Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit
4. Methods
4.1. Sample Preparation
4.2. Analytical Methods
5. Results
5.1. Zircon LA-ICP-MS U-Pb Ages
5.2. Whole-Rock Geochemistry
5.3. Hf Isotopes
5.4. Trace Elements in Zircon
6. Discussion
6.1. Timing of Tonggou Porphyry Cu Mineralization
6.2. Source of Magmas and Petrogenesis
Analysis | TG1-8 | TG1-11 | D03-6 | D03-7 | D03-8 | D03-16 | D03-21 | Analysis | TG1-8 | TG1-11 | D03-6 | D03-7 | D03-8 | D03-16 | D03-21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tonggou, Granodiorite | Daheyan, Granodiorite | Tonggou, Granodiorite | Daheyan, Granodiorite | ||||||||||||
Al | 57.0 | 18.2 | 1.9 | 1.4 | 13.9 | 4.7 | 7.6 | Tm | 53.8 | 49.8 | 23.3 | 19.7 | 29.9 | 13.4 | 26.3 |
P | 547 | 576 | 341 | 267 | 555 | 229 | 323 | Yb | 513 | 557 | 243 | 230 | 309 | 155 | 267 |
Ti | 6.60 | 6.63 | 10.16 | 8.07 | 13.16 | 9.56 | 12.44 | Lu | 103 | 115 | 51 | 55 | 67 | 37 | 56 |
Sr | 5.10 | 1.63 | 0.08 | 0.20 | 0.31 | 0.11 | 0.14 | Th | 252 | 229 | 42 | 48 | 48 | 53 | 51 |
Y | 1528 | 1605 | 746 | 557 | 941 | 389 | 866 | U | 371 | 366 | 70 | 103 | 89 | 103 | 70 |
La | 1.296 | 1.770 | 0.004 | 0.000 | 0.061 | 0.004 | 0.009 | Zr | 489,886 | 487,745 | 494,258 | 494,658 | 494,103 | 487,071 | 485,058 |
Ce | 25.5 | 27.4 | 9.5 | 6.8 | 8.3 | 4.4 | 8.2 | Hf | 10,182 | 10,703 | 9670 | 9634 | 9786 | 9106 | 10,023 |
Pr | 0.56 | 0.74 | 0.02 | 0.03 | 0.04 | 0.03 | 0.03 | Ta | 1.36 | 1.54 | 0.26 | 0.28 | 0.20 | 0.18 | 0.24 |
Nd | 3.69 | 4.37 | 0.69 | 0.61 | 0.78 | 0.52 | 1.17 | Nb | 3.50 | 3.81 | 0.67 | 0.53 | 0.68 | 0.20 | 0.44 |
Sm | 4.06 | 4.59 | 1.75 | 1.20 | 2.62 | 1.01 | 3.89 | ΣREE | 1162 | 1196 | 552 | 472 | 695 | 322 | 624 |
Eu | 0.69 | 0.75 | 0.69 | 0.59 | 0.88 | 0.46 | 0.92 | LREE/HREE | 0.034 | 0.032 | 0.020 | 0.023 | 0.023 | 0.020 | 0.019 |
Gd | 22.5 | 25.9 | 15.2 | 9.3 | 15.4 | 6.2 | 18.7 | Eu/EuN* | 0.22 | 0.21 | 0.41 | 0.54 | 0.43 | 0.57 | 0.33 |
Tb | 8.64 | 10.15 | 4.81 | 3.17 | 5.55 | 2.32 | 6.18 | Ce4+/Ce3+ | 159 | 286 | 138 | 134 | 121 | 106 | 72 |
Dy | 113.3 | 121.3 | 57.9 | 38.1 | 70.5 | 26.6 | 69.5 | T(°C) | 734 | 735 | 775 | 753 | 802 | 769 | 796 |
Ho | 44.3 | 48.8 | 22.5 | 15.2 | 28.1 | 11.3 | 26.5 | Ce/CeN* | 227 | 234 | 400 | 397 | 475 | 544 | 399 |
Er | 268.0 | 228.0 | 121.0 | 92.1 | 157.0 | 64.0 | 139.0 | △NNO | −0.02 | −0.22 | 2.21 | 3.84 | 2.43 | 4.21 | 1.16 |
6.3. Fractional Crystallization of Magmas
6.4. Oxidation Conditions of Magmas
6.5. Implications for Porphyry Cu Mineralization
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Ling, M.X. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Rezaei, M.; Raith, J.G.; Pourkaseb, H.; Asadi, S.; Saed, M.; Lentz, D.R. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochim. Cosmochim. Acta 2018, 223, 36–59. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Why no porphyry copper deposits in Japan and South Korea. Resour. Geol. 2018, 68, 107–125. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Richards, J.P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol. Rev. 2015, 70, 323–345. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Lu, Y.; Kemp, A.; Zheng, Y.; Li, Q.; Duan, L. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Richards, J.P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol. 2011, 106, 1075–1081. [Google Scholar] [CrossRef]
