Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Analytical Methods
4.1. Fluid Inclusion Measurements
4.2. H–O Isotope Analyses
4.3. S Isotope Analyses
4.4. Pb Isotope Analyses
4.5. Chalcopyrite Re–Os Dating
5. Analytical Results
5.1. Fluid Inclusions
5.1.1. Petrography and Types of Fluid Inclusion
5.1.2. Microthermometric Results
5.2. H–O Isotopes
5.3. S–Pb Isotopes
5.4. Chalcopyrite Re–Os Dating
6. Discussion
6.1. Timing of Cu (Mo) Mineralization
6.2. Source of the Ore-Forming Materials
6.3. Fluid Immiscibility and Pressure Estimates
6.4. Origin and Evolution of the Ore-Forming Fluids
6.5. Mechanism for Cu Transportation and Precipitation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Article Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. 2000, 91, 181–193. [Google Scholar]
- Xu, W.L.; Ji, W.Q.; Pei, F.P.; Meng, E.; Yu, Y.; Yang, D.B.; Zhang, X.Z. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications. J. Asian Earth Sci. 2009, 34, 392–402. [Google Scholar] [CrossRef]
- Xiao, W.J.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Jahn, B.M.; Windley, B.; Natal’in, B.; Dobretsov, N. Phanerozoic continental growth in Central Asia. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef]
- Song, B.J.; Wang, X.Y.; Ma, J. Characteristics of geological, genesis and structural background of gold depostis in the north Daxing’anling, Northeast China. J. Mineral. Petrol. 2015, 35, 15–24. [Google Scholar]
- Chen, Y.J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Liu, J.; Wu, G.; Qiu, H.N.; Gao, D.Z.; Yang, X.S. 40Ar/39Ar dating of gold-bearing quartz vein from the Shabaosi gold deposit at the northern end of the Great Xing’an Range and its tectonic significance. Acta Geol. Sin. 2013, 87, 1570–1579. (In Chinese) [Google Scholar]
- Zhai, D.G.; Liu, J.J.; Ripley, E.M.; Wang, J.P. Geochronological and He–Ar–S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos 2015, 212–215, 338–352. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Chu, S.X.; Wang, Y.B.; Sun, Y.; Duan, X.X.; Zhou, L.L.; Qu, W.J. Re–Os and U–Pb geochronology of the Duobaoshan Porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance. J. Asian Earth Sci. 2014, 79, 895–909. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhao, C.B.; Zhang, F.F.; Liu, J.J.; Wang, J.P.; Peng, R.M.; Liu, B. SIMS zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu–Mo deposit and granitoids in NE China and their geological significance. Gondwana Res. 2015, 28, 1228–1245. [Google Scholar] [CrossRef]
- Li, T.; Wu, G.; Liu, J.; Hu, Y.Q.; Zhang, Y.F.; Luo, D.F.; Mao, Z.H. Fluid inclusions and isotopic characteristics of the Jiawula Pb–Zn–Ag deposit, Inner Mongolia, China. J. Asian Earth Sci. 2015, 103, 305–320. [Google Scholar] [CrossRef]
- Li, T.G.; Wu, G.; Liu, J.; Wang, G.R.; Hu, Y.Q.; Zhang, Y.F.; Luo, D.F.; Mao, Z.H.; Xu, B. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb–Zn–Ag deposit, Inner Mongolia, China. Lithos 2016, 261, 340–355. [Google Scholar] [CrossRef]
- Shu, Q.; Lai, Y.; Sun, Y.; Wang, C.; Meng, S. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol. 2013, 108, 835–860. [Google Scholar] [CrossRef]
- Shu, Q.H.; Chang, Z.S.; Lai, Y.; Zhou, Y.T.; Sun, Y.; Yan, C. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re–Os dates of porphyry Mo deposits in the northern Xilamulun district. Econ. Geol. 2016, 111, 1783–1798. [Google Scholar] [CrossRef]
- Shu, Q.; Chang, Z.; Hammerli, J.; Lai, Y.; Huizenga, J.M. Composition and evolution of fluids forming the Baiyinnuo’er Zn–Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Econ. Geol. 2017, 112, 1441–1460. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q. Zircon U–Pb and molybdenite Re–Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing’an Range, China and its geological significance. J. Asian Earth Sci. 2014, 79, 696–709. [Google Scholar] [CrossRef]
