Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea)
Abstract
:1. Introduction
2. Materials and Analytical Methods
3. Results
3.1. Seafloor Morphology, ROV Visual Description and Macroscopic Description of Hydrothermal Deposits
3.2. Petrography
3.3. Major and Trace Element Geochemistry of Rhyolite Clasts
3.3.1. Major Element Geochemistry
3.3.2. Trace Element Geochemistry
4. Discussion
4.1. Relationships Between ZGP-Rhyolite Clasts and Rhyolites of Western Pontine Islands
4.2. Geochemical and Mineralogical Evidence of Hydrothermal Mineralization and Alteration Products at the ZGP
4.3. Geochemical Indicators of Proximity to a Possible VHMS Deposit
4.4. Implication for the ZGP Hydrothermal System
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- De Ronde, C.E.J.; Hannington, M.D.; Stoffers, P.; Wright, I.C.; Ditchburn, R.G.; Reyes, A.G.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Walker, S.L.; et al. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec Arc, New Zealand. Econ. Geol. 2005, 100, 1097–1133. [Google Scholar] [CrossRef]
- Hannington, M.D.; De Ronde, C.E.J.; Petersen, S. Sea-Floor Tectonics and Submarine Hydrothermal Systems. Ecol. Geol. One Hundredth Anniv. 2005, 111–141. [Google Scholar] [CrossRef]
- Peters, M.; Strauss, H.; Petersen, S.; Kummer, N.-A.; Thomazo, C. Hydrothermalism in the Tyrrhenian Sea: Inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data. Chem. Geol. 2011, 280, 217–231. [Google Scholar] [CrossRef]
- Monecke, T.; Monecke, J.; Reynolds, T.J. The Influence of CO2 on the Solubility of Quartz in Single-Phase Hydrothermal Fluids: Implications for the Formation of Stockwork Veins in Porphyry Copper Deposits. Econ. Geol. 2019, 114, 1195–1206. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, C.; Chen, C.A.; Yin, X.; Chen, D.; Wang, X.; Wang, X.; Zhang, G. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Sci. China Ser. D Earth Sci. 2007, 50, 1746–1753. [Google Scholar] [CrossRef]
- Seewald, J.S.; Reeves, E.P.; Bach, W.; Saccocia, P.J.; Craddock, P.R.; Shanks, W.C.; Sylva, S.P.; Pichler, T.; Rosner, M.; Walsh, E. Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 2015, 163, 178–199. [Google Scholar] [CrossRef] [Green Version]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- De Ronde, C.E. Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: Potential for magmatic contributions. In Magmas, Fluids, and Ore Deposits; Thompson, J.F.H., Ed.; Mineralogical Association of Canada Short Course Series: Ottawa, ON, USA, 1995; pp. 479–509. [Google Scholar]
- Heinrich, C.A.; Halter, W.; Landtwing, M.R.; Pettke, T. The formation of economic porphyry copper (-gold) deposits: Constraints from microanalysis of fluid and melt inclusions. Geol. Soc. Lond. Spec. Publ. 2005, 248, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Scott, S.D. Magmatic fluids as a source of metals in seafloor hydrothermal systems. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 2006, 166, 163–184. [Google Scholar]
- Yang, K.; Scott, S.D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 1996, 383, 420–423. [Google Scholar] [CrossRef]
- Yang, K. Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific. Econ. Geol. 2002, 97, 1079–1100. [Google Scholar] [CrossRef]
- Cadoux, A.; Pinti, D.L.; Aznar, C.; Chiesa, S.; Gillot, P.Y. New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola Volcanic Islands (Tyrrhenian Sea, Italy). Lithos 2005, 81, 121–151. [Google Scholar] [CrossRef]
- Conte, A.M.; Dolfi, D. Petrological and geochemical characteristics of Plio-Pleistocene volcanics from Ponza Island (Tyrrhenian sea, Italy). Mineral. Petrol. 2002, 74, 75–94. [Google Scholar]
