Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays
Abstract
:1. Introduction
1.1. Appalachian Basin
1.2. Study Units
2. Methods
2.1. Bulk Geochemical Composition
2.2. XRD
2.3. Microscopy and Microanalysis
3. Results
3.1. Carbon and Sulfur Geochemistry
3.2. Bulk REE Geochemistry
3.3. Semi-Quantitative XRD Results
3.4. REE Mineral Phases in Appalachian Basin Underclays
3.5. 2D Areal Extent of Mineral Phases in Appalachian Basin Underclays
3.6. 3D Volumetric Reconstructions
3.7. Electron Microprobe Results
3.8. Synchrotron Results
4. Discussion
4.1. Modes of Occurrence for the REE
4.2. Limitations and Utility to 2D and 3D Reconstructions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. U.S. Department of Energy Critical Materials Strategy; USDOE: Washington, DC, USA, 2010. [CrossRef] [Green Version]
- Long, K.; Van Gosen, B.; Foley, N.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. In Non-Renewable Resource Issues; Springer: Berlin/Heidelberg, Germany, 2012; pp. 131–155. [Google Scholar] [CrossRef]
- Pulidindi, K.; Pandey, H. Rare Earth Metals Market Size By Metal (Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Promethium, Samarium, Scandium, Terbium, Thulium, Ytterbium, Yttrium), By Applications (Magnets, Colorants, Alloys, Optical Instruments, Catalysts), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2017–2024. Global Market Insights. 2017. Available online: https://www.gminsights.com/industry-analysis/rare-earth-metals-market?utm_source=globenewswire.com&utm_medium=referral&utm_campaign=Paid_Globnewswire (accessed on 11 March 2020).
- Ganguli, R.; Cook, D.R. Rare Earths: A Review of the Landscape. MRS Energy Sustain. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, G.; Papangelakis, V. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117–118, 71–78. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 91–114. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Rare Earths Mineral Commodity Summaries/Minerals Yearbook, Various Issues. 2020. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/ (accessed on 11 March 2020).
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; 839p, ISBN 9781466576346. [Google Scholar]
- Rozelle, P.; Khadikar, A.; Pulati, N.; Soundarrajan, N.; Klima, M.; Mosser, M.; Miller, C.; Pisupati, S. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange. Metall. Mater. Trans. E 2016, 3, 6–17. [Google Scholar] [CrossRef]
- Yang, X.; Werner, J.; Honaker, R. Leaching of rare earth elements from an Illinois basin coal source. J. Rare Earths 2019, 37, 312–321. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Appalachian Region Independent Power Producers Association (ARIPPA). Coal Refuse Whitepaper. 2018. Available online: https://arippa.org/wp-content/uploads/2018/12/ARIPPA-Coal-Refuse-Whitepaper-with-Photos-10_05_15.pdf (accessed on 2 April 2019).
- Ettensohn, F.R. The Catskill delta complex and the Acadian orogeny: A model. In The Catskill delta: Geological Society of America Special Paper 201; GeoScienceWorld: McLean, VA, USA, 1985; Volume 201, pp. 39–50. [Google Scholar] [CrossRef]
- Cecil, C.B.; Stanton, R.W.; Neuzil, S.G.; Dulong, F.T.; Ruppert, L.F.; Pierce, B.S. Paleoclimate controls on late Paleozoic sedimentation and peat formation in the Central Appalachian Basin (U.S.A.). Int. J. Coal Geol. 1985, 5, 195–230. [Google Scholar] [CrossRef]
- Montross, S.N.; Yang., J.; Britton, J.; McKoy, M.; Verba, C.A. Leaching of ionically bound rare earth elements from Central Appalachian coal seam underclays. Manuscript in preparation.
- Poppe, L.J.; Paskevich, V.F.; Hathway, J.C.; Blackwood, D.S. A Laboratory Manual for X-Ray Powder Diffraction; USGS Open-File Report 2001-41; USGS: Reston, VA, USA, 2001. [CrossRef]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B Atomic Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Webb, S. SMAK: Sam’s MicroAnalysis Toolkit; Stanford Synchrotron Radiation Lightsource: Stanford, CA, USA, 2016. [Google Scholar]
- Stuckman, M.Y.; Lopano, C.L.; Granite, E.J. Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy. Int. J. Coal Geol. 2018, 195, 125–138. [Google Scholar] [CrossRef]
- Seredin, V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar] [CrossRef]
- Lin, R.; Bank, T.; Roth, E.; Granite, E.; Soong, Y. Organic and inorganic associations of rare earth elements in central Appalachian coal. Int. J. Coal Geol. 2017, 179, 295–301. [Google Scholar] [CrossRef]
- Byrne, R.; Sholkovitz, E. Chapter 158 Marine chemistry and geochemistry of the lanthanides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 23, pp. 497–593. [Google Scholar]
- Sholkovitz, E. Rare-earth elements in marine sediments and geochemical standards. Chem. Geol. 1990, 88, 333–347. [Google Scholar] [CrossRef]