- Hu, X.L.; Yao, S.Z.; He, M.C.; Ding, Z.J.; Cui, Y.B.; Shen, J.; Chen, B.; Zhu, B.P. Geochemistry, U–Pb geochronology and Hf isotope studies of the Daheishan porphyry Mo deposit in Heilongjiang Province, NE China. Resour. Geol. 2014, 64, 102–116. [Google Scholar] [CrossRef]
- Deng, C.Z.; Sun, D.Y.; Han, J.S.; Li, G.H.; Feng, Y.Z.; Xiao, B.; Li, R.C.; Shi, H.L.; Xu, G.Z.; Yang, D.G. Ages and petrogenesis of the Late Mesozoic igneous rocks associated with the Xiaokele porphyry Cu-Mo deposit, NE China and their geodynamic implications. Ore Geol. Rev. 2019, 107, 417–433. [Google Scholar] [CrossRef]
- Deng, C.Z. Petrology and metallogenesis of the porphyry Cu deposits in the northern Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Li, R.C.; Chen, H.Y.; Li, G.H.; Feng, Y.Z.; Xiao, B.; Han, J.S.; Deng, C.Z.; Shi, H.L. Geological characteristics and application of short wavelength infra-red technology (SWIR) in the Fukeshan porphyry copper deposit in the Great Xing’an Range area. Earth Sci. 2020, 45, 1517–1530. (In Chinese) [Google Scholar]
- Deng, C.Z.; Sun, D.Y.; Han, J.S.; Chen, H.Y.; Li, G.H.; Xiao, B.; Li, R.C.; Feng, Y.Z.; Li, C.L.; Lu, S. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu–Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 2019, 326–327, 341–357. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, C.; Li, N.; Yang, Y.F.; Deng, K. Geology of the Mo deposits in Northeast China. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 1223–1254. (In Chinese) [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.G.; Li, B.L.; Sun, F.Y.; Ding, Q.F.; Qian, Y.; Li, L.; Xu, Q.L.; Li, Y.J. Geochronology, geochemistry, and Hf isotopic compositions of Early Permian syenogranite and diabase from the northern Great Xing’an Range, NE China: Petrogenesis and tectonic implications. Can. J. Earth. Sci. 2020. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Wang, W. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res. 2016, 31, 218–240. [Google Scholar] [CrossRef]
- IMBGMR (Inner Mongolian Bureau of Geology and Mineral Resources). Regional Geology of Inner Mongolia; Geological Publishing House: Beijing, China, 1991; pp. 1–725. (In Chinese) [Google Scholar]
- Miao, L.C.; Fan, W.M.; Zhang, F.Q.; Liu, D.Y.; Jian, P.; Shi, G.H.; Tao, H.; Shi, Y.R. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing’an Range, and its geological implications. Chin. Sci. Bull. 2004, 49, 201–209. [Google Scholar] [CrossRef]
- IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources). Lithostratigraphy of Inner Mongolia; China University of Geosciences Press: Wuhan, China, 1996; pp. 1–342. (In Chinese) [Google Scholar]
- Zhang, J.H.; Ge, W.C.; Wu, F.Y.; Wilde, S.A.; Yang, J.H.; Liu, X.M. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China. Lithos 2008, 102, 138–157. [Google Scholar] [CrossRef]
- Gou, J.; Sun, D.Y.; Ren, Y.S.; Hou, X.G.; Yang, D.G. Geochemical and Hf isotopic compositions of Late Triassic–Early Jurassic intrusions of the Erguna Block, Northeast China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2017, 59, 347–367. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Sun, F.Y.; Ding, Q.F.; Wang, B.Y.; Li, Y.J.; Wang, K. Mineralization events in the Xiaokele porphyry Cu (–Mo) deposit, NE China: Evidence from zircon U–Pb and K–feldspar Ar–Ar geochronology and petrochemistry. Resour. Geol. 2020, 70, 254–272. [Google Scholar] [CrossRef]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Rahman, A.A. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Erguna block in the northern part of the Da Hinggan Range. Chin. Sci. Bull. 2005, 50, 2097–2105. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wang, B.; Wilde, S.A.; Zhao, G.C.; Cao, J.L.; Zheng, C.Q.; Zeng, W.S. Geochemistry and U–Pb zircon dating of the Toudaoqiao blueschists in the Great Xing’an Range, northeast China, and tectonic implications. J. Asian Earth Sci. 2015, 97, 197–210. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. Rev. Mineral. Michigan Mineral. Soc. Am. 1984, 12, 644. [Google Scholar]
