Mineralogy and Geochemistry of Sr-Bearing Phosphates from the Nanping No. 31 Pegmatite (SE China): Implications for Sr Circulation and Post-Magmatic Processes in Granitic Systems
Abstract
:1. Introduction
2. Geological Background and Sampling
3. Analytic Methods
3.1. Electron Microprobe Analyses
3.2. MC-ICP-MS Isotopic Analyses
4. Results
4.1. Chemical Compositions of “Primary Sr Minerals”
4.2. Petrography and Chemical Compositions of Sr Minerals
4.2.1. Palermoite Li2SrAl4(PO4)4(OH)4
4.2.2. Goyazite SrAl3(PO4)2(OH)5∙H2O
4.2.3. Strontiohurlbutite SrBe2(PO4)2
4.3. Petrography and Chemical Compositions of Sr-Rich Minerals
4.3.1. Apatites Ca5(PO4)3(F,OH)
4.3.2. Hurlbutite CaBe2(PO4)2
4.3.3. Bertossaite Li2CaAl4(PO4)4(OH)4
4.3.4. Fluorarrojadite-(BaNa) BaNa2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(F,OH)2
4.3.5. Crandallite CaAl3(PO4)2(OH)5∙H2O
4.4. Isotopic Features of 87Sr/86
5. Discussion
5.1. Crystal–Chemical Features of Strontium in Pegmatic Systems
5.2. Geochemical Sr Recirculation in the Nanping No. 31 Pegmatite
5.3. Source of Sr in the Nanping No. 31 Pegmatite
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kreen, E.; Finger, F. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. Am. Mineral. 2004, 89, 1323–1329. [Google Scholar] [CrossRef]
- Walkeri, R.J.; Hanson, G.N.; Papike, J.J. Trace element constraints on pegmatite genesis: Tin Mountain pegmatite, Black Hills, South Dakota. Contrib. Mineral. Petrol. 1989, 101, 290–300. [Google Scholar] [CrossRef]
- Charoy, B.; Chaussidon, M.; Carlier De Veslud, C.L.; Duthou, J.L. Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): An in-situ ion and electron probe study of secondary Sr-rich phosphates. Contrib. Mineral. Petrol. 2003, 145, 673–690. [Google Scholar] [CrossRef]
- Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L. Origin of the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Evidence from Regional Pb and Sr Isotope Sources. Econ. Geol. 2004, 99, 1533–1553. [Google Scholar] [CrossRef]
- Romer, R.L.; Heinrich, W. Transport of Pb and Sr in leaky aquifers of the Bufa del Diente contact metamorphic aureole, north-east Mexico. Contrib. Mineral. Petrol. 1998, 131, 155–170. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. The mineralogy of Ba- and Zr-rich pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): Comparison between potassic and sodic agpaitic pegmatites. Contrib. Mineral. Petrol. 2002, 143, 93–114. [Google Scholar] [CrossRef]
- Pace, M.N.; Mayes, M.A.; Jardine, P.M.; McKay, L.D.; Yin, X.L.; Mehlhorn, T.L.; Liu, Q.; Gurleyuk, H. Transport of Sr2+ and SrEDTA2− in partially-saturated and heterogeneous sediments. J. Contam. Hydrol. 2007, 91, 267–287. [Google Scholar] [CrossRef]
- Lerouge, C.; Gaucher, E.C.; Tournassat, C.; Negrel, P.; Crouzet, C.; Guerrot, C.; Gautier, A.; Michel, P.; Vinsot, A.; Buschaert, S. Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin, France): A new sequential extraction procedure. Geochim. Cosmochim. Acta. 2010, 74, 2926–2942. [Google Scholar] [CrossRef] [Green Version]
