Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy
Abstract
:1. Introduction
2. CSEM Modeling Approach
3. Numerical Experiments
3.1. Validation of the Modeling Scheme
3.2. SMS Model Studies
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoagland, P.; Beaulieu, S.; Tivey, M.A.; Eggert, R.G.; German, C.; Glowka, L.; Jian, L. Deep-sea mining of seafloor massive sulfides. Mar. Policy 2010, 34, 728–732. [Google Scholar] [CrossRef]
- Hölz, S.; Jegen, M. How to Find Buried and Inactive Seafloor Massive Sulfides Using Transient EM-A Case Study from the Palinuro Seamount. In Proceedings of the EAGE/DGG Workshop on Deep Mineral Exploration, Münster, Germany, 18 March 2016. [Google Scholar]
- Hölz, S.; Haroon, A.; Jegen, M.; Safipour, R.; Swidinsky, A. Exploration of Seafloor Massive Sulfide Deposits with the Novel EM Induction System MARTEMIS. In Proceedings of the 27. Schmucker-Weidelt Kolloquium für Elektromagnetische Tiefenforschung, Breklum, Germany, 25–29 September 2017. [Google Scholar]
- Haroon, A.; Hölz, S.; Gehrmann, R.A.S.; Attias, E.; Jegen, M.; Minshull, T.A.; Murton, B.J. Marine dipole–dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: Effects of three-dimensional bathymetry. Geophys. J. Int. 2018, 215, 2156–2171. [Google Scholar] [CrossRef]
- Gehrmann, R.A.S.; North, L.J.; Graber, S.; Szitkar, F.; Petersen, S.; Minshull, T.A.; Murton, B.J. Marine Mineral Exploration with Controlled Source Electromagnetics at the TAG Hydrothermal Field, 26° N Mid-Atlantic Ridge. Geophys. Res. Lett. 2019, 46, 5808–5816. [Google Scholar] [CrossRef] [Green Version]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Crowhurst, P.; Lowe, J. Exploration and resource drilling of seafloor massive sulfide (SMS) deposits in the Bismarck Sea, Papua New Guinea. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–6. [Google Scholar]
- Schwalenberg, K.; Müller, H.; Engels, M. Seafloor Massive Sulfide Exploration—A New Field of Activity for Marine Electromagnetics. In Proceedings of the EAGE/DGG Workshop on Deep Mineral Exploration, Münster, Germany, 18 March 2016. [Google Scholar]
- Spagnoli, G.; Hannington, M.; Bairlein, K.; Hördt, A.; Jegen, M.; Petersen, S.; Laurila, T. Electrical properties of seafloor massive sulfides. Geo-Mar. Lett. 2016, 36, 235–245. [Google Scholar] [CrossRef]
- Spagnoli, G.; Weymer, B.A.; Jegen, M.; Spangenberg, E.; Petersen, S. P-wave velocity measurements for preliminary assessments of the mineralization in seafloor massive sulfide mini-cores during drilling operations. Engineering Geology 2017, 226, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.; Schwalenberg, K.; Reeck, K.; Barckhausen, U.; Schwarz-Schampera, U.; Hilgenfeldt, C.; von Dobeneck, T. Mapping seafloor massive sulfides with the Golden Eye frequency-domain EM profiler. First Break 2018, 36, 61–67. [Google Scholar]
- Cheesman, S.; Edwards, R.; Chavez, A. On the theory of sea floor conductivity mapping using transient EM systems. Geophysics 1987, 52. [Google Scholar] [CrossRef] [Green Version]
- Weitemeyer, K.A.; Constable, S.C.; Key, K.W.; Behrens, J.P. First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Constable, S. Ten years of marine CSEM for hydrocarbon exploration. Geophysics 2010, 75, A67–A75. [Google Scholar] [CrossRef] [Green Version]
- Schwalenberg, K.; Rippe, D.; Koch, S.; Scholl, C. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 2017, 122, 3334–3350. [Google Scholar] [CrossRef] [Green Version]
- Cairns, G.W.; Evans, R.L.; Edwards, R.N. A time domain electromagnetic survey of the TAG Hydrothermal Mound. Geophys. Res. Lett. 1996, 23, 3455–3458. [Google Scholar] [CrossRef]
- Kowalczyk, P. Geophysical prelude to first exploitation of submarine massive sulphides. First Break 2008, 26, 99–106. [Google Scholar]
- Müller, H.; Schwalenberg, K. Electromagnetic imaging of seafloor massive sulfide deposits at the Central Indian Ridge. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Constable, S.; Kowalczyk, P.; Bloomer, S. Measuring marine self-potential using an autonomous underwater vehicle. Geophys. J. Int. 2018, 215, 49–60. [Google Scholar] [CrossRef]
- Ishizu, K.; Goto, T.; Ohta, Y.; Kasaya, T.; Iwamoto, H.; Vachiratienchai, C.; Siripunvaraporn, W.; Tsuji, T.; Kumagai, H.; Koike, K. Internal Structure of a Seafloor Massive Sulfide Deposit by Electrical Resistivity Tomography, Okinawa Trough. Geophys. Res. Lett. 2019, 46, 11025–11034. [Google Scholar] [CrossRef]