- Clayton, W.M.; Mayeda, T.K. The use of bromine pent a fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- Du, A.D.; Wu, S.Q.; Sun, D.Z.; Wang, S.X.; Qu, W.J.; Markey, R.; Stain, H.; Morgan, J.; Malinovskiy, D. Preparation and certification of Re–Os dating reference materials: Molybdenite HLP and JDC. Geost. Geoanal. Res. 2004, 28, 41–52. [Google Scholar] [CrossRef]
- Du, A.D.; Qu, W.J.; Wang, D.H.; Li, C. Application of the Re-Os Dating in Economic Geology; Geological Publishing House: Beijing, China, 2012; pp. 1–182. (In Chinese) [Google Scholar]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Special Publication No. 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–71. [Google Scholar]
- Crawford, M.L. Phase Equilibria in Aqueous Fluid Inclusions. In Fluid Inclusions: Application to Petrology; Hollister, L.S., Crawfor, M.L., Eds.; Mineralogical Association of Canada: Calgary, AB, Canada, 1981; Volume 83, pp. 197–202. [Google Scholar]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Becker, S.P.; Fall, A.; Bodnar, R.J. Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O–NaCl solutions (N30 wt. % NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ. Geol. 2008, 103, 539–554. [Google Scholar] [CrossRef]
- Liu, X.; Fan, H.; Hu, F.F.; Yang, K.F.; Wen, B.J. Nature and evolution of the ore forming fluids in the giant Dexing porphyry Cu–Mo–Au deposit, southeastern China. J. Geochem. Explor. 2016, 171, 83–95. [Google Scholar] [CrossRef]
- Lecumberri-Sanchez, P.; Steele-MacInnis, M.; Bodnar, R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim. Cosmochim. Acta 2012, 92, 14–22. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. Atmos. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Chaussidon, M.; Albarède, F.; Sheppard, S.M.F. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 1989, 92, 144–156. [Google Scholar] [CrossRef]
- Field, C.W.; Zhang, L.; Dilles, J.H.; Rye, R.O.; Reed, M.H. Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-main stage porphyry Cu–Mo and late main stage base-metal mineral deposits, Butte district, Montana. Chem. Geol. 2005, 215, 61–93. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.L.; Yao, S.Z.; He, M.C.; Ding, Z.J.; Liu, M.; Cui, Y.B.; Shen, J. Sulfur and lead isotopic characteristics of Chalukou and Daheishan porphyry Mo deposits in northern segment of Da Hinggan Mountains. Miner. Depos. 2014, 33, 776–784. (In Chinese) [Google Scholar]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q. Fluid inclusions and H–O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geol. Rev. 2014, 59, 83–96. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, J.P.; Zhao, C.B.; Song, Z.W. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. J. Asian Earth Sci. 2016, 117, 208–224. [Google Scholar] [CrossRef]
- Mi, K.F.; Liu, Z.J.; Li, C.F.; Liu, R.B.; Wang, J.P.; Peng, R.M. Origin of the Badaguan porphyry Cu-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology. Ore Geol. Rev. 2017, 81, 154–172. [Google Scholar] [CrossRef]