- Shelton, K.L.; Gregg, J.M.; Johnson, A.W. Replacement Dolomites and Ore Sulfides as Recorders of Multiple Fluids and Fluid Sources in the Southeast Missouri Mississippi Valley-Type District: Halogen-87Sr/86Sr-δ18O-δ34S Systematics in the Bonneterre Dolomite. Econ. Geol. 2009, 104, 733–748. [Google Scholar] [CrossRef]
- Kovách, A.; Balogh, K. On the geochemistry of strontium in tertiary igneous rocks of the Tokaj Mountains. Tschermaks Miner. u Petrogr Mitt. 1969, 18, 15–88. [Google Scholar] [CrossRef]
- Noll, W. Geochemie des Strontiums. Chemied Erde 1984, 8, 507. [Google Scholar]
- Clark, G.S.; Černý, P. Radiogenic 87Sr, its mobility and the interpretation of Rb/Sr fractionation trends in rare-element granitic pegmatites. Geochim. Cosmochim. Acta. 1987, 51, 1011–1018. [Google Scholar] [CrossRef]
- Moore, P.B. Pegmatite minerals of P(V) and B(III). In Granitic Pegmatites in Science and Industry; Černý, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 1982; pp. 267–291. [Google Scholar]
- Černý, P.; Meintzer, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Can. Mineral. 1985, 23, 381–421. [Google Scholar]
- Davidson, J. Strontium in igneous rocks. In Encyclopedia of Earth Science Geochemistry; Kluwer Academic Publishers: Berlin, Germany, 1998. [Google Scholar]
- Ruiz, J.; Jones, L.M.; Kelly, W.C. Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing minerals. Geology 1984, 12, 259–262. [Google Scholar] [CrossRef]
- Föster, H.J.; Tischendorf, G.; Trumbull, R.B.; Gottesmann, B. Late-collisional granites in the Variscan Erzgebirge. Germany. J. Petrol. 1999, 40, 1613–1645. [Google Scholar] [CrossRef]
- Chen, J.F.; Jahn, B.M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tec-Tonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y.H. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana. Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Ni, Y.X.; Guo, Y.Q.; Qiu, N.M.; Chen, C.H.; Cai, C.F.; Zhang, Y.P.; Liu, J.B.; Chen, Y.X. Rock-forming and ore-forming characteristics of the Xikeng granitic pegmatites in Fujian Province. Mineral. Deposits 1987, 6, 10–21, (In Chinese with English Abstract). [Google Scholar]
- Wan, Y.S.; Liu, D.Y.; Xu, M.H.; Zhuang, J.M.; Song, B.; Shi, Y.R.; Du, L.L. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res. 2007, 12, 166–183. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hu, H.; Zhang, W.L. Complex internal texture in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China. Can. Mineral. 2009, 47, 1195–1212. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hu, H. Paragenetic assemblages of beryllium silicates and phosphates from the Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern china. Can. Mineral. 2011, 49, 1175–1187. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hatert, F.; Baijot, M. Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. Eur. J. Mineral. 2014, 26, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Q.; Ni, Y.X.; Wang, L.B.; Wang, W.Y.; Zhang, Y.P.; Chen, C.H. Nanpingite, a new cesium mineral. Acta Petrol. Mineral. Sin. 1988, 7, 49–58, (In Chinese with English Abstract). [Google Scholar]
- Rao, C.; Wang, R.C.; Hatert, F.; Gu, X.P.; Ottolini, L.; Hu, H.; Dong, C.W.; Dal Bo, F.; Baijot, M. Strontiohurlbutite, SrBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China. Am. Mineral. 2014, 99, 494–499. [Google Scholar] [CrossRef]