- Hattori, K.H.; Keith, J.D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Depos. 2001, 36, 799–806. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Wang, R.; Zheng, Y.C. Further discussion on porphyry Cu-Mo-Au deposit formation in main-land China. Earth Sci. Front. 2020. [Google Scholar] [CrossRef]
- Sobolev, A.; Chaussidon, M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 1996, 137, 45–55. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Coldwell, B.; Adam, J.; Rushmer, T.; Macpherson, C.G. Evolution of the East Philippine arc: Experimental constraints on magmatic phase relations and adakitic melt formation. Contrib. Mineral. Petrol. 2011, 162, 835–848. [Google Scholar] [CrossRef] [Green Version]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Gelman, S.E.; Deering, C.D.; Bachmann, O.; Huber, C.; Gutiérrez, F.J. Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet. Sci. Lett. 2014, 403, 299–306. [Google Scholar] [CrossRef]
- Chudík, P.; Uher, P.; Kohút, M.; Bačík, P. Accessory columbite to tantalite, tapiolite and zircon: Products of extreme fractionationin highly peraluminous pegmatitic granite from the Považský Inovec Mountains, Western Carpathians, Slovakia. J. Geosci. 2008, 53, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Large, S.J.E.; von Quadt, A.; Wotzlaw, J.F.; Guillong, M.; Heinrich, C.A. Magma evolution leading to porphyry Au-Cu mineralization at the Ok Tedi deposit, Papua New Guinea: Trace element geochemistry and high-precision geochronology of igneous zircon. Econ. Geol. 2018, 113, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.G.; Bryne, K.; D’Angelo, M.D.; Hart, C.J.R.; Hollings, P.; Gleeson, S.A.; Alfaro, M. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B.; Hanchar, J.M. Rare-earth diffusion in zircon. Chem. Geol. 1997, 134, 289–301. [Google Scholar] [CrossRef]
- Loader, M.A.; Wilkinson, J.J.; Armstrong, R.N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 2017, 472, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Loucks, R.R.; Fiorentini, M.; Mccuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q.; Kirkland, C.L.; Parra-avila, L.A.; Kobussen, A. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. Econ. Geol. 2016, 19, 329–347. [Google Scholar]
- Zhong, S.; Seltmann, R.; Qu, H.; Song, Y. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: A revised Ce/Ce* method. Miner. Petrol. 2019, 113, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce“IV”/Ce“III” in zircon: Application to porphyry copper deposits of Northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Banik, T.J.; Coble, M.A.; Miller, C.F. Porphyry Cu formation in the middle Jurassic Yerington batholith, Nevada, USA: Constraints from laser Raman, trace element, U-Pb age, and oxygen isotope analyses of zircon. Geosphere 2017, 13, 1113–1132. [Google Scholar] [CrossRef]