- Zartman, R.; Doe, B. Plumbotectonics: The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, J.W.; Zhang, D.H.; Xue, F.; Xian, H.B.; Wang, S.J.; Jiao, T.L. Petrogenesis and tectonic setting of igneous rocks from the Dongbulage porphyry Mo deposit, Great Hinggan Range, NE China: Constraints from geology, geochronology, and isotope geochemistry. Ore Geol. Rev. 2020, 120, 103326. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Gao, X.F.; Li, C.W.; Miao, L.C.; Zhao, L.; Li, H.X. Sr–Nd–Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos 2010, 120, 563–578. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Cooke, D.R.; Hollings, P.; Wilkinson, J.J.; Tosdal, R.M. Geochemistry of porphyry deposits. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 357–381. [Google Scholar]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.; Dilles, J.H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry coppermolybdenum deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–332. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer Science & Business Media: Berlin, Germany, 2009; p. 1250. [Google Scholar]
- Barnes, H.L. Solubilities of ore minerals. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 404–460. [Google Scholar]
- Rust, A.C.; Cashman, K.V.; Wallace, P.J. Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 2004, 32, 349–352. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D.; White, N.C. Bajo de la Alumbrera copper–gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ. Geol. 2005, 100, 863–886. [Google Scholar] [CrossRef]
- Lang, X.H.; Deng, Y.L.; Wang, X.H.; Tang, J.X.; Xie, F.W.; Yang, Z.Y.; Yin, Q.; Jiang, K. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No.1 deposit in the Xiongcun district, Tibet, China. Ore Geol. Rev. 2020, 118, 103212. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion- centered hydrothermal system: Far southeast-lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef] [Green Version]
- Koděra, P.; Lexa, J.; Rankin, A.H.; Fallick, A.E. Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia. Mineral. Depos. 2005, 39, 921–943. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Tombros, S.; Williams-Jones, A.E. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: Constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies. Miner. Dep. 2018, 53, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, J.C. Ore genesis and hydrothermal evolution of the Wulandele Mo deposit, Inner Mongolia, Northeast China: Evidence from geology, fluid inclusions and H–O–S–Pb isotopes. Ore Geol. Rev. 2018, 93, 181–199. [Google Scholar] [CrossRef]
- Audétat, A.; Pettke, T.; Heinrich, C.A.; Bodnar, R.J. The composition of magmatic–hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Sun, H.R.; Huang, Z.L.; Li, W.B.; Ye, L.; Zhou, J.X. Geochronological, isotopic and mineral geochemical constraints on the genesis of the Diyanqinamu Mo deposit, Inner Mongolia, China. Ore Geol. Rev. 2015, 65, 70–83. [Google Scholar] [CrossRef]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 1971, 66, 98–118. [Google Scholar] [CrossRef]
- Holland, H.D. Granites, solutions, and basemetal deposits. Econ. Geol. 1972, 67, 281–301. [Google Scholar] [CrossRef]
- Crerar, D.A.; Barnes, H. Ore solution chemistry; V, solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to 350 °C. Econ. Geol. 1976, 71, 772–794. [Google Scholar] [CrossRef]
- Henley, R.; McNabb, A. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ. Geol. 1978, 73, 1–20. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. 100th Anniversary special paper: Vapor transport of metals and the formation of magmatic–hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Seo, J.H.; Guillong, M.; Heinrich, C.A. The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. Earth Planet. Sci. Lett. 2009, 282, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Pirajno, F.; Li, N.; Guo, D.S.; Lai, Y. Isotope systematic and fluid inclusion studies of the Qiyugou breccias pipe-hosted gold deposit, Qinling Orogen, Henan Province, China: Implications for ore genesis. Ore Geol. Rev. 2009, 35, 245–261. [Google Scholar] [CrossRef]