- Rao, C.; Hatert, F.; Wang, R.C.; Gu, X.P.; Dal Bo, F.; Dong, C.W. Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China. Mineral. Mag. 2015, 79, 1195–1202. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Wang, W.Y.; Lin, G.X.; Zhu, J.H.; Chen, C.H. Study on the potash feldspars from the Granitic Pegmatites in Nanping, Fujian Province. Geol. Fujian 2003, 22, 1–12. (In Chinese) [Google Scholar]
- Blundy, J.D.; Wood, B.J. Crystal-chemical control on the partitioning of Ba and Sr between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochim. Cosmochim. Acta. 1991, 55, 193–209. [Google Scholar] [CrossRef]
- Belousova, E.A.; Walters, S.; Griffin, W.L.; O’Reilly, S.Y. Trace-element signatures of apatites in granitoids from the Mt. Isla Inlier, northwestern Queensland. Aust. J. Earth Sci. 2001, 48, 603–619. [Google Scholar] [CrossRef]
- Mrose, M.E. Palermoite and goyazite, two strontium minerals from the Palermo mine, North Groton, New Hampshire. (Abstract from the 33rd annual meeting of the Mineralogical Society of America). Am. Mineral. 1953, 38, 354. [Google Scholar]
- Rao, C.; Wang, R.C.; Yang, Y.Q.; Hatert, F.; Xia, Q.K.; Yu, X.G.; Wang, W.M.Y. Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geol. Rev. 2017, 91, 864–876. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, J.Y.; Zhang, H.; Cai, D.W.; Lv, Z.H.; Liu, Y.L.; Zhang, X. Precise columbite-(Fe) and zircon U-Pb dating of the Nanping No. 31 pegmatite vein in northeastern Cathaysia Block, SE China. Ore Geol. Rev. 2017, 83, 300–311. [Google Scholar] [CrossRef]
- Villa, I.M.; De Bièvre, P.; Holden, N.; Renne, P. IUPAC-IUGS recommendation on the half-life of 87Rb. Geochim. Cosmochim. Acta 2015, 164, 382–385. [Google Scholar] [CrossRef]
- Pedersen, S.; Larsen, O.; Hald, N.; Campsie, J.; Bailey, J.C. Strontium isotope and lithophile element values from the submarine Jan Mayen province. Bull. Geol. Soc. Denmark 1976, 25, 15–20. [Google Scholar]
- Simmons, E.C. Strontium: Element and geochemistry. In Encyclopedia of Earth Sciences Geochemistry; Kluwer Academic Publishers: Berlin, Germany, 1998. [Google Scholar]
- Icenhower, J.; London, D. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. Am. Mineral. 1996, 81, 719–734. [Google Scholar] [CrossRef]
- Shmakin, B.M. Composition and structural state of K-feldspars from some U.S. Pegmatites. Am. Mineral. 1979, 64, 49–56. [Google Scholar]
- Shearer, C.K.; Papike, J.J.; Laul, J.C. Chemistry of potassium feldspar from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution. Geochim. Cosmochim. Acta. 1985, 49, 663–673. [Google Scholar] [CrossRef]
- Ren, M.; Parker, D.F.; White, J.C. Partitioning of Sr, Ba, Rb, Y, and LREE between plagioclase and peraluminous silicic magma. Am. Mineral. 2003, 88, 1091–1103. [Google Scholar] [CrossRef]
- White, J.C.; Holt, G.S.; Parker, D.F.; Ren, M. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: Systematics of trace-element partitioning. Am. Mineral. 2003, 88, 316–329. [Google Scholar] [CrossRef]
- Liferovich, R.P.; Mitchell, R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa. Mineral. Mag. 2006, 70, 463–484. [Google Scholar] [CrossRef]