- Kobylinski, C.H.; Hattori, K.; Smith, S.W.; Plouffe, A. Protracted magmatism and mineralized hydrothermal activity at the gibraltar porphyry copper-molybdenum deposit, British Columbia. Econ. Geol. 2020. [Google Scholar] [CrossRef]
- Dilles, J.H.; Kent, A.J.R.; Wooden, J.L.; Tosdal, R.M.; Koleszar, A.; Lee, R.G.; Farmer, L.P. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ. Geol. 2015, 110, 241–251. [Google Scholar] [CrossRef]
- Shen, P.; Hattori, K.; Pan, H.D.; Jackson, S.; Seitmuratova, E. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt. Econ. Geol. 2015, 110, 1861–1878. [Google Scholar] [CrossRef]
- Smythe, D.J.; Brenan, J.M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet. Sci. Lett. 2016, 453, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.C.; Sun, W.D.; Wang, J.T.; Zhang, L.P.; Sun, S.J.; Wu, K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta 2017, 206, 343–363. [Google Scholar] [CrossRef]
- Cao, M.J.; Qin, K.Z.; Li, G.; Evans, N.J.; McInnes, B.I.; Li, J.; Zhao, J. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Miner. Depos. 2018, 53, 299–309. [Google Scholar] [CrossRef]
- Rezeau, H.; Moritz, R.; Wotzlaw, J.F. Zircon petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting igneous processes and implications for the exploration of porphyry Cu-Mo deposits. Econ. Geol. 2019, 114, 1365–1388. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, H.Y.; Baker, M.J.; Han, J.S.; Xiao, B.; Yang, J.T.; Jourdan, F. Multiple mineralization events of the Paleozoic Tuwu porphyry copper deposit, Eastern Tianshan: Evidence from geology, fluid inclusions, sulfur isotopes, and geochronology. Miner. Depos. 2019, 54, 1053–1076. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, F.F.; Liu, J.J.; Que, C.Y. Genesis of the Fuxing porphyry Cu deposit in Eastern Tianshan, China: Evidence from fluid inclusions and C–H–O–S–Pb isotope systematics. Ore Geol. Rev. 2016, 79, 46–61. [Google Scholar] [CrossRef]
- Han, C.M.; Xiao, W.J.; Wan, B.; Ao, S.J.; Zhang, J.E.; Song, D.F.; Zhang, Z.Y.; Wang, Z.M. Late Palaeozoic-Mesozoic endogenetic metallogenic series and geodynamic evolution in the East Tianshan mountains. Acta Petrol. Sin. 2018, 34, 1914–1932. [Google Scholar]
- Wang, J.B.; Wang, Y.W.; He, Z.H. Ore deposits as a guide to the tectonic evolution in the East Tianshan mountains NW China. Geol. China 2006, 33, 461–469. (In Chinese) [Google Scholar]
- Allen, M.B.; Windley, B.F.; Zhang, C. Paleozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Carroll, A.R.; Graham, S.A.; Hendrix, M.S.; Ying, D.; Zhou, D. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the Northern Tarim, Northwestern Turpan, and Southern Junggar basins. Geol. Soc. Am. Bull. 1995, 107, 571–594. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in Northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Charvet, J.; Chen, Y.; Zhao, P.; Shi, G. Middle Paleozoic convergent orogenic belts in Western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian orogenic belt. Gondwana Res. 2012, 23, 1342–1364. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.S.; Chen, Y.J.; Zhou, K.F. Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting. Ore Geol. Rev. 2016, 81, 641–671. [Google Scholar] [CrossRef]
- BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region). Regional Geology of Xinjiang Uygur Autonomous Region; Geological Publishing House: Beijing, China, 1993; pp. 1–841. (In Chinese) [Google Scholar]
- Xiao, Q.H.; Qin, K.Z.; Xu, Y.X.; San, J.Z.; Ma, Z.L.; Sun, H.; Tang, D.M. A discussion on geological characteristics of Hongxingshan Pb-Zn (Ag) deposit in Central Tianshan massif, eastern Xinjiang, with reference to regional metallogenesis. Miner. Depos. 2009, 28, 120–132. [Google Scholar]
- Ma, X.H.; Chen, B.; Wang, C.; Yan, X.L. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang. Acta Petrol. Sin. 2015, 31, 89–104. (In Chinese) [Google Scholar]
- Han, B.F.; Guo, Z.J.; Zhang, Z.C.; Zhang, L.; Chen, J.F.; Song, B. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, Western China. Geol. Soc. Am. Bull. 2010, 122, 627–640. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Ma, X.H.; Yan, X.L. Petrogenesis of early and late Paleozoic plutons in Sanchakou area of East Tianshan and their implications for evolution of Kangur Suture Zone. J. Earth Sci. Environ. 2015, 37, 52–70. (In Chinese) [Google Scholar]
- Lei, W.; Guo, J.F.; Ma, J.; Xiao, L.; Li, X.C.; Liu, J.; Li, Y. Lithogeochemistry and LA-ICP-MS zircon U-Pb age and its tectonic significance of Sujishan A-type granite pluton, Eastern Bogda Mountains. Geol. J. China Univ. 2016, 22, 231–241. (In Chinese) [Google Scholar]
- Zhang, X.B.; Chai, F.M.; Chen, C.; Quan, H.Y.; Gong, X.P. Geochronology, geochemistry and tectonic implications of late Carboniferous Daheyan intrusions from the Bogda Mountains, Eastern Tianshan. Geol. Mag. 2020, 157, 289–306. [Google Scholar]
- Gu, L.X.; Hu, S.X.; Yu, C.S.; Li, H.Y.; Xiao, X.J.; Yan, Z.F. Carboniferous volcanites in the Bogda Mountains of eastern Tianshan: Their tectonic implications. Acta Petrol. Sin. 2000, 16, 305–316. (In Chinese) [Google Scholar]
- Yuan, C.; Sun, M.; Wilde, S.; Xiao, W.; Xu, Y.; Long, X.; Zhao, G. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos 2010, 119, 269–288. [Google Scholar] [CrossRef]
- Li, P.; Li, Q.; Zhu, Z.; Chen, C.; Liu, X. The study on fluid inclusions and stable isotopes of suoerbasitao gold deposit in the Eastern Tianshan Mountain, NW China. Acta Geol. Sin. 2014, 88, 757–758. [Google Scholar] [CrossRef]
- Zhang, X.B.; Chen, C.; Xia, F.; Gao, L.L.; Quan, H.Y. Metallogenesis and hydrothermal evolution of the Tonggou Cu deposit in the Eastern Tianshan: Evidence from fluid inclusions, H-O-S isotopes, and Re-Os geochronology. Geosci. Front. 2019, 10, 2301–2312. [Google Scholar] [CrossRef]