- Li, N.; Ulrich, T.; Chen, Y.-J.; Thomsen, T.B.; Pease, V.; Pirajno, F. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geol. Rev. 2012, 48, 442–459. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, N.; Chen, Y.J. Fluid inclusion study of the Nannihu giant porphyry Mo–W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geol. Rev. 2012, 46, 83–94. [Google Scholar] [CrossRef]
- Ulrich, T.; Guenther, D.; Heinrich, C.A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 1999, 399, 676–679. [Google Scholar] [CrossRef]
- Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.Y.; Sun, W.D.; Su, W.C.; Zartman, R.E. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ. Geol. 2009, 104, 587–596. [Google Scholar] [CrossRef]
- Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; Dangelo, W.M. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems. I. Iron-copperzinc-lead sulfide solubility relations. Econ. Geol. Bull. Soc. Econ. Geol. 1992, 87, 1–22. [Google Scholar] [CrossRef]
- Liu, W.; Mcphail, D. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chem. Geol. 2005, 221, 21–39. [Google Scholar] [CrossRef]
- Landtwing, M.R.; Pettke, T.; Halter, W.E.; Heinrich, C.A.; Redmond, P.B.; Einaudi, M.T.; Kunze, K. Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth Planet. Sci. Lett. 2005, 235, 229–243. [Google Scholar] [CrossRef]
- Hezarkhani, A.; William-Jones, A.E.; Gammons, C.H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Miner. Dep. 1999, 34, 770–783. [Google Scholar] [CrossRef]
- Fournier, R.O. Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.C.; Ripley, E.M. The role of magmatic sulfur in the formation of ore deposits. Rev. Mineral. Geochem. 2011, 73, 513–578. [Google Scholar] [CrossRef]
- Henley, R.W.; King, P.L.; Wykes, J.L.; Renggli, C.J.; Brink, F.J.; Clark, D.A.; Troitzsch, U. Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nat. Geosci. 2015, 8, 210–215. [Google Scholar] [CrossRef]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide minerals in hydrothermal deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Watanabe, Y.; Sato, R.; Sulaksono, A. Role of potassic alteration for porphyry cu mineralization: Implication for the absence of porphyry cu deposits in japan. Resour. Geol. 2018, 68, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.P.; Duo, J.; Li, G.M.; Liu, H.F.; Chen, H.A.; Ma, D.F.; Liu, C.Q.; Wei, L.J. High-oxidation-governed fluid evolution in the Naruo porphyry Cu–Au deposit, Tibet, China. Ore Geol. Rev. 2020, 117, 103318. [Google Scholar] [CrossRef]
- Taylor, H.P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochem. Hydrothermal Ore Depos. 1997, 3, 229–302. [Google Scholar]
- Simmons, S.F.; White, N.C.; John, D.A. Geological Characteristics of Epithermal Precious and Base Metal Deposits. Econ. Geol. 2005, 100, 485–522. [Google Scholar]
Mineralization Stages | Host Minerals | Inclusion Types | N | Tm-eu (°C) | Tm-ice (°C) | Th-s (°C) | Th-v (°C) | Salinity (wt. % NaCl Equivalent) |
---|---|---|---|---|---|---|---|---|
I | Qz | L-type | 42 | −27.9 to −26.4 | −8.2 to −4.5 | - | 381–477 | 7.2–11.9 |
V-type | 12 | −27.0 ± 0.5 | −8.0 to −5.2 | - | 424–471 | 8.1–11.7 | ||
S-type | 23 | - | 420–494 | 354–436 | 50.1–58.6 | |||
II | Qz | L-type | 44 | −27.5 to −25.1 | −6.5 to −2.9 | - | 282–391 | 4.8–9.9 |