- Yu, C.; Drake, H.; Mathurin, F.A.; Åström, M.E. Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals. Geochim. Cosmochim. Acta 2017, 199, 370–389. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H. Europium retention onto clay minerals from 25 to 150 C: Experimental measurements, spectroscopic features and sorption modelling. Geochim. Cosmochim. Acta 2006, 70, 4563–4578. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, K.; Lyons, W.; Yelken, M.; Gaudette, H.; Stetzenbach, K. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and rare-earth element enrichments. Chem. Geo. 1996, 133, 125–144. [Google Scholar] [CrossRef]
Sample Designation | Associated Coal Seam | Location |
---|---|---|
UC-01 | Lower Freeport | Ritchie Co., WV |
UC-02 | Middle Kittanning | Ritchie Co., WV |
UC-03 | Pittsburgh | Ritchie Co., WV |
UC-04 | 5 Block Coal | Kanawha Co., WV |
UC-05 | 5 Block Coal | Kanawha Co., WV |
UC-06 | Lower Freeport | Barbour Co., WV |
UC-07 | Pittsburgh | Clearfield/Centre Co., PA |
UC-08 | Brookville | Clearfield/Centre Co., PA |
Sample Designation | Associated Coal Seam | Total C | Organic C | Inorganic C | Total S |
---|---|---|---|---|---|
wt% | wt% | wt% | wt% | ||
UC-01 | Lower Freeport | 0.68 | 0.54 | 0.14 | 1.67 |
UC-02 | Middle Kittanning | 2.28 | 1.87 | 0.41 | 0.13 |
UC-03 | Pittsburgh | 0.39 | 0.33 | 0.06 | 0.01 |
UC-04 | 5 Block Coal | 5.56 | 5.41 | 0.16 | 0.05 |
UC-05 | 5 Block Coal | 0.74 | 0.65 | 0.09 | 0.23 |
UC-06 | Lower Freeport | 1.31 | 0.12 | 1.19 | 0.20 |
UC-07 | Pittsburgh | 1.25 | 1.01 | 0.24 | 0.71 |
UC-08 | Brookville | 0.61 | 0.43 | 0.18 | 0.03 |
Sample Designation | Associated Coal Seam | REE ** | LREE ** | MREE ** | HREE |
---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ||
UC-01 * | Lower Freeport | 304 | 226 | 66 | 12 |
UC-02 * | Middle Kittanning | 352 | 270 | 71 | 11 |
UC-03 * | Pittsburgh | 262 | 182 | 70 | 10 |
UC-04 | 5 Block Coal | 235 | 179 | 47 | 9 |
UC-05 | 5 Block Coal | 296 | 238 | 48 | 9 |
UC-06 * | Lower Freeport | 277 | 221 | 48 | 8 |
UC-07 | Pittsburgh | 261 | 193 | 58 | 10 |
UC-08 | Brookville | 399 | 308 | 79 | 13 |
Sample ID | Associated Coal Seam | CLAYS | NON-CLAYS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Halloysite | Kaolinite | Smectite | Illite | Qtz | Kspar | Plag | Calcite | Ilmenite | ||
UC-01 * | Lower Freeport | Mn | In | Mn | Mn | Tr | Tr | Mn | Mn | |
UC-02 * | Middle Kittanning | Mn | Mn | Mn | Mn | Mn | Tr | Tr | In | Tr |
UC-03 * | Pittsburgh | In | Mn | Mn | Tr | Tr | Mn | Mn | ||
UC-04 | 5 Block Coal | Mn | Mn | Mn | Mn | Mn | Tr | Tr | Mn | Tr |
UC-05 | 5 Block Coal | Mn | Mn | In | Mn | Tr | Tr | Tr | Tr | Tr |
UC-06 * | Lower Freeport | Mn | Mn | Mn | Mn | Tr | Tr | In | Tr | |
UC-07 | Pittsburgh | Mn | Mn | Mn | Ma | Tr | Tr | |||
UC-08 | Brookville | Mn | Mn | Mn | Ma | Tr | Tr |
Sample Designation | Associated Coal Seam | Total Area Scanned | Pores/OM | Matrix | High-Density Minerals |
---|---|---|---|---|---|
mm2 | Areal % | ||||
UC-01 | Lower Freeport | 25 | 15 | 84 | 1 |
UC-02 | Middle Kittanning | 9.2 | 3 | 96 | 1 |
UC-03 | Pittsburgh | 6.7 | 19 | 81 | 0.2 |
UC-04 | 5 Block Coal | 3.8 | 10 | 89 | 1 |
UC-05 | 5 Block Coal | 2.4 | 3 | 97 | 0.2 |
UC-06 | Lower Freeport | 44 | 2 | 81 | 17 |
UC-07 | Pittsburgh | 98 | 17 | 79 | 4 |
UC-08 | Brookville | 8.9 | 11 | 86 | 3 |
Sample Designation | Associated Coal Seam | Total Volume | Pores/OM | Matrix | High-Density Minerals |
---|---|---|---|---|---|
µm3 | Volume % | ||||
UC-01 | Lower Freeport | 13,429 | 1 | 98 | 0.6 |
UC-02 | Middle Kittanning | 13,537 | 20 | 60 | 20 |
UC-03 | Pittsburgh | 4622 | 6 | 92.0 | 2 |
UC-04 | 5 Block Coal | N/R | |||
UC-05 | 5 Block Coal | 8510 | 0.2 | 99 | 0.7 |
UC-06 | Lower Freeport | 2189 | 0.7 | 97 | 2 |
UC-07 | Pittsburgh | 12,158 | 3 | 96 | 2 |
UC-08 | Brookville | 4305 | 0.3 | 99 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Montross, S.; Britton, J.; Stuckman, M.; Lopano, C.; Verba, C. Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays. Minerals 2020, 10, 546. https://doi.org/10.3390/min10060546
Yang J, Montross S, Britton J, Stuckman M, Lopano C, Verba C. Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays. Minerals. 2020; 10(6):546. https://doi.org/10.3390/min10060546
Chicago/Turabian StyleYang, Jon, Scott Montross, Jim Britton, Mengling Stuckman, Christina Lopano, and Circe Verba. 2020. "Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays" Minerals 10, no. 6: 546. https://doi.org/10.3390/min10060546
APA StyleYang, J., Montross, S., Britton, J., Stuckman, M., Lopano, C., & Verba, C. (2020). Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays. Minerals, 10(6), 546. https://doi.org/10.3390/min10060546