- Zhang, X.B. The research progress of Tonggou porphyry-vein Cu deposit in Eastern Tianshan. In The Abstract Books of 9th National Colloquium Metallogenic Theory and Prospecting Methods; Acta Mineralogica Sinica: Guiyang, China, 2019; p. 291. (In Chinese) [Google Scholar]
- NGPXGEICMGB (No.704 Geological Party, Xinjiang Geological Exploration Institute of China Metallurgical Geology Bureau). 1: 10000 Detailed Investigation Report of Cu Multi-Metal Belt; XGEICMGB: Chaiwopu, China, 1975; pp. 1–175. (In Chinese) [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Shan, G. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; pp. 1–70. [Google Scholar]
- Yang, H.; Ge, W.C.; Zhao, G.C.; Dong, Y.; Xu, W.L.; Ji, Z.; Yu, J.J. Late Triassic intrusive complex in the Jidong region, Jiamusi-Khanka Block, NE China: Geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma mingling and mixing. Lithos 2015, 224–225, 143–159. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Davies, J.F.; Whitehead, R.E. Alkali/Alumina molar ratio trends in altered granitoid rocks hosting porphyry and related deposits. Explor. Min. Geol. 2010, 19, 13–22. [Google Scholar] [CrossRef]
- Nicholas, C.W.; Garry, J.D. Possible submarine advanced argillic alteration at the basin lake prospect, western Tasmania, Australia. Econ. Geol. 2004, 99, 987–1002. [Google Scholar]
- Winchester, J.; Floyd, P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Vry, V.H.; Wilkinson, J.J.; Seguel, J.; Millán, J. Multistage intrusion, brecciation, and veining at El Teniente, Chile: Evolution of a nested porphyry system. Econ. Geol. 2010, 105, 119–153. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Special Publication; Geological Society of London: London, UK, 1989; Volume 32, pp. 313–345. [Google Scholar]
- Blundy, J.; Wood, B. Prediction of crystal-melt partition coeffcients from elastic moduli. Nature 1994, 372, 452–454. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, H.Y.; Xiao, B.; Han, J.S.; Fang, J.; Yang, J.T. Overpinting mineralization in the Paleozoic Yandong porphyry copper deposit, eastern Tianshan, NW China―Evidence from geology, fluid inclusion and geochronology. Ore Geol. Rev. 2018, 100, 148–167. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, F.F.; Liu, J.J.; Que, C.Y. Carboniferous magmatism and mineralization in the area of the Fuxing Cu deposit, Eastern Tianshan, China: Evidence from zircon U-Pb ages, petrogeochemistry, and Sr-Nd-Hf-O isotopic compositions. Gondwana Res. 2016, 34, 109–128. [Google Scholar] [CrossRef]
- Chen, J.F.; Guo, X.S.; Tang, J.F.; Zou, T.X. Nd isotopic model ages: Implications of the growth of the continental crust of southeastern China. J. Nanjing Univ. 1999, 35, 649–658. (In Chinese) [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, H.; Ling, M.X.; Ding, X.; Chung, S.L.; Zhou, J.B.; Yang, X.Y.; Fan, W.M. The genetic association of adakites and Cu-Au ore deposits. Int. Geol. Rev. 2011, 53, 691–703. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Miller, C.F.; Mittlefehldt, D.W. Depletion of light rare-earth element in felsic magmas. Geology 1982, 10, 129–133. [Google Scholar] [CrossRef]