- Di Bella, L.; Ingrassia, M.; Frezza, V.; Chiocci, F.L.; Martorelli, E. The response of benthic meiofauna to hydrothermal emissions in the Pontine Archipelago, Tyrrhenian Sea (central Mediterranean Basin). J. Mar. Syst. 2016, 164, 53–66. [Google Scholar] [CrossRef]
- Ingrassia, M.; Martorelli, E.; Bosman, A.; Macelloni, L.; Sposato, A.; Chiocci, F.L. The Zannone Giant Pockmark: First evidence of a giant complex seeping structure in shallow-water, central Mediterranean Sea, Italy. Mar. Geol. 2015, 363, 38–51. [Google Scholar] [CrossRef]
- Martorelli, E.; Italiano, F.; Ingrassia, M.; Macelloni, L.; Bosman, A.; Conte, A.M.; Beaubien, S.E.; Graziani, S.; Sposato, A.; Chiocci, F.L. Evidence of a shallow water submarine hydrothermal field off Zannone Island from morphological and geochemical characterization: Implications for Tyrrhenian Sea Quaternary volcanism. J. Geophys. Res. Solid Earth 2016, 121, 8396–8414. [Google Scholar] [CrossRef]
- Peltier, W.R.; Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 2006, 25, 3322–3337. [Google Scholar] [CrossRef]
- ZHF CRUISE. Campagna Oceanografica ZHF 2017; Responsabile Scientifico: Eleonora Martorelli; CNR-IGAG Roma: Roma, Italy, 2017. [Google Scholar]
- Italiano, F.; Romano, D.; Caruso, C.; Longo, M.; Corbo, A.; Lazzaro, G. Magmatic Signature in Submarine Hydrothermal Fluids Vented Offshore Ventotene and Zannone Islands (Pontine Archipelago, Central Italy). Geofluids 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Riverin, G.; Hodgson, C.J. Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec. Econ. Geol. 1980, 75, 424–444. [Google Scholar] [CrossRef]
- Large, R.R.; Allen, R.L.; Blake, M.D.; Herrmann, W. Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, Western Tasmania. Econ. Geol. 2001, 96, 1055–1072. [Google Scholar] [CrossRef]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The Alteration Box Plot: A Simple Approach toUnderstanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Paulick, H. Alteration of Felsic Volcanics Hosting the Thalanga Massive Sulfide Deposit (Northern Queensland, Australia) and Geochemical Proximity Indicators to Ore. Econ. Geol. 2001, 96, 1175–1200. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sawaguchi, T.; Iwaya, S.; Horiachi, M. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Min. Geol. 1976, 26, 105–117. [Google Scholar]
- Conte, A.M.; Dolfi, D. Note Illustrative e Carta Geologica in Scala 1:50.000 Delle Aree Marine del Foglio 413 Borgo Grappa; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy. Geochim. Cosmochim. Acta 2003, 67, 275–288. [Google Scholar] [CrossRef]
- Conte, A.M.; Perinelli, C.; Bianchini, G.; Natali, C.; Martorelli, E.; Chiocci, F.L. New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy). J. Volcanol. Geotherm. Res. 2016, 327, 223–239. [Google Scholar] [CrossRef]
- Spitz, G.; Darling, R. Major and minor element lithogeochemical anomalies surrounding the Louvem copper deposit, Val d’Or, Quebec. Can. J. Earth Sci. 1978, 15, 1161–1169. [Google Scholar] [CrossRef]
- Piercey, S.J.; Squires, G.C.; Brace, T.D. Lithostratigraphic, hydrothermal, and tectonic setting of the Boundary volcanogenic massive sulfide deposit, Newfoundland appalachians, Canada: Formation by subseafloor replacement in a Cambrian rifted arc. Econ. Geol. 2014, 109, 661–687. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Ross, P.-S.; Bédard, J.H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 2009, 46, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Shirozo, H. Clay minerals in altered wall rocks of the Kuroko-type deposits. Soc. Min. Geol. Jpn. Spec. Issue 1974, 6, 303–311. [Google Scholar]