- Moëlo, Y.; Rouer, O.; Bouhnik-Le, C.M. From diagenesis to hydrothermal recrystallization: Polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Chateaux (Armorican Massif, France). Eur. J. Mineral. 2008, 20, 205–216. [Google Scholar] [CrossRef]
- Galliski, M.Á.; Černý, P.; Márquez-Zavalía, M.F.; Chapman, R. An association of secondary Al-Li-Be-Ca-Sr phosphates in the San Elías pegmatite, San Luis, Argentina. Can. Mineral. 2012, 50, 933–942. [Google Scholar] [CrossRef]
- Marks, M.; Vennemann, T.; Siebel, W.; Markl, G. Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. J. Petrol. 2003, 44, 1247–1280. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Borst, A.M.; Waight, T.E.; Finch, A.A.; Storey, M.; Roux, P.J.L. Dating agpaitic rocks: A multi-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland. Lithos 2019, 324–325, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Raimbault, L.; Cuney, M.; Azencott, C.; Duthou, J.L.; Joron, J.L. Geochemical evidence of a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite of Beauvoir, French Massif Central. Econ. Geol. 1995, 90, 548–576. [Google Scholar] [CrossRef]
- Clark, G.S. Rubidium-Strontium isotope systematics of complex granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Short course handbook. Mineral. Assoc. Can. 1982, 8, 347–371. [Google Scholar]
Chemical Formula | Mineral Name | Magmatic → Hydrothermal | Zone | ||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||||
SiO2 | Quartz | ○ | ○ | ○ | ○ | ○ | |||
NaAlSi3O8 | Albite | √ | √ | √ | ○ | # | |||
KAlSi3O8 | K-feldspar | ○ | ○ | ||||||
KAl2(AlSi3O10)(OH)2 | Muscovite | √ | ○ | ○ | ○ | # | |||
Ca5(PO4)3(F,OH) | Apatites | ○ | ○ | # | # | ○ | |||
LiAl(PO4)(OH,F) | Montebrasite | # | ○ | √ | |||||
LiFe(PO4) | Triphylite | # | # | ||||||
MgAl2(PO4)2(OH)2 | Lazulite | ○ | √ | ||||||
SrLi2Al4(PO4)4(OH)4 | Palermoite | # | ○ | √ | # | ||||
CaLi2Al4(PO4)4(OH)4 | Bertossaite | ○ | √ | ||||||
SrAl3(PO4)2(OH)5∙(H2O) | Goyazite | # | # | # | |||||
CaAl3(PO4)2(OH)5∙(H2O) | Crandallite | # | |||||||
CaBe2(PO4)2 | Hurlbutite | # | # | # | |||||
SrBe2(PO4)2 | Strontiohurlbutite | # | # | # | |||||
BaBe2(PO4)2 | Minjiangite | # | |||||||
BaNa2Ca(Fe2+,Mn,Mg)13 Al(PO4)11(PO3OH)(F,OH)2 | Fluorarrojadite- (BaNa) | # | # |
K-Feldspar | Albite | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zone IV | Zone V | Primary | Secondary | |||||||||
SiO2 | 64.08 | 63.62 | 63.75 | 63.00 | 68.70 | 67.31 | 68.52 | 67.93 | ||||
Al2O3 | 18.75 | 18.80 | 18.82 | 18.87 | 20.35 | 19.69 | 20.12 | 20.36 | ||||
K2O | 16.07 | 16.18 | 16.13 | 15.85 | 0.02 | 0.07 | 0.09 | 0.09 | ||||
Na2O | 0.35 | 0.37 | 0.24 | 0.30 | 11.45 | 11.01 | 11.29 | 11.24 | ||||
CaO | - | - | - | - | 0.05 | 0.02 | 0.02 | 0.02 | ||||
SrO | 0.02 | 0.05 | 0.06 | 0.04 | 0.01 | 0.01 | 0.10 | - | ||||
BaO | - | - | 0.20 | 0.26 | - | 0.02 | - | 0.03 | ||||
Rb2O | 1.43 | 1.50 | 1.18 | 1.25 | - | - | - | - | ||||
P2O5 | 0.15 | 0.06 | 0.10 | 0.15 | 0.08 | 0.04 | - | 0.21 | ||||
Total | 100.85 | 100.56 | 100.48 | 99.72 | 100.65 | 98.16 | 100.14 | 99.86 | ||||
Based on O = 8 | ||||||||||||