- Miller, C.F.; Mittlefehldt, D.W. Extreme fractionationin felsic magma chambers: A product of liquid-state diffusion or fractional crystallization? Earth Planet. Sci. Lett. 1984, 68, 151–158. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Morton, D.M. High silica granites: Terminal porosity and crystal settling in shallow magma chambers. Earth Planet. Sci. Lett. 2015, 409, 23–31. [Google Scholar] [CrossRef]
- Pérez-Soba, C.; Villaseca, C. Petrogenesis of highly fractionated I-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geol. Acta 2010, 8, 131–149. [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 1–24. [Google Scholar] [CrossRef]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 2014, 192–195, 208–225. [Google Scholar] [CrossRef]
- Wang, X.; Griffin, W.L.; Chen, J. Hf contents and Zr/Hf ratios in granitic zircons. Geochem. J. 2010, 44, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Cerný, P.; Teertstra, D.K.; Chapman, R.; Selway, J.B.; Hawthorne, F.C.; Ferreira, K.; Chackowsky, L.E.; Wang, X.J.; Meintzer, R.E. Extreme fractionation and deformation of the leucogranite-pegmatite suite at Red Cross Lake, Manitoba, Canada. IV. Mineralogy. Can. Mineral. 2012, 50, 1839–1875. [Google Scholar] [CrossRef]
- Sun, W.D.; Ling, M.X.; Chung, S.L.; Ding, X.; Yang, X.Y.; Liang, H.Y.; Fan, W.M.; Goldfarb, R.; Yin, Q.Z. Geochemical constraints on adakites of different origins and copper mineralization. J. Geol. 2012, 120, 105–120. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, N.; Lentz, D.R.; Chris, R.M.; McFarlane, B.C. Geochemistry of the highly evolved Sn-W-Mo-bearing Mount Douglas Granite, New Brunswick, Canada: Implications for origin and mineralization. Ore Geol. Rev. 2020, 117, 103266. [Google Scholar] [CrossRef]
- Lee, R.G.; Dilles, J.H.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons. Econ. Geol. 2017, 112, 245–273. [Google Scholar] [CrossRef]
- Chelle-Michou, C.; Chiaradia, M.; Ovtcharova, M.; Ulianov, A.; Wotzlaw, J.F. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos 2014, 198–199, 129–140. [Google Scholar] [CrossRef]
- Han, Y.G.; Zhang, S.H.; Pirajno, F.; Zhou, X.W.; Zhao, G.C.; Qü, W.J.; Liu, S.H.; Zhang, J.M.; Liang, H.B.; Yang, K. U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: Insights into the oxidation state of granitoids and Mo (Au) mineralization. Ore Geol. Rev. 2013, 55, 29–47. [Google Scholar] [CrossRef]
- Qiu, J.T.; Yu, X.Q.; Santosh, M.; Zhang, D.H.; Chen, S.Q.; Li, P.J. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner. Depos. 2013, 48, 545–556. [Google Scholar] [CrossRef]
Sample. | Th | U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | (10−6) | (10−6) | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ |
TG1-01 | 1018 | 1802 | 0.57 | 0.0711 | 0.0055 | 0.5880 | 0.0470 | 0.0604 | 0.0008 | 184 | 251 | 344 | 32 | 368 | 4 |
TG1-02 | 640 | 878 | 0.73 | 0.0753 | 0.0035 | 0.6053 | 0.0298 | 0.0581 | 0.0007 | 1078 | 80 | 481 | 19 | 364 | 4 |