- Shikazono, N.; Ogawa, Y.; Utada, M.; Ishiyama, D.; Mizuta, T.; Ishikawa, N.; Kubota, Y. Geochemical behavior of rare earth elements in hydrothermally altered rocks of the Kuroko mining area, Japan. J. Geochem. Explor. 2008, 98, 65–79. [Google Scholar] [CrossRef]
- Vassallo, L.F.; Aranda-Gómez, J.J.; Solorio-munguía, J.G. Hydrothermal alteration of volcanic rocks hosting the Late Jurassic-Early Cretaceous San Nicolás VMS deposit, southern Zacatecas, Mexico. Rev. Mex. Ciencias Geológicas 2015, 32, 254–272. [Google Scholar]
- McGoldrick, P.J.; Large, R.R. Geologic and geochemical controls on gold-rich stringer mineralization in the Que River Deposit, Tasmania. Econ. Geol. 1992, 87, 667–685. [Google Scholar] [CrossRef]
- Alt, J.C.; Jiang, W.-T. Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology 1991, 19, 570. [Google Scholar] [CrossRef]
- Binns, R.A.; Scott, S.D. Actively forming polymetallic sulfide de-posits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ. Geol. 1993, 88, 2226–2232. [Google Scholar] [CrossRef]
- Goodfellow, W.D.; Grapes, K.; Cameron, B.; Franklin, J.M. Hydrothermal alteration associated with massive sulfide deposits, Middle Valley, northern Juan de Fuca Ridge. Can. Mineral. 1993, 31, 1025–1060. [Google Scholar]
- Turner, R.J.W.; Ames, D.E.; Franklin, J.M.; Goodfellow, W.D.; Leitch, C.H.B.; HÖy, T. Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, northern Juan de Fuca ridge: Data from shallow cores. Can. Mineral. 1993, 31, 973–995. [Google Scholar]
- Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field. Geochim. Cosmochim. Acta 1994, 58, 2477–2494. [Google Scholar] [CrossRef]
- Honnorez, J.J.; Alt, J.C.; Humphris, S.E. Vivisection and autopsy of active and fossil hydrothermal alterations of basalt beneath and within the TAG hydrothermal mound. In Proceedings of the Ocean Drilling Program Scientific Results; Herzig, P.M., Humphris, S.E., Miller, D.J., Zierenberg, R.A., Eds.; College Station, TX (Ocean Drilling Program), National Science Foundation: Alexandria, VA, USA, 1998; Volume 158, pp. 231–254. [Google Scholar]
- Almodóvar, G.R.; Sáez, R.; Pons, J.M.; Maestre, A.; Toscano, M.; Pascual, E. Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Miner. Depos. 1997, 33, 111–136. [Google Scholar] [CrossRef]
- Paulick, H.; McPhie, J. Facies architecture of the felsic lava-dominated host sequence to the Thalanga massive sulfide deposit, Lower Ordovician, northern Queensland. Aust. J. Earth Sci. 1999, 46, 391–405. [Google Scholar] [CrossRef]
- Gaboreau, S.; Beaufort, D.; Vieillard, P.; Patrier, P.; Bruneton, P. Aluminum Phosphate-Sulfate minerals associated with Proterozoic unconformity-type Uranium deposits in the East Alligator River Uranium field, northern Territories, Australia. Can. Mineral. 2005, 43, 813–827. [Google Scholar] [CrossRef] [Green Version]
- Imura, T.; Minami, Y.; Ohba, T.; Matsumoto, A.; Arribas, A.; Nakagawa, M. Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan. Minerals 2019, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Hovland, M. The formation of pockmarks and their potential influence on offshore construction. Q. J. Eng. Geol. Hydrogeol. 1989, 22, 131–138. [Google Scholar] [CrossRef]
- Chauvet, A. Structural control of ore deposits: The role of pre-existing structures on the formation of mineralised vein systems. Minerals 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Tămaș, C.; Milési, J. Hydrovolcanic Breccia Pipe Structures-General Features and Genetic Criteria. I. Phreatomagmatic Breccias. Stud. Univ. Babes-Bolyai Geol. 2002, 47, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Labrado, A.L.; Brunner, B.; Crémière, A.; Bernasconi, S.M.; Peckmann, J.; Giles, K.A. Thermochemical or microbial sulfate reduction: Determining the driver of native sulfur formation in the subsurface. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; p. U11C–03. [Google Scholar]
