2O | n.d. | 0.73 | 0.24 | ||
F | 3.30 | 0.07 | 3.49–3.67 | 2.41 | n.d. |
-O=F | 1.39 | 1.01 | |||
Total | 99.97 | 100.78 | 98.7 | ||
Calculated on 8 Cations *, 17(O + F) ♣, 8O ♦ | |||||
Ba | 0.0 * | 1.00 ♣ | 2.67 ♦ | ||
Ca | 4.96 | 5.81 | 0.11 | ||
Na | 0.18 | 0.05 | |||
K | 0.19 | ||||
Sr | 0.03 | ||||
A | 5.00 | 6.99 | 3.02 | ||
Si | 0.24 | 0.86 | 0.03 | ||
Al | 0.01 | ||||
P5+ | 2.66 | 3.00 | 0.51 | ||
V5+ | 0.02 | 0.10 | 1.25 | ||
S6+ | 0.08 | 0.05 | 0.18 | ||
T | 3.00 | 4.01 | 1.98 | ||
F | 0.88 | 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzątała, A.; Krüger, B.; Galuskina, I.; Vapnik, Y.; Galuskin, E. Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals 2020, 10, 407. https://doi.org/10.3390/min10050407
Krzątała A, Krüger B, Galuskina I, Vapnik Y, Galuskin E. Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals. 2020; 10(5):407. https://doi.org/10.3390/min10050407
Chicago/Turabian StyleKrzątała, Arkadiusz, Biljana Krüger, Irina Galuskina, Yevgeny Vapnik, and Evgeny Galuskin. 2020. "Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel" Minerals 10, no. 5: 407. https://doi.org/10.3390/min10050407
APA StyleKrzątała, A., Krüger, B., Galuskina, I., Vapnik, Y., & Galuskin, E. (2020). Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10(5), 407. https://doi.org/10.3390/min10050407