TG1-03 | 449 | 630 | 0.71 | 0.0739 | 0.0056 | 0.5396 | 0.0402 | 0.0535 | 0.0008 | 1039 | 129 | 438 | 27 | 336 | 5 |
TG1-04 | 441 | 625 | 0.71 | 0.0905 | 0.0085 | 0.6825 | 0.0663 | 0.0543 | 0.0007 | - | 241 | 286 | 32 | 322 | 3 |
TG1-05 | 370 | 730 | 0.51 | 0.0681 | 0.0035 | 0.4500 | 0.0221 | 0.0483 | 0.0007 | 471 | 200 | 320 | 24 | 300 | 4 |
TG1-06 | 557 | 1072 | 0.52 | 0.0551 | 0.0020 | 0.3682 | 0.0130 | 0.0484 | 0.0005 | 415 | 61 | 318 | 10 | 305 | 3 |
TG1-07 | 935 | 468 | 2.00 | 0.0577 | 0.0030 | 0.3855 | 0.0215 | 0.0481 | 0.0007 | 517 | 98 | 331 | 16 | 303 | 4 |
TG1-08 | 762 | 937 | 0.81 | 0.0700 | 0.0037 | 0.4612 | 0.0217 | 0.0485 | 0.0006 | 386 | 189 | 310 | 22 | 300 | 4 |
TG1-09 | 753 | 788 | 0.96 | 0.0720 | 0.0035 | 0.4833 | 0.0240 | 0.0483 | 0.0006 | 530 | 196 | 326 | 24 | 298 | 4 |
TG1-10 | 666 | 959 | 0.70 | 0.0551 | 0.0024 | 0.3650 | 0.0142 | 0.0483 | 0.0006 | 415 | 64 | 316 | 11 | 304 | 4 |
TG1-11 | 697 | 1088 | 0.64 | 0.0630 | 0.0032 | 0.4191 | 0.0184 | 0.0487 | 0.0007 | 347 | 202 | 308 | 23 | 303 | 4 |
TG1-12 | 427 | 1087 | 0.39 | 0.0644 | 0.0025 | 0.5188 | 0.0182 | 0.0581 | 0.0009 | 453 | 140 | 373 | 19 | 360 | 5 |
TG1-13 | 252 | 480 | 0.53 | 0.0640 | 0.0031 | 0.4314 | 0.0205 | 0.0487 | 0.0006 | 480 | 166 | 325 | 20 | 303 | 4 |
TG1-14 | 377 | 587 | 0.64 | 0.0676 | 0.0036 | 0.4515 | 0.0238 | 0.0483 | 0.0007 | 411 | 208 | 312 | 24 | 299 | 5 |
TG1-15 | 673 | 829 | 0.81 | 0.0627 | 0.0030 | 0.5182 | 0.0239 | 0.0600 | 0.0008 | 378 | 177 | 373 | 24 | 372 | 5 |
TG1-16 | 228 | 349 | 0.65 | 0.0899 | 0.0141 | 0.6507 | 0.1081 | 0.0524 | 0.0009 | 955 | 435 | 411 | 66 | 321 | 6 |
TG1-17 | 1014 | 1181 | 0.86 | 0.0584 | 0.0024 | 0.4113 | 0.0167 | 0.0510 | 0.0006 | 543 | 67 | 350 | 12 | 321 | 4 |
TG1-18 | 574 | 709 | 0.81 | 0.0742 | 0.0064 | 0.5592 | 0.0433 | 0.0550 | 0.0008 | 417 | 256 | 348 | 33 | 337 | 5 |
TG1-19 | 386 | 481 | 0.80 | 0.0853 | 0.0049 | 0.5972 | 0.0330 | 0.0507 | 0.0009 | 642 | 226 | 351 | 29 | 309 | 5 |
TG1-20 | 406 | 409 | 0.99 | 0.0597 | 0.0035 | 0.3958 | 0.0228 | 0.0483 | 0.0007 | 594 | 98 | 339 | 17 | 304 | 5 |
TG1-21 | 673 | 598 | 1.13 | 0.0827 | 0.0055 | 0.6372 | 0.0470 | 0.0542 | 0.0009 | 465 | 366 | 345 | 49 | 328 | 6 |
TG1-22 | 511 | 533 | 0.96 | 0.0899 | 0.0061 | 0.7090 | 0.0480 | 0.0568 | 0.0007 | 6 | 273 | 298 | 39 | 337 | 4 |
TG1-23 | 122 | 213 | 0.57 | 0.0894 | 0.0074 | 0.6840 | 0.0574 | 0.0564 | 0.0013 | 693 | 314 | 392 | 45 | 343 | 8 |
Sample | TG-1 | TG-2 | TG-3 | TG-4 | Sample | TG-1 | TG-2 | TG-3 | TG-4 |
---|---|---|---|---|---|---|---|---|---|
SiO2 (%) | 69.12 | 69.73 | 70.85 | 68.58 | Ga (ppm) | 23.7 | 22.1 | 20.1 | 22.5 |
TiO2 (%) | 0.46 | 0.47 | 0.38 | 0.37 | Hf (ppm) | 3.5 | 3.7 | 3.6 | 3.5 |
Al2O3 (%) | 12.10 | 11.48 | 12.60 | 13.65 | Ho (ppm) | 0.74 | 0.77 | 0.69 | 0.74 |
TFe2O3 (%) | 5.77 | 5.66 | 4.50 | 4.91 | La (ppm) | 16.9 | 15.7 | 27.1 | 24.8 |
MnO (%) | 0.10 | 0.10 | 0.10 | 0.11 | Lu (ppm) | 0.33 | 0.33 | 0.30 | 0.32 |
MgO (%) | 0.16 | 0.15 | 0.17 | 0.30 | Nb (ppm) | 6.2 | 6.1 | 4.9 | 4.6 |
CaO (%) | 10.85 | 10.40 | 9.54 | 10.20 | Nd (ppm) | 17.3 | 17.3 | 23.3 | 22.4 |