V-type | 17 | −26.5 ± 0.5 | −6.2 to −3.4 | - | 321–398 | 5.6–9.5 | ||
III | Qz | L-type | 50 | −25.9 to −23.7 | −5.0 to −0.8 | 233–340 | 1.4–7.9 | |
V-type | 19 | −25.0 ± 0.5 | −4.0 to −1.5 | - | 261–334 | 2.6–6.4 | ||
IV | Qz | L-type | 39 | −2.3 to −0.5 | 144–239 | 0.9–3.9 |
Sample No. | Mineral | Mineralization Stages | Sample Description | δ18OV-SMOW (‰) | T (°C) | δ18OH2O (‰) | δD (‰) |
---|---|---|---|---|---|---|---|
FKS-ZK4002-HO1 | Quartz | I | Qz + Kf + Py vein | 9.0 | 430 | 5.6 | −109.9 |
FKS-ZK4002-HO2 | Quartz | II | Qz + Ccp vein | 6.5 | 350 | 1.2 | −125.7 |
FKS-ZK4002-HO3 | Quartz | III | Qz + Mo + Py vein | 7.1 | 270 | −1.0 | −140.9 |
FKS-ZK4002-HO4 | Quartz | IV | Qz + Cal vein | 6.2 | 190 | −6.2 | −152.3 |
Sample No. | Mineral | Mineralization Stages | Sample Description | δ34SV–CDT |
---|---|---|---|---|
FKS-ZK4002-S1 | Pyrite | I | Qz + Kf + Py vein | 3.4 |
FKS-ZK4002-S2 | Pyrite | I | Qz + Kf + Py vein | 3.3 |
FKS-ZK4002-S3 | Chalcopyrite | II | Qz + Ccp vein | −1.5 |
FKS-ZK4002-S4 | Chalcopyrite | II | Qz + Ccp vein | −2.3 |
FKS-ZK4002-S5 | Pyrite | II | Qz + Ccp + Py vein | 1.7 |
FKS-ZK4001-S1 | Molybdenite | III | Qz + Mo + Py vein | 0.6 |
FKS-ZK4001-S2-1 | Sphalerite | III | Qz + Ccp + Sp + Gn vein | 1 |
FKS-ZK4001-S2-2 | Galena | III | Qz + Ccp + Sp + Gn vein | 0.3 |
FKS-ZK4001-S3 | Pyrite | III | Qz + Mo + Py vein | 1.1 |
Sample No. | Mineral | Mineralization Stages | Sample Description | 206Pb/204Pb | Error | 207Pb/204Pb | Error | 208Pb/204Pb | Error |
---|---|---|---|---|---|---|---|---|---|
FKS-ZK4001-Pb1 | Pyrite | I | Qz + Kf + Py vein | 18.449 | 0.002 | 15.590 | 0.002 | 38.376 | 0.004 |
FKS-ZK4001-Pb2 | Chalcopyrite | II | Qz + Ccp vein | 18.408 | 0.002 | 15.607 | 0.002 | 38.380 | 0.005 |
FKS-ZK4002-Pb1 | Molybdenite | III | Qz + Mo + Py vein | 18.445 | 0.002 | 15.590 | 0.002 | 38.382 | 0.006 |
FKS-ZK4002-Pb2 | Galena | III | Qz + Ccp + Gn vein | 18.452 | 0.003 | 15.604 | 0.003 | 38.382 | 0.007 |
FKS-ZK4001-Pb3 | Quartz diorite porphyry | 18.228 | 0.002 | 15.572 | 0.002 | 38.207 | 0.004 |
Sample No. | Weight (g) | Re (ng/g) | Common Os (ng/g) | 187Re/188Os | 187Os/188Os | ||||
---|---|---|---|---|---|---|---|---|---|
Measured | Error | Measured | Error | Measured | Error | Measured | Error | ||
ZK4002-Re-Os1 | 0.0317 | 0.4177 | 0.0048 | 0.0156 | 0.0001 | 130 | 1.81 | 0.738 | 0.005 |
ZK4002-Re-Os2 | 0.0244 | 3.3842 | 0.0283 | 0.0021 | 0.0001 | 5997 | 93.7 | 15.1 | 0.209 |
ZK4002-Re-Os3 | 0.0361 | 1.9076 | 0.0165 | 0.0347 | 0.0003 | 266 | 3.16 | 1.12 | 0.011 |
ZK4001-Re-Os1 | 0.0198 | 1.6770 | 0.0180 | 0.0041 | 0.0001 | 2133 | 21.9 | 5.52 | 0.053 |
ZK4001-Re-Os2 | 0.0268 | 1.8857 | 0.0165 | 0.0515 | 0.0005 | 177 | 2.15 | 0.861 | 0.014 |
ZK4001-Re-Os3 | 0.0242 | 3.7997 | 0.0299 | 0.0436 | 0.0004 | 420 | 4.84 | 1.48 | 0.014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-g.; Li, B.-l.; Ding, Q.-f.; Qu, Y.; Wang, C.-k.; Wang, L.-l.; Xu, Q.-l. Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology. Minerals 2020, 10, 591. https://doi.org/10.3390/min10070591
Sun Y-g, Li B-l, Ding Q-f, Qu Y, Wang C-k, Wang L-l, Xu Q-l. Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology. Minerals. 2020; 10(7):591. https://doi.org/10.3390/min10070591
Chicago/Turabian StyleSun, Yong-gang, Bi-le Li, Qing-feng Ding, Yuan Qu, Cheng-ku Wang, Lin-lin Wang, and Qing-lin Xu. 2020. "Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology" Minerals 10, no. 7: 591. https://doi.org/10.3390/min10070591
APA StyleSun, Y. -g., Li, B. -l., Ding, Q. -f., Qu, Y., Wang, C. -k., Wang, L. -l., & Xu, Q. -l. (2020). Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology. Minerals, 10(7), 591. https://doi.org/10.3390/min10070591