Si | 2.968 | 2.963 | 2.965 | 2.954 | 2.975 | 2.987 | 2.984 | 2.965 | ||||
Al | 1.024 | 1.032 | 1.032 | 1.043 | 1.039 | 1.030 | 1.033 | 1.047 | ||||
K | 0.950 | 0.961 | 0.957 | 0.948 | 0.001 | 0.004 | 0.005 | 0.005 | ||||
Na | 0.031 | 0.033 | 0.021 | 0.028 | 0.961 | 0.947 | 0.953 | 0.951 | ||||
Ca | 0.002 | 0.001 | 0.001 | 0.001 | ||||||||
Sr | 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 | 0.002 | |||||
Ba | 0.000 | 0.000 | 0.004 | 0.005 | 0.000 | 0.001 | ||||||
Rb | 0.043 | 0.045 | 0.035 | 0.038 | ||||||||
P | 0.006 | 0.002 | 0.004 | 0.006 | 0.003 | 0.002 | 0.008 |
Palermoite | Sr-Rich Bertossaite | Sr-Rich Apatites | Sr-Rich Hurlbutite | Goyazite | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P2O5 | 42.64 | 43.61 | 45.78 | 44.19 | 40.16 | 38.20 | 53.59 | 53.86 | 30.97 | 31.31 |
SiO2 | - | 0.45 | 0.22 | 0.20 | - | - | 0.04 | 0.00 | 0.13 | 0.12 |
CaO | 0.55 | 3.36 | 5.62 | 4.70 | 47.73 | 43.58 | 15.25 | 13.00 | 2.73 | 0.17 |
FeO | 0.24 | 0.57 | 0.19 | 0.22 | - | 0.02 | 0.03 | - | 0.02 | 0.17 |
MnO | 0.23 | 0.17 | 0.04 | 0.07 | 0.27 | 2.71 | 0.01 | - | 0.07 | - |
MgO | 0.14 | 0.22 | 0.08 | 0.11 | - | 0.01 | - | - | 0.02 | - |
TiO2 | - | 0.03 | 0.01 | 0.14 | - | 0.04 | - | - | 0.01 | 0.07 |
SrO | 12.56 | 9.21 | 4.20 | 6.37 | 8.95 | 11.78 | 11.08 | 14.01 | 15.52 | 18.96 |
BaO | - | 0.20 | 0.09 | - | - | - | 0.01 | 0.05 | 0.87 | 0.28 |
Al2O3 | 33.52 | 31.21 | 32.82 | 32.27 | - | 0.01 | 0.10 | 0.04 | 33.98 | 34.00 |
Na2O | 0.19 | 0.09 | 0.03 | 0.12 | 0.04 | - | 0.03 | - | 0.06 | 0.01 |
K2O | - | - | 0.02 | 0.03 | 0.04 | 0.04 | - | 0.01 | 0.02 | 0.02 |
F | 0.04 | 0.65 | 0.54 | 0.62 | 0.76 | 1.25 | - | 0.10 | ||
H2O | 5.39 | 5.29 | 5.58 | 5.34 | 1.34 | 1.02 | 15.35 | 15.46 | ||
Li2O * | 4.49 | 4.64 | 4.84 | 4.68 | ||||||
BeO * | 18.90 | 18.98 | ||||||||
O = 2F | −0.02 | −0.27 | −0.23 | −0.26 | −0.32 | −0.52 | −0.00 | −0.04 | ||
99.97 | 99.42 | 99.84 | 98.80 | 98.95 | 98.13 | 99.04 | 99.95 | 99.74 | 100.62 | |
P + Si = | 4 | 3 | 2 | 2 | ||||||
P | 4.000 | 3.952 | 3.978 | 3.978 | 3.000 | 3.000 | 1.998 | 2.000 | 1.990 | 1.991 |
Si | 0.048 | 0.022 | 0.022 | 0.002 | 0.000 | 0.010 | 0.009 | |||
Ca | 0.064 | 0.381 | 0.611 | 0.529 | 4.455 | 4.276 | 0.711 | 0.603 | 0.219 | 0.013 |
Fe | 0.022 | 0.051 | 0.017 | 0.020 | 0.001 | 0.001 | 0.001 | 0.011 | ||
Mn | 0.021 | 0.015 | 0.004 | 0.006 | 0.020 | 0.213 | 0.000 | 0.004 | ||
Mg | 0.023 | 0.035 | 0.012 | 0.018 | 0.001 | 0.002 | ||||
Ti | 0.002 | 0.001 | 0.011 | 0.002 | 0.001 | 0.004 | ||||
Sr | 0.807 | 0.572 | 0.250 | 0.393 | 0.458 | 0.633 | 0.283 | 0.356 | 0.683 | 0.826 |
Ba | 0.008 | 0.004 | 0.000 | 0.001 | 0.026 | 0.008 | ||||
Al | 4.377 | 3.937 | 3.970 | 4.045 | 0.000 | 0.001 | 0.005 | 0.002 | 3.039 | 3.010 |
Na | 0.042 | 0.018 | 0.007 | 0.025 | 0.006 | 0.002 | 0.009 | 0.001 | ||
K | 0.003 | 0.004 | 0.004 | 0.005 | 0.001 | 0.002 | 0.002 | |||
Li | 2.000 | 2.000 | 2.000 | 2.000 | ||||||
Be | 2.000 | 2.000 | ||||||||
F | 0.014 | 0.219 | 0.174 | 0.207 | 0.212 | 0.366 | 0.023 | |||
OH | 3.986 | 3.781 | 3.826 | 3.793 | 0.788 | 0.634 | 5.000 | 4.977 |
Sample | 84Sr/86 (±2SD) | 84Sr/88 (±2SD) | 87Rb/86 (±2SD) | 87Sr/86 (±2SD) | (87Sr/86)i |
---|---|---|---|---|---|