Na2O (%) | 0.08 | 0.05 | 0.19 | 0.22 | Pr (ppm) | 4.53 | 4.54 | 6.47 | 6.08 |
K2O (%) | 0.08 | 0.08 | 0.05 | 0.05 | Rb (ppm) | 1.8 | 1.6 | 1.4 | 1.6 |
P2O5 (%) | 0.07 | 0.07 | 0.06 | 0.07 | Sm (ppm) | 3.78 | 3.81 | 4.80 | 4.83 |
LOI (%) | 1.50 | 1.31 | 1.45 | 1.65 | Sn (ppm) | 2.6 | 2.5 | 7.0 | 8.5 |
(La/Yb)N | 5.83 | 5.24 | 9.82 | 8.68 | Sr (ppm) | 774 | 735 | 688 | 709 |
LREE/HREE | 5.77 | 5.64 | 6.95 | 6.40 | Ta (ppm) | 0.44 | 0.49 | 0.36 | 0.33 |
Eu/EuN* | 1.02 | 1.01 | 0.76 | 0.77 | Tb (ppm) | 0.55 | 0.58 | 0.55 | 0.58 |
ΣREE | 89.41 | 89.43 | 102.06 | 98.62 | Th (ppm) | 6.30 | 6.50 | 4.98 | 4.87 |
Ba (ppm) | 48.9 | 49.8 | 21.8 | 22.1 | Tl (ppm) | 0.03 | 0.04 | <0.02 | <0.02 |
Ce (ppm) | 32.5 | 33.4 | 26.5 | 26.1 | Tm (ppm) | 0.32 | 0.33 | 0.31 | 0.32 |
Cr (ppm) | 78 | 54 | 36 | 34 | U (ppm) | 1.84 | 1.89 | 1.51 | 1.56 |
Cs (ppm) | 0.07 | 0.07 | 0.12 | 0.12 | Y (ppm) | 20.3 | 21.0 | 19.8 | 20.7 |
Dy (ppm) | 3.53 | 3.58 | 3.24 | 3.38 | Yb (ppm) | 2.08 | 2.15 | 1.98 | 2.05 |
Er (ppm) | 2.21 | 2.19 | 2.03 | 2.11 | Zr (ppm) | 128 | 132 | 137 | 129 |
Eu (ppm) | 1.20 | 1.21 | 1.05 | 1.08 | Cu (ppm) | 1.7 | 5.1 | 1.8 | 1.3 |
Gd (ppm) | 3.44 | 3.54 | 3.74 | 3.83 | V (ppm) | 105 | 102 | 68 | 75 |
Sample Spot | 176Lu/177Hf | 176Yb/177Hf | 176Hf/177Hf | 176Hf/177Hf (t) | εHf (0) | εHf (t) | σ | TDM1 | TDM2 | fS |
---|---|---|---|---|---|---|---|---|---|---|
TG1-05 | 0.0018 | 0.0496 | 0.2826 | 0.2826 | −4.3 | 1.9 | 0.44 | 870 | 1189 | −0.95 |
TG1-06 | 0.0007 | 0.0227 | 0.2826 | 0.2826 | −4.3 | 2.2 | 0.34 | 848 | 1175 | −0.98 |
TG1-08 | 0.0016 | 0.0470 | 0.2828 | 0.2828 | 2.3 | 8.6 | 0.36 | 597 | 765 | −0.95 |
TG1-09 | 0.0013 | 0.0451 | 0.2829 | 0.2829 | 3.7 | 10.0 | 0.33 | 535 | 672 | −0.96 |
TG1-12 | 0.0022 | 0.0698 | 0.2829 | 0.2829 | 4.2 | 11.6 | 0.47 | 529 | 620 | −0.93 |
TG1-13 | 0.0022 | 0.0758 | 0.2830 | 0.2830 | 7.9 | 14.1 | 0.39 | 375 | 414 | −0.94 |
TG1-18 | 0.0011 | 0.0383 | 0.2828 | 0.2828 | 1.9 | 8.7 | 0.29 | 607 | 775 | −0.97 |
TG1-20 | 0.0013 | 0.0423 | 0.2828 | 0.2828 | 2.3 | 8.7 | 0.28 | 594 | 762 | −0.96 |
TG1-22 | 0.0017 | 0.0558 | 0.2829 | 0.2829 | 4.0 | 11.0 | 0.34 | 530 | 639 | −0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-B.; Chai, F.-M.; Chen, C.; Quan, H.-Y.; Wang, K.-Y.; Li, S.-D.; Wu, S.-S. Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan. Minerals 2020, 10, 584. https://doi.org/10.3390/min10070584
Zhang X-B, Chai F-M, Chen C, Quan H-Y, Wang K-Y, Li S-D, Wu S-S. Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan. Minerals. 2020; 10(7):584. https://doi.org/10.3390/min10070584
Chicago/Turabian StyleZhang, Xue-Bing, Feng-Mei Chai, Chuan Chen, Hong-Yan Quan, Ke-Yong Wang, Shun-Da Li, and Shi-Shan Wu. 2020. "Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan" Minerals 10, no. 7: 584. https://doi.org/10.3390/min10070584
APA StyleZhang, X. -B., Chai, F. -M., Chen, C., Quan, H. -Y., Wang, K. -Y., Li, S. -D., & Wu, S. -S. (2020). Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan. Minerals, 10(7), 584. https://doi.org/10.3390/min10070584