- Masaki, Y.; Kinoshita, M.; Inagaki, F.; Nakagawa, S.; Takai, K. Possible kilometer-scale hydrothermal circulation within the Iheya-North field, mid-Okinawa Trough, as inferred from heat flow data. JAMSTEC Rep. Res. Dev. 2011, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, T.; Takai, K.; Oiwane, H.; Nakamura, Y.; Masaki, Y.; Kumagai, H.; Kinoshita, M.; Yamamoto, F.; Okano, T.; Kuramoto, S.I. Hydrothermal fluid flow system around the Iheya North Knoll in the mid-Okinawa trough based on seismic reflection data. J. Volcanol. Geotherm. Res. 2012, 213–214, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Mendelson, K.S.; Cohen, M.H. The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics 1982, 47, 257–263. [Google Scholar] [CrossRef]
- Anderson, B.; Bryant, I.; Luling, M.; Spies, B.; Helbig, K. Oilfield anisotropy: Its origins and electrical characteristics. Oilfield Rev. 1994, 6, 48–56. [Google Scholar]
- Klein, J.D.; Martin, P. The petrophysics of electrically anisotropic reservoirs. Log Anal. 1997, 38, 25–36. [Google Scholar]
- Yu, L.; Edwards, R. The detection of lateral anisotropy of the ocean floor by electromagnetic methods. Geophys. J. Int. 1992, 108, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Newman, G.A.; Commer, M.; Carazzone, J.J. Imaging CSEM data in the presence of electrical anisotropy. Geophysics 2010, 75, F51–F61. [Google Scholar] [CrossRef]
- Li, Y.; Dai, S. Finite element modelling of marine controlled-source electromagnetic responses in two-dimensional dipping anisotropic conductivity structures. Geophys. J. Int. 2011, 185, 622–636. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, M.J. The role of vertical anisotropy in interpreting marine controlled-source electromagnetic data. In Proceedings of the 2005 SEG Annual Meeting, Houston, TX, USA, 6–11 November 2005. [Google Scholar]
- Jaysaval, P.; Shantsev, D.V.; de Ryhove, S.d.l.K.; Bratteland, T. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner. Geophys. J. Int. 2016, 207, 1554–1572. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Hu, X.; Chen, B.; Li, J. 3-D Marine controlled-source electromagnetic modeling in electrically anisotropic formations using scattered scalar–vector potentials. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1500–1504. [Google Scholar] [CrossRef]
- Davydycheva, S.; Frenkel, M.A. The impact of 3D tilted resistivity anisotropy on marine CSEM measurements. Lead. Edge 2013, 32, 1374–1381. [Google Scholar] [CrossRef]
- Gehrmann, R.; Haroon, A.; Morton, M.; Djanni Minshull, T. Seafloor massive sulphide exploration using deep-towed controlled source electromagnetics: Navigational uncertainties. Geophys. J. Int. 2020, 220, 1215–1227. [Google Scholar] [CrossRef]
- Constable, S.; Kannberg, P.K.; Weitemeyer, K. Vulcan: A deep-towed CSEM receiver. Geochem. Geophys. Geosyst. 2016. [CrossRef] [Green Version]
- Attias, E.; Weitemeyer, K.; Hölz, S.; Naif, S.; Minshull, T.A.; Best, A.I.; Haroon, A.; Jegen-Kulcsar, M.; Berndt, C. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data. Geophys. J. Int. 2018, 214, 1701–1714. [Google Scholar] [CrossRef]
- Pek, J.; Santos, F.A.M. Magnetotelluric inversion for anisotropic conductivities in layered media. Phys. Earth Planet. Inter. 2006, 158, 139–158. [Google Scholar] [CrossRef]
- Ward, S.; Hohmann, G. Electromagnetic Methods in Applied Geophysics Vol. I. Investigations in Geophysics; SEG: Tulsa, OK, USA, 1988. [Google Scholar]
- Lynch, D.R.; Paulsen, K.D. Origin of vector parasites in numerical Maxwell solutions. IEEE Trans. Microw. Theory Tech. 1991, 39, 383–394. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Jin, J. The Finite Element Method in Electromagnetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Ansari, S.; Farquharson, C.G. 3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids. Geophysics 2014, 79. [Google Scholar] [CrossRef]
- Si, H. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. (TOMS) 2015, 41, 11. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems; Siam: University City, PA, USA, 2003. [Google Scholar]
- Hunziker, J.; Thorbecke, J.; Slob, E. The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem. Geophysics 2014, 80, F1–F18. [Google Scholar] [CrossRef] [Green Version]
- Boyce, R.E. Electrical resistivity of modern marine sediments from the Bering Sea. J. Geophys. Res. 1968, 73, 4759–4766. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.; Han, B.; Hu, X. Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals 2020, 10, 457. https://doi.org/10.3390/min10050457
Peng R, Han B, Hu X. Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals. 2020; 10(5):457. https://doi.org/10.3390/min10050457
Chicago/Turabian StylePeng, Ronghua, Bo Han, and Xiangyun Hu. 2020. "Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy" Minerals 10, no. 5: 457. https://doi.org/10.3390/min10050457
APA StylePeng, R., Han, B., & Hu, X. (2020). Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals, 10(5), 457. https://doi.org/10.3390/min10050457