P-Apt | 0.0563(6) | 0.00673(7) | 0.0007(1) | 0.72598(10) | 0.72598 |
P-Apt | 0.0565(9) | 0.00674(11) | 0.0002(0) | 0.72669(24) | 0.72669 |
P-Apt | 0.0567(8) | 0.00677(9) | 0.0015(1) | 0.72625(16) | 0.72624 |
P-Apt | 0.0569(13) | 0.00679(16) | 0.0005(0) | 0.72608(14) | 0.72608 |
S-Apt | 0.05640(1) | 0.00674(2) | 0.0062(7) | 0.72854(4) | 0.72851 |
S-Apt | 0.05667(3) | 0.00677(4) | 0.0264(33) | 0.73224(7) | 0.73210 |
S-Apt | 0.0563(11) | 0.00672(13) | 0.0012(1) | 0.73157(16) | 0.73156 |
S-Apt | 0.0565(9) | 0.00674(10) | 0.0064(6) | 0.72747(15) | 0.72744 |
S-Apt | 0.0561(11) | 0.00670(13) | 0.0020(2) | 0.72849(14) | 0.72848 |
S-Apt | 0.0567(7) | 0.00677(9) | 0.0017(1) | 0.72900(14) | 0.72899 |
S-Apt | 0.0564(6) | 0.00673(8) | 0.0002(0) | 0.72806(12) | 0.72806 |
S-Apt | 0.0566(1) | 0.00675(1) | 0.0000(0) | 0.73357(4) | 0.73357 |
S-Apt | 0.0565(1) | 0.00675(1) | 0.0000(0) | 0.72954(4) | 0.72954 |
S-Apt | 0.0564(1) | 0.00674(1) | 0.0000(0) | 0.72990(3) | 0.72990 |
S-Apt | 0.0565(1) | 0.00675(2) | 0.0000(0) | 0.73366(5) | 0.73366 |
S-Apt | 0.0565(1) | 0.00674(1) | 0.0000(0) | 0.72869(5) | 0.72869 |
S-Apt | 0.0565(0) | 0.00675(1) | 0.0000(0) | 0.72891(2) | 0.72891 |
Srh | 0.0565(0) | 0.0067(1) | 0.0046(11) | 0.73060(3) | 0.73058 |
Srh | 0.0565(1) | 0.00675(1) | 0.0071(4) | 0.72992(5) | 0.72988 |
Bts | 0.0560(5) | 0.00668(5) | 0.0001(0) | 0.72552(9) | 0.72552 |
Bts | 0.0563(3) | 0.00672(3) | 0.0000(0) | 0.72605(6) | 0.72605 |
Bts | 0.0564(2) | 0.00673(3) | 0.0000(0) | 0.72594(6) | 0.72594 |
Bts | 0.0559(3) | 0.00668(4) | 0.0001(0) | 0.72543(7) | 0.72543 |
Bts | 0.0563(5) | 0.00672(6) | 0.0000(0) | 0.72564(12) | 0.72564 |
Bts | 0.0564(1) | 0.00674(1) | 0.0000(0) | 0.72849(3) | 0.72849 |
Plm | 0.0562(9) | 0.00671(11) | 0.0212(6) | 0.73320(20) | 0.73309 |
Plm | 0.0564(11) | 0.00674(13) | 0.0490(26) | 0.73415(21) | 0.73389 |
Plm | 0.0564(12) | 0.00674(14) | 0.0743(20) | 0.73488(26) | 0.73448 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, C.; Wang, R.-C.; Hatert, F.; Wu, R.-Q.; Wang, Q. Mineralogy and Geochemistry of Sr-Bearing Phosphates from the Nanping No. 31 Pegmatite (SE China): Implications for Sr Circulation and Post-Magmatic Processes in Granitic Systems. Minerals 2020, 10, 541. https://doi.org/10.3390/min10060541
Rao C, Wang R-C, Hatert F, Wu R-Q, Wang Q. Mineralogy and Geochemistry of Sr-Bearing Phosphates from the Nanping No. 31 Pegmatite (SE China): Implications for Sr Circulation and Post-Magmatic Processes in Granitic Systems. Minerals. 2020; 10(6):541. https://doi.org/10.3390/min10060541
Chicago/Turabian StyleRao, Can, Ru-Cheng Wang, Frédéric Hatert, Run-Qiu Wu, and Qi Wang. 2020. "Mineralogy and Geochemistry of Sr-Bearing Phosphates from the Nanping No. 31 Pegmatite (SE China): Implications for Sr Circulation and Post-Magmatic Processes in Granitic Systems" Minerals 10, no. 6: 541. https://doi.org/10.3390/min10060541
APA StyleRao, C., Wang, R. -C., Hatert, F., Wu, R. -Q., & Wang, Q. (2020). Mineralogy and Geochemistry of Sr-Bearing Phosphates from the Nanping No. 31 Pegmatite (SE China): Implications for Sr Circulation and Post-Magmatic Processes in Granitic Systems. Minerals, 10(6), 541. https://doi.org/10.3390/min10060541