- Ingrassia, M.; Martorelli, E.; Italiano, F.; Macelloni, L.; Bosman, A.; Conte, A.M.; Di Bella, L.; Frezza, V.; Sposato, A.; Chiocci, F.L. Il sistema idrotermale al largo dell’Isola di Zannone (Mar Tirreno centrale): Nuovi risultati e prospettive. In Proceedings of the La Geologia Marina in Italia—Secondo Convegno dei Geologi Marini Italiani, CNR, Roma, Italy, 23–24 February 2017. [Google Scholar]
- Yokoyama, Y.; Takahashi, Y.; Miyoshi, Y.; Ishibashi, J.I.; Kawagucci, S. Sediment–pore water system associated with native sulfur formation at jade hydrothermal field in Okinawa trough. In Subseafloor Biosphere Linked to Hydrothermal Systems; Ishibashi, J., Okino, K., Sunamura, M., Eds.; Springer: Tokyo, Japan, 2015; pp. 405–419. [Google Scholar]
- Fouquet, Y.; Von Stackelberg, U.; Charlou, J.L.; Erzinger, J.; Herzig, P.M.; Muhe, R.; Wiedicke, M. Metallogenesis in back-arc environments: The Lau basin example. Econ. Geol. 1993, 88, 2154–2181. [Google Scholar] [CrossRef]
- Conte, A.M.; Caramanna, G. Preliminary characterisation of a shallow water hydrothermal sulphide deposit recovered by scientific divers (Aeolian Islands, southern Tyrrhenian Sea). Int. J. Soc. Underw. 2010, 29, 109–115. [Google Scholar] [CrossRef]
- Hannington, M.D.; Scott, S.D. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can. Mineral. 1988, 26, 603–625. [Google Scholar]
- Bach, W.; Roberts, S.; Vanko, D.A.; Binns, R.A.; Yeats, C.J.; Craddock, P.R.; Humphris, S.E. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Miner. Depos. 2003, 38, 916–935. [Google Scholar] [CrossRef]
- Ishibashi, J.; Ikegami, F.; Tsuji, T.; Urabe, T. Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. In Subseafloor Biosphere Linked to Hydrothermal Systems; Ishibashi, J., Okino, K.M.S., Eds.; Springer: Tokyo, Japan, 2015; pp. 337–360. [Google Scholar]
- Yeats, C.J.; Hollis, S.P.; Halfpenny, A.; Corona, J.-C.; LaFlamme, C.; Southam, G.; Fiorentini, M.; Herrington, R.J.; Spratt, J. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan. Ore Geol. Rev. 2017, 84, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, C.S.; Barton, P.B., Jr.; Ohmoto, H. Mineral textures and their bearing on the formation of Kuroko orebodies. In Kuroko and Related Volcanogenic Massive Sulfide Deposits; Economic Geology Monograph 5; Ohmoto, H., Skinner, B.J., Eds.; Economic Geology Publishing Company: New Heaven, CT, USA, 1983; pp. 241–281. ISBN 03610128. [Google Scholar]
Sample | Lat | Lon | Depth (m) | Analyzed Portion |
---|---|---|---|---|
ST2BNR1 | 40° 58′ 21″ N | 13° 06′ 06″ E | 135 | crust |
ST2BNR2 | 40° 58′ 20″ N | 13° 06′ 04″ E | 130 | clasts |
ST2BNR3 | 40° 58′ 21″ N | 13° 06′ 06″ E | 135 | crust |
ST9BNR2 | 40° 58′ 20″ N | 13° 06′ 04″ E | 128 | clast |
ROV6 | 40° 58′ 14″ N | 13° 06′ 05″ E | 128 | crust |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, A.M.; Di Bella, L.; Ingrassia, M.; Perinelli, C.; Martorelli, E. Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea). Minerals 2020, 10, 581. https://doi.org/10.3390/min10070581
Conte AM, Di Bella L, Ingrassia M, Perinelli C, Martorelli E. Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea). Minerals. 2020; 10(7):581. https://doi.org/10.3390/min10070581
Chicago/Turabian StyleConte, Aida Maria, Letizia Di Bella, Michela Ingrassia, Cristina Perinelli, and Eleonora Martorelli. 2020. "Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea)" Minerals 10, no. 7: 581. https://doi.org/10.3390/min10070581
APA StyleConte, A. M., Di Bella, L., Ingrassia, M., Perinelli, C., & Martorelli, E. (2020). Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea). Minerals, 10(7), 581. https://doi.org/10.3